

Formal Methods for Cyber-Physical Systems, at Work

Ichiro Hasuo

National Institute of Informatics & SOKENDAI Research Director, ERATO MMSD Project, JST

Outline

* Quality assurance of cyber-physical systems
 * Formal methods at work,

ERATO 蓮尾メタ数理システムデザインプロジェクト

O Metamathematics for Systems Design Project

National Institute of Informatics & Japan Science and Technology Agency

- coping with uncertainties
- Introducing the ERATO MMSD project
- * Tech showcase: "formal methods that are down-scalable"
 - Monitoring
 - Search-based testing
- * Applications, "power of math"

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

Cyber-Physical Systems : Control Theory and Formal Methods/Software Science

Cyber-Physical System (CPS)

- * "A mechanism that is controlled or monitored by computer-based algorithms, tightly integrated with the Internet and its users" (Wikipedia)
- Physical plant (continuous)

+

Digital control (discrete)

In US: NSF Key Area of Research (2006-)

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

Cyber-Physical Systems :

Control Theory and Formal Methods/Software Science

***** Formal methods:

Logical proofs for "correctness" of

(discrete) programs

- * Model checking (SPIN, NuSMV, Uppaal, PRISM, ...) [Pnueli, Clarke, Emerson, Sifakis, ...]
- * Theorem Proving

(Coq, Agda, ...) [Milner, Coquand, Leroy, Voevodsky, ...]

***** Control Theory:

Analysis of continuous dynamics

- * Stability, Lyapunov function, ...
- * Their similarity is widely recognized
 - * e.g. HSCC, one of the main conferences of annual CPS Week

* Problem: practical applicability. Why?

- * Scalability
- ***** Uncertainties.

Physical environments, black-box models, statistical AI/ML, ...

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

On ERATO MMSD

- JST ERATO Project, 2016/10-2022/03 https://group-mmm.org/eratommsd
- Our goal:
 formal methods for cyber-physical systems (CPS)
 - * Extend formal methods, from software to CPS
 - Safety, reliability, V&V (Verification & Validation).
 "Check if a system behaves as expected"
 - * Emphasizing industry collaboration, also for scientific inspirations
 - Automated driving as a strategic target domain.
 Collaboration with U Waterloo: www.autonomoose.net
- ***** Our team:
 - * 28 researchers, > 20 students (as of 2019/09)
 - * International and scientifically diverse

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project 国立情報学研究所 & 科学技術振興機構 National Institute of Informatics & Japan Science and Technology Agency

Academic Achievements

- International visibility:
 - CORE rank A* (top 4%, LICS, CAV, POPL, ...):
 > 10 papers
 - CORE rank A (top 5~18%, ATVA, TACAS, GECCO, ICECCS, ...):
 > 20 papers
 - Best paper awards : ICECCS'18, FoSSaCS'19 (CORE rank A), FORMATS'19
 - At LICS'19 (CORE rank A*):
 6 out of 60 accepted papers were coauthored by us

Outline

Quality assurance of cyber-physical systems
 Formal methods at work,

ERATO 蓮尾メタ数理システムデザインプロジェクト

O Metamathematics for Systems Design Project

National Institute of Informatics & Japan Science and Technology Agency

- coping with uncertainties
- Introducing the ERATO MMSD project
- Tech showcase:
 "formal methods that are down-scalable"
 - * Monitoring
 - Search-based testing
 - Applications, "power of math"

Confidential

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

振興機構 National Institute of Informatics & Japan Science and Technology Agency

Pattern Matching against Timed Automata,MonitoringSpecification

"Frequent gear changes within 3 sec after shifting up to 4th"

- * Runtime verification, monitoring
- Not straightforward, esp. when specs involve timing constraints
 - Speed requirements (GBs of log per second)
 - Computing resource (embedded)
- Industry needs

*

* Technically: theory of (parametrized) timed automata

- "Here is 1 PB of log, and I want to extract its relevant parts"
- * "Raise an alert if this specific type of anomaly occurs"

ERATO 蓮尾メタ数理システムデザインプロジェクト **O Metamathematics for Systems Design Project** National Institute of Informatics & Japan Science and Technology Agency MMSD

Monitoring: Problem Formulations

ERATO 蓮尾メタ数理システムデザインプロジェク O Metamathematics for Systems Design Project National Institute of Informatics & Japan Science and Technology

Monitoring: Our Achievements

Given: a log, discrete time w = abaaacb...bbc * a spec φ "no occurrence of c for 6 steps after b" Processes ~ 1M events/ Answer: all subsequences of w that satisfy φ

*

Efficient algorithm from • • theory of timed automata. second (laptop).

[Waga+, FORMATS'17] https://github.com/maswag/monaa

Given: a log, continuous time $w = (a, 0.12) (b, 1.28) \dots$ a spec ϕ "no occurrence of c for 6 seconds after b" Answer: all subsequences of w that satisfy φ [Ulus, CAV'17] [Waga+, FORMATS'17]

Also implemented on Renesas RH850

Efficient algorithm using parametrized timed automata. Processes ~ 10K events/second (laptop). [Waga+, NFM'19] https://github.com/maswag/symon

Given: a log, continuous time $w = (a, 0.12) (b, 1.28) \dots$ * a parametrized spec $\varphi(p)$

"no occurrence of c for p seconds after b" "b occurs with a period of p seconds" Answer: all the pairs of (p, (a subseq. of w that satisfies φ))) [Andre+, ICECCS'18] [Waga+, NFM'19] [Waga+, CAV'19] ...

