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The Microcosm Principle

CompOSitionality [Baez-Dolan][Hasuo-Jacobs-Sokolova, FoSSaCS’08]
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Behavioral view on
component calculi

Part 1



Component calculus

e component

— state-based machine i)lgi).
— with I/O interfaces

e component calculus sequential
composition

— algebraic structure on components

(Lich L

— compose components to build a bigger system

>>71.0,K
) T

Lyl s,




Component calculus: background

* Modular design
— Against fast-growing complexity of systems

— Brings order to otherwise messed-up design
process

 Middle-ware layer
— You won’t code everything from scratch, but
— buy software components from other vendors,
— which you compose



Components as coalgebras isarbosa, pho thesis)

4 7 N
(T(J x X))
as CT in Sets
X
\ _ /

- IxX —STJxX

T a monad for effect (cf. func. programming)

P (powerset) non-determinism
1+ _ exception
(Sx _)° global state
DX =
probability

{d: X>[0,1] | X d(x)=1}



Component calculus = algebra on Coalg
:

(J x X)! (K xY)’ (K x (X xY))!
( ) — e>>>d]

X XY /

(Ia.Ji , JE@KE> —_ I;.JE.KE/'
S —

* signature: Fy y= (J x ¥

* no effect, for simplicity
= Mealy machines



Behavioral view

Summary
e component as coalgebra é (T(J x X))!
y as (j{
e component calculus as
algebra on Coalg, (i, x Coals(Fsx) T Coals(Fy 1)

(Lo o 2@s)  — Lghas

e Behavior of components?
— compositionality of calculus

— coalgebraic view



Behavior by coinduction

(J x X)t--mmmmm-- »(J x Z)!
Tc final|
X" Beh(e) 4
That is, Z={t:I* — J*, %Usaﬂ
beh(c)(x) J }
%: (I = J7) ; .- (output)

depends only on

internal p n
é stthey \A— -+ (input)




Another “sequential composition”

beh X beh \ beh
o \.J -

Coalg(F7,5) x Coalg(Fj k) — Coalg(Fr k)

- Two “sequential composition” operators
- Are they “compatible”? =» compositionality



¥

One arises from the other

FrjZy,g FyrZjyk
TCI,J >>> TCJ,K
1,0 25K

by coinduction definition principle



Compositionality

(Iw_S>Jw, Jw—t)Kw) \ >>> , ) tOSBKw

A

beh X beh \\ beh

(I@Jh J:@Ki> o> I.J[d&

* l.€. FI,JX FJ,KY FI,JX FJ’KY
beh Tc >>> Td = beh Tc >>> beh Td
X Y

X Y

e by coinduction proof principle



Nested algebraic structure:
the microcosm principle

with

Coalgp F7
(%ﬁﬂnal) € Coalgp
Z

Coalgr X Coalgp e

Z >< 7z = zZ

X C ' outer mterpretatlon
e J algebralc theory
O operations
| binary >>>

O equations
e.g. assoc. of >>>/

mner mterpretatlon

\S




Microcosm in macrogt

We name this principle the
microcosm principle, after the
theory, common in pre-modern
correlative cosmologies, that
every feature of the microcosm
(e.g. the human soul)
corresponds to some feature of

the macrocosm.

John Baez & James Dolan
Higher-Dimensional Algebra lll:
n-Categories and the Algebra of Opetopes
Adv. Math. 1998
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The microcosm principle: a retrospective

Baez-Dolan

e formalization for alg. str. as opetopes

SBBLIERE o for use in homotopy theory, n-categories

1938

Ha;gijliz‘;bs' e formalization for alg. str. as Lawvere theories

Hereennn © example: parallel composition of coalgebras

C:’:::I?t e many-sorted —2> components (varying /O types)

what’s new? N pseudo algebraic structure

Bl + for full GSOS > “2-dimensional GSOS”

prepnint




Main result: compositionality

We study three component calculi: PLTh, ArrTh,
MArrTh. For each of them:

1. We introduce algebraic structure on Coalg
— suchas >>>

2. from which algebraic structure on Z canonically arises
— suchas >>>

— by coinduction (def. principle)

3. relating the two, we have the compositionality property

— by coinduction (proof principle)



The microcosm
p r i n ¢ i p | e

Part 2



The microcosm principle

X C _outer interpretation
6 J algebraic theary
' O operations

| binary >>>
O equations
e.g. assoc. of >>>/

( inner interpretation

\.

