Coalgebraic components in a many-sorted microcosm

Ichiro Hasuo

Kyoto, JP

Chris Heunen

Nijmegen, NL (→ Oxford, UK)

Bart Jacobs

Nijmegen, NL

Ana Sokolova

Salzburg, AT

Outline

Hughes' arrow, Freyd category, ... from functional programming

Universal coalgebra in CS

components coalgebras (state-based as machines) their behaviors final coalgebra by SOS by bialgebras algebraic calculus on them as structure

compositionality results

The Microcosm Principle

[Baez-Dolan][Hasuo-Jacobs-Sokolova, FoSSaCS'08]

what's new: many-sorted, pseudo algebra

Behavioral view on component calculi

Part 1

Component calculus

component

- state-based machine
- with I/O interfaces

component calculus

algebraic structure on components

$$\left(\begin{array}{ccc} I \downarrow C \downarrow J \end{array}, \begin{array}{ccc} J \downarrow d \downarrow K \end{array}\right) \begin{array}{cccc} >>>_{I,J,K} \\ \longrightarrow \end{array}$$

compose components to build a bigger system

sequential composition

Component calculus: background

Modular design

- Against fast-growing complexity of systems
- Brings order to otherwise messed-up design process

Middle-ware layer

- You won't code everything from scratch, but
- buy software components from other vendors,
- which you compose

Components as coalgebras [Barbosa, PhD thesis]

T: a monad for effect (cf. func. programming)

${\cal P}$ (powerset)	non-determinism
1+ _	exception
$(S imes _)^S$	global state
$\mathcal{D}X$ = { $d: X \rightarrow [0,1] \mid \sum_{x} d(x) = 1$ }	probability

Component calculus = algebra on $Coalg_F$

binary operation

$$\begin{pmatrix} (J \times X)^{I} & (K \times Y)^{J} \\ c \uparrow & , & d \uparrow \\ X & Y \end{pmatrix} \longmapsto \begin{pmatrix} (K \times (X \times Y))^{I} \\ c > > d \uparrow \\ X \times Y \end{pmatrix}$$

- no effect, for simplicity
- signature: F_{I,J} = (J x _)^I
 → Mealy machines

Behavioral view

Summary

component as coalgebra

• component calculus as algebra on \mathbf{Coalg}_F

- Behavior of components?
 - compositionality of calculus
 - coalgebraic view

Behavior by coinduction

That is,

$$\mathbf{beh}(c)(x)$$
 $= (I^{\omega} o J^{\omega})$

 $egin{array}{c} iguplus I & ext{internal} \ c & ext{state} \ x & ext{} \end{array}$

depends only on

Another "sequential composition"

$$(I^{\omega} \xrightarrow{s} J^{\omega}, J^{\omega} \xrightarrow{t} K^{\omega}) \xrightarrow{\longrightarrow} I^{\omega} \xrightarrow{t \circ s} K^{\omega}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

- Two "sequential composition" operators
- Are they "compatible"? → compositionality

One arises from the other

$$egin{pmatrix} F_{I,J}Z_{I,J} \ \uparrow^{\zeta_{I,J}} \ Z_{I,J} \end{pmatrix} >\!\!>\!\!> egin{pmatrix} F_{J,K}Z_{J,K} \ \uparrow^{\zeta_{J,K}} \ Z_{J,K} \end{pmatrix}$$

by coinduction definition principle

Compositionality

i.e.

by coinduction proof principle

Nested algebraic structure: the microcosm principle

with
$$egin{pmatrix} FZ \ \cong \hat{\mathsf{final}} \ Z \end{pmatrix} \in \mathrm{Coalg}_{F}$$

inner interpretation

algebraic theory

operations

outer interpretation

binary >>>>

equations

e.g. assoc. of >>>

Microcosm in macro

We name this principle the microcosm principle, after the theory, common in pre-modern correlative cosmologies, that every feature of the microcosm (e.g. the human soul) corresponds to some feature of the macrocosm.

John Baez & James Dolan Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes Adv. Math. 1998

The microcosm principle: a retrospective

Baez-Dolan

Adv. Math. 1998

- formalization for alg. str. as opetopes
- for use in homotopy theory, *n*-categories

Hasuo-Jacobs-Sokolova

FoSSaCS 2008

- formalization for alg. str. as Lawvere theories
- example: parallel composition of coalgebras

Current work

what's new?

- many-sorted → components (varying I/O types)
- pseudo algebraic structure

Hasuo 2009, preprint

for full GSOS → "2-dimensional GSOS"

Main result: compositionality

We study three component calculi: **PLTh**, **ArrTh**, **MArrTh**. For each of them:

- 1. We introduce algebraic structure on $Coalg_F$
 - such as >>>>
- 2. from which algebraic structure on Z canonically arises
 - such as
 - by coinduction (def. principle)
- 3. relating the two, we have the compositionality property
 - by coinduction (proof principle)

The microcosm principle

Part 2

The microcosm principle

Examples

- components and their behaviors
- monoid in a monoidal category

Microcosm principle in [MacLane, CWM]

monoid in a monoidal category

monoidal cat. $\mathbb C$		monoid $M\in\mathbb{C}$
$\otimes: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$	mult.	$M\otimes M\stackrel{m}{ o} M$
$I\in\mathbb{C}$	unit	$I \stackrel{e}{ o} M$
$I \otimes X \cong X \cong X \otimes I$	unit law	$egin{pmatrix} oldsymbol{M} \longrightarrow oldsymbol{M} \otimes oldsymbol{M} \longleftarrow oldsymbol{M} \ oldsymbol{M} \ oldsymbol{M} \ oldsymbol{M} \ \end{pmatrix}$
$(X\otimes Y)\otimes Z\cong X\otimes (Y\otimes Z)$	assoc. law	$egin{bmatrix} oldsymbol{M} \otimes oldsymbol{M} \otimes oldsymbol{M} \longrightarrow oldsymbol{M} \otimes oldsymbol{M} \ oldsymbol{M} \otimes oldsymbol{M} \longrightarrow oldsymbol{M} \ \end{pmatrix}$