Search-Based Testing by Reinforcement Learning

[Zhang+, EMSOFT'18] [Zhang+, CAV'19] [Fainekos & Pappas, TCS'09]

- Black-box, search-based testing. Actively search for erroneous input by:
 - Try an input signal
 - Observe the system's behavior
 - Choose the next input that is likely to be erroneous

- [Fainekos & Pappas, TCS'09]
 A reinforcement learning problem, by moving
 - from the Boolean semantics (erroneous or not)
 - to quantitative "robust semantics" (how far from being erroneous)

MMSD

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project 国立情報学研究所 & 科学技術振興機構 National Institute of Informatics & Japan Science and Technology Agency

Towards Formal Methods That Are Down-Scalable

- Real-world applications (esp. automotive domain), need down-scalability
 - Even if we can only afford half the cost,
 - degree of guarantee does not become zero, but half
- Our efforts at ERATO MMSD
 - Combine testing and formal verification. Search-based testing, monitoring
 - ★ Contract-based verification
 → formal safety architecture (contract-based verification, see reserve slides)

Hasuo (NII, Tokyo)

Outline

* Quality assurance of cyber-physical systems
 * Formal methods at work,

ERATO 蓮尾メタ数理システムデザインプロジェクト

O Metamathematics for Systems Design Project

National Institute of Informatics & Japan Science and Technology Agency

- coping with uncertainties
- Introducing the ERATO MMSD project
- Tech showcase:
 "formal methods that are down-scalable"
 - * Monitoring
 - Search-based testing
- * Applications, "power of math"

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

National Institute of Informatics & Japan Science and Technology Agency

Industry Collaboration

- Mainly automotive, but not exclusively
 - Production systems
 - * AI startups
- * Inspiring scientific research, too
 - New problems
 - Solve a problem
 - \rightarrow generalize the solution
 - → scientific novelty

* A lot of industry needs

- Methods applicable off-the-shelf (monitoring, search-based testing)
- High demand for formal verification
- * "What is an expected level of quality assurance?"

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project 国立情報学研究所 & 科学技術振興機構 National Institute of Informatics & Japan Science and Technology Agency

Collaboration with U Waterloo

test tool env. input (road shape, pedestrians, other cars, ...)

perception

object recognition

ego car's

position & status

Our goal: comprehensive software stack with perception units, controllers, simulators, and <u>testing tools</u>

- (cf. ROS, robot operating system)
- serving academic users
- used as (part of) prototype products
- testbed for technical components

local planning path tracking

behavior planning path planning

Simulation environment

23

Hasuo (NII, Tokyo)

National Institute of Informatics & Japan Science and Technology Agency

 Contribution of "theoreticians and listeners" have been remarkable, direct and indirect

- * "Metatheoretical transfer"
- Interpreters between disciplines
- Great "reserve forces"

Conclusions

* Quality assurance of cyber-physical systems

ERATO 蓮尾メタ数理システムデザインプロジェクト

O Metamathematics for Systems Design Project

National Institute of Informatics & Japan Science and Technology Agency

- * Formal methods at work, coping with uncertainties
- Introducing the ERATO MMSD project
- Tech showcase:
 "formal methods that are down-scalable"
 - Monitoring
 - Search-based testing
- * Applications, "power of math"

Thanks for your attention! https://group-mmm.org/eratommsd

Reserve Slides

国立情報学研究所 & 科学技術振興機構 National Institute of Informatics & Japan Science and Technology Agency Formal Safety Architecture

ERATO 蓮尾メタ数理システムデザインプロジェクト

ERATO Metamathematics for Systems Design Project

* Example: simplex architecture (right)

* AC is

complex, performance-oriented, black-box

* BC is

simple, safety-oriented, (hopefully) white-box

- * Idea: we can verify the whole system even if AC is a black-box!
 - * Enough to show: safety of BC, and correctness of DM
 - * We impose certain contracts on AC
- * Related
 - * FM4AI (ML/AI components as AC)
 - Monitoring (checking contracts on AC)
- * One promising way to

make formal verification down-scalable

- * Weaker contracts on AC
 - → weaker safety guarantee (but hopefully non-zero)

Phan et al., ACSD'17

MMSD

* At ERATO MMSD:

we formalize, verify and refine safety architectures

 Event-B: a formal modeling language [Abrial, "The Event-B Book", 2010 CUP] [Kobayashi+, ICFEM'18]
 Based on state transition systems.

A tool Rodin supports:

- * Safety proofs
- * Incremental modeling by refinements
 - ★ Flexibility in choosing model fidelity → down-scaling
 - From (our) general model to (industry partner's) individual model

Phan et al., ACSD'17