Examples
e components and their behaviors
e monoid in a monoidal category



Microcosm principle in [MacLane, CWM]

monoid in a monoidal category

~
monoidal cat. C monoid M € C
®:CxC—C mult. | MM M
IeC unit IS M

M—MQM—M

IRX2X2XQ®I unit law \\%f//

MIMEM-—ME®M
(XQY)®RZ=2XQ(Y ® Z) |assoc. law | |
MM M

\ /




Lawvere theory LL

a category representing an

____ algebraic theory



Lawvere theory

algebraic theory

as category I

operations as arrows

S—

5~

m (binary)
- e (nullary)

equations as commuting diagrams

assoc. of m
unit law



Models for Lawvere theory L

>tandard: set-theoretic model

- N\
o a set with L-structure = [.-set
L X Sets (product-preserving)
2 X2 binary
lm I “"‘] =: e opr. on X
1 X
gmxid, x3-221d, 4o .
idxm/ O m+— idxe O |e associativity
2—m—1 X2——X -
N\ /

what about

4 )
ted models? X C
nested models . e >




Outer model: L-category

outer model
| outermodel N

0 a category with L-structure: L‘CategOry
I C }@ (product-preserving)

2 C?
1 C
N\ /
Standard: set-theoretic model
NB. This works only for strict o a set with L-structure & L-set
algebraic structure X

I 'Sets product-preserving

lm — 1[m] N

1 X




Inner model: L-object i senavou

Definition

Given an LL-category C,

an ]L‘ObjECt X init inner alg. str.

is a lax natural transformation by
compatible with products. mediating 2-cells

components

X: carrier obj.

XeC

1 X, ¢




Compositionality theorem

Assume o C is an LL-category
o F:C - Cis alax L-functor

O there is a final coalgebra Z 2> FZ

1. Coalg is an LL-category
2. Z 2> FZ is an L-object

3. the behavior functor

“ Coalgp beh »C/Z ( by coinduction
FX------- *FZ
() (x"29z) | ] |
p—— ¢ L X heh(a”

is a (strict) L-functor



What’s new (1): many-sorted

>>
Coalg(Fr,5) X Coalg(Fy k) — LK Coalg(Fr1,K)

(Lgh - 2@s) —  Lghak

SSLIK g
‘ ’

Z1.g X Zj K

The specification:

>>>
(I,J) x (J,K) 2 (I,K)  inL

arity: formal one-sorted case:
product of sorts , 2—1x1-21 inL



What’s new (2): pseudo alg. str.

Equations hold
not up-to equalities,
but up-to isomorphisms

L — CAT

(I,J) x (J,K) x (K,L)=2%(1 K) x (K, L) Coalgy, , x Coalgy, , x Coalgy, , — "% Coalgy, , x Coalgy, ,
idx > J,K,Ll 4 l>>> LKL M idx =, K.Ll / (%] l>>> IK,L
(I, 7) X (), L) ——=573 A, Coalgy, , x Coalgy,, ——— s Coalg, ,
[ ey B T
dSSOC. 7 7 e
of >> , ’ ¢
J K L \1,
I
cf. monoidal category
- J
XR YR (XQRY)R Z > #
K
e coherence ® state space: X x (Y x Z) y



Functorial semantics

outer model
| outermodel N\

0 a category with LL-structure: L‘CategOry

L C >@ (product-preserving)

2 C?
1 C
N\ /
Standard: set-theoretic model
NB. This works only for strict o a set with L-structure & L-set
algebraic structure I X Sots product-preserving

1 X

lm — 1[m] O



Formalizing pseudo alg. str.

e Lawvere Z-theory [Power, Lack]

— explicit isomorphisms, explicit coherence

. X id
* theory of monoids: 3252
idxm| 2 |m
2T>1
e theory of monoidal categories: g.mxid,,
id x ml VS lm

2—m 1

— “2-functorial semantics”
e model = category with [L-structure

e itis a product-preserving 2-functor L - CAT

— not quite a suitable solution for us...

in L

in L



Formalizing pseudo alg. str.

Hasuo, preprint 2009
* Pseudo functorial semantics available on the web

Definitiaon

An [L-category is a finite-product preserving
pseudo functorL. > CAT

— Segal took the same approach in TQFT, topological
quantum field theory
* but for monoidal (not cartesian/Lawvere) theory LL



Pseudo functorial semantics

Definition
An [L-category is a finite-product preserving
pseudo functorL. > CAT

e pseudo functor preserves compositions/identities up-to iso:
F(go f) =S Fgo Ff, F(id) > id

L — CAT

R xid

g.m X i 9 CS%@Z
idxm| 2 |m — idx®| “A. |®
o ot
g c3 [mxid]
7
) mo (m X id
lid>xm] =[[ [m o( (id x n)'n]])]]
7




Pseudo functorial semantics

Definition
An [L-category is a finite-product preserving
pseudo functorL. > CAT

subtle, needs fine-tuning

natural, from
Definition 4.1 (IL-category) An LL-category is a pseudo functor C : . — CAT which di
is “FP-preserving” in the following sense: '’ aleplsie e
point of view
1. the canonical map (Cry. Cmg) : C(A; x Ag) — C(A7)xC(Asz) is an isomorphism

for each A;. 4> € L; . J
2. the canonical map C(1) — 1 is an isomorphism;
3. it preserves identities up-to identity: C(id) = id; /
4. it preserves pre- and post-composition of identities up-to identity: C(id o a) = C(n; 0 a) = Crr; o Ca

C(a) =C(aoid);
5. it preserves composition of the form 7; o a up-to identity: C(7; o a) = C(m;) o
C(a). Here m; : A1 x Ay — A, is a projection.

[MOHTh, CAT] pseudO, prod__pres_ g BalMOHCAT [Leinster]
~ MonCAT

Claom;)) = CaoCm; 7
f‘x\—_//




Jljewolne

Compositionality theorem again

Assume

O

1. Coalg is an LL-category

o C is an LL-category
F :C = Cis alax L-functor
O there is a final coalgebra Z 2> FZ

2. Z 2> FZ is an L-object
3. the behavior functor
“ Coalgp beh »C/Z ( by coinduction )
FX------- *FZ
% L X by P2

is a (strict) L-functor




compositionality
res ul ts f or
component calculi

Part 3



>>>-ASs0OC arr-Funcl

I T

The calculi

PLTh BT I
e sorts (I,J)

— where 1, J are sets

. (I.JE : J}@K}) 210K L)1
* operations

— seq. comp. >>r10,k : (I,J) X (J, K) — (I, K)
— pure function arrf:1 — (I,J) for each I %> J in Sets
stateless §
° equations computation 5%
a >>> (b>>>c) = (a>>>b) >>>c (>>> -Assoc)
arr(go f) =arrf >>>arrg (arr -Funcl)

arridy >>>a =a =a >>>arridy  (arr -Func2)



The calculi

(Hughes’ arrow) PLTh + él K
. first(c) = l
e operation J

— sideline firsty g : (I,J) — (I X K,J X K)

e equations

firstr, g1a = arrm =arrm = a (p-NAT)
firstr, g a =3 arr(idy x f) = arr(idr x f) = firstr g1 a (arr-CENTR)
(fil"StjjJ?KxL a.) = (arr QJ,K’L) = (arr QI,K,LJ = first(first a.) (C}:-NATJ
firstr, gk (arr f) = arr(f x idk) (arr-PREMON)
firstr i, (a =35> b) = (firstr gL a) =3 (firsty k.. b)  (first-FUNC)

ILIL\@IK I K
J | = J7 —
K K r/ J L J L

cf. global state monad

<€



The calculi

PLTh BCISES
(Hughes’ arrow) = PLTh + first
WIS NN (\Monoidal arrow) = PLTh +

_ I VK
e operation c|ld=
: - _fI_/L'_

— (synchronous) parallel composition

>

\r,0x0: (I,J)x (K,L) — (I x K,J X L)

* equations (a | b)=>(c| d)=(a=>c) | (b=>d) (|-FunNcl)
arridy || arridy = arridrx s (|-Func2)

al (b|lc)=>arra=arra=>(allb) || c (-NAT)

(a | arridi) = arrm = arrm = a (p-NAT)
arr(f x g)=arrf || arrg (arr-MON)

(a | b) = arry =arry = (b || a) (7-NAT)



The calculi

I (PipeLine)

>>> . arrf

J

- PLTh + first = >~

(Hughes’ arrow) I |K
first(c)z L/

WIS Y NSR (Monoidal arrow) = PLTh +

I K 1
=PLTh + | - clld- éé//

———— __//



Our goal

For L € {PLTh, ArrTh, MArrTh},

PY o Va4
components as coalgebras I (T X EE
constitute a microcosm model ’ & ‘j{

for I,

* in particular the compositionality theorem

(Iw_.s)Jw, J“’—t)K“") >=> ; I¥ tosin

I.e.

beh X beh beh Fr X FygY Fr X FjkY
beh Tc >>> Td = beh Tc >>> beh Td
X Y

X Y
(Agi) , i@ﬁ») —=2 LGk,



BTW, in functional programming...

e Kleisli category KI(1)

— given a monad T’ for effect X —>Y inKeT)
— the category of T-effectful computations: X — TY in Sets

° o _ V4 ]Ce(T)
The “hom-model T 5 Sets
—
(I, K) Homy(r) (1, K)
1. KI(1)is a (set-theoretic) model of PLTh Freyd category

[Levy-Power-Thielecke]

2. T strong = KI(T)is a model of ArrTh

3. T commutative = KI(T) is a model of MArrT
\

“monoidal” arrow



Follow from these outer models:
* inner models
e compositionality

(1985, gotygw) 3=y poton g signature: -
behxbel{ beh FI-.J — (T('] X —) )
N S
. T: monad \ . T: monad \
=» a model =» a model Coal
T oalgp
PLTh KL) Sets PLTh — CAT
. T* strong monad . T* strong monad
-> Ke(T -=> Coal
ArrTh D) gets ArrTh —ST CAT
. T commutative monad . T: commutative mconald
ICe(T oalg g
\ > MArrTh _(,) Sets / \ > MArrTh — CAT /




exploiting the

Proof of the theorem , resvlson KD

'\‘

T: monad Coal
=» amodel PLTh —g>F CAT m
A

\(hence an inner model, compositionality)

e a model PL.Th 2 CAT

e F' : Sets — Sets
lax compatible with PLTh

Sots ( Litdy Ji@KE) SIS Lo} 2yaj,

PLTh —> CAT , a model

“carrier set”

Set
PLTh - CAT  (x.v)
1
(I,J) x (J, K) Sets X Sets __
Lo N > X X Y

(I, K) Sets



| exploiting the ,
Proof of the theorem _, "svtson &iD

. Theorem _ 3
e amodel PLTh 3% CcAT

T monad e
= a model PLTh _g>F CAT o I' : Sets — Sets
lax compatible with PLTh

(hence an inner model, compositionality)

Lemma

F : Sets — Sets , lax PLTh-functor

equations

operations
FI J X FJ K K—SetSSM’Sets3 SetsaM‘Sets
Sets X Sets »Sets X Sets f:; idx x| % iax . Jidxx X xid | 2 p_ xid |x xid 33
x| = Set 2—Fr.KXFK,L—>S t 2 - Set 2—F1.1{><FK.L—?S t 2 ==
o Y P (X A 7 Sz
Sets FI x Sets ~ Sets - Sets Sets . Sets o
, " L

Foos @ Fr X X FjgY — Frg(X xXY) Fr X x (FMY X Fr UV 5 F; ;X x Frp(Y x U) 25 Fr (X x (Y x U))
(FI JX X FJKY) X FKLU_‘FI K(X X Y) X FKLU—PF; L((X X Y) X U)

—
.

Homyy(7) (I, J X X) X Homyepr)(J, K X Y)

— Homyym (I, K X (X XY))
an morphism in PLTh, interpreted via p171 %) qots via equations in PLTh




Future work

e Richer component calculi

— feedback > traced monoidal structure?
— delayed/lossy channels = different effect monad 1'?

e Other “algebra in algebra”
— for component calculi: L-algebra in [L-algebra
— in general: [L,-algebra in [L,-algebra
 usually: IL,-algebra = “category with finite products”

* Theory of generalized operads/combinatorial species

[Leinster] [Fiore-Gambino-Hyland-Winskel] [Curien]



Conclusions The Microcosm Principle

what’s new: many-sorted, pseudo algebra

components
(state-based as  coalgebras

machines)
Hughes’ arrow,

Freyd category, ... their final

. . b

L el behaviors Y coalgebra
programming

calculus on " algebraic

them structure

compositionality
results

Thanks for your attention!
Ichiro Hasuo (Kyoto, Japan)
http://www.kurims.kyoto-u.ac.jp/~ichiro




Conclusion



Compositionality theorem

Assume o C is an LL-category
o F:C - Cisalax L-functor

O there is a final coalgebra Z 2> FZ

1. Coalg is an LL-category

/ El-structure J
obtaining QhCoale:
>>>
Coalg(Fy,j) x Coalg(Fyx) ~—>  Coalg(F ) F
W W
(J x X)! (K xY)’ (K x (X xY)!
( ci , dT ) — c>>>dT L-structure
Y X XY onC
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