Lawvere theory L

a category representing an algebraic theory

Lawvere theory

Models for Lawvere theory L

Standard: set-theoretic model

 $_{\circ}$ a set with L-structure \rightarrow L-set

$$\mathbb{L} \xrightarrow{X} \mathbf{Sets}$$
 (product-preserving)

what about nested models?

Outer model: L-category

outer model

o a category with \mathbb{L} -structure: \mathbb{L} -category

$$egin{array}{cccc} \mathbf{2} & & \mathbb{C}^2 \ \mathbf{m} & \longmapsto & & \mathbb{[m]} = \mathbf{0} \ \mathbf{1} & & \mathbb{C} \end{array}$$

NB. This works only for **strict** algebraic structure

Standard: set-theoretic model \circ a set with \mathbb{L} -structure o \mathbf{L} -set \to \mathbf{L} -set product-preserving

$$egin{array}{cccc} \mathbf{2} & & X^2 \ \mathbf{m} & \longmapsto & \mathbf{J}[\mathbf{m}]^{\mathbf{d}} \end{array}$$

 $\begin{array}{c} \text{binary opr.} \\ \text{on } X \end{array}$

Inner model: L-object [cf. Benabou]

Definition

Given an \mathbb{L} -category \mathbb{C} ,

an \mathbb{L} -object X in it

is a lax natural transformation compatible with products.

inner alg. str. by mediating 2-cells

components

$$X_0: 1 \longrightarrow 1$$

$$X_1:1 \longrightarrow \mathbb{C}$$

$$oldsymbol{X_2:1} \overset{(oldsymbol{A},oldsymbol{A})}{\longrightarrow} \mathbb{C}^2$$

X: carrier obj.

$$X \in \mathbb{C}$$

lax naturality

$$\begin{array}{c|c} \underline{\mathsf{In}\ \mathbb{L}} & \underline{\mathsf{In}\ \mathsf{CAT}}_{(X,X)} \\ \downarrow^{\mathsf{m}} & \downarrow^{\otimes} \\ 1 & \underline{1 - X} \\ & \underline{X} \end{array}$$

$$X {igotimes} X \stackrel{X_{\mathsf{m}}}{\longrightarrow} X$$
 in ${\mathbb C}$

Compositionality theorem

Assume

- \circ \mathbb{C} is an \mathbb{L} -category
- \circ $F: \mathbb{C} \to \mathbb{C}$ is a lax \mathbb{L} -functor
- \circ there is a final coalgebra $Z \rightarrow FZ$
- 1. Coalg_F is an \mathbb{L} -category
- 2. $Z \rightarrow FZ$ is an \mathbb{L} -object
- 3. the **behavior** functor

$$\begin{array}{c|c} \operatorname{Coalg}_F & \operatorname{beh} & \mathbb{C}/Z \\ \begin{pmatrix} FX \\ c \\ X \end{pmatrix} & \longmapsto (X \overset{\operatorname{beh}(c)}{\longrightarrow} Z) \end{array} \left(\begin{array}{c} \operatorname{by\ coinduction} \\ FX - \cdots \to FZ \\ c \\ X - \overset{\frown}{\operatorname{beh}(c)} \to Z \end{array} \right)$$

is a (strict) \mathbb{L} -functor

What's new (1): many-sorted

$$\operatorname{Coalg}(F_{I,J}) imes \operatorname{Coalg}(F_{J,K}) \overset{\longrightarrow_{I,J,K}}{\longrightarrow} \operatorname{Coalg}(F_{I,K})$$
 $\left(\xrightarrow{I} \overrightarrow{c} \xrightarrow{J} , \xrightarrow{J} \overrightarrow{d} \xrightarrow{K} \right) \longmapsto \xrightarrow{I} \overrightarrow{c} \xrightarrow{J} \overrightarrow{d} \xrightarrow{K}$

$$Z_{I,J} \times Z_{J,K} \xrightarrow{\Longrightarrow_{I,J,K}} Z_{I,K}$$

The specification:

$$(I,J) imes (J,K) \stackrel{>\!>\!>_{I,J,K}}{\longrightarrow} (I,K)$$
 in $\mathbb L$

arity: formal product of sorts

one-sorted case:

etc.

$$2=1 imes 1 \stackrel{\mathsf{m}}{\longrightarrow} 1$$
 in $\mathbb L$

sorts: (I,J), (J,K),

What's new (2): pseudo alg. str.

Equations holdnot up-to equalities,but up-to isomorphisms

CAT

assoc. of >>>

cf. monoidal category

$$X\otimes (Y\otimes Z)\cong (X\otimes Y)\otimes Z$$

• coherence 🕾

Functorial semantics

outer model

o a category with \mathbb{L} -structure: \mathbb{L} -category

$$\mathbb{L} \xrightarrow{\mathbb{C}} \mathbf{CAT} \quad \text{(product-preserving)}$$

NB. This works only for **strict** algebraic structure

Standard: set-theoretic model

 $_{\circ}$ a set with \mathbb{L} -structure ightarrow \mathbf{L} -set

$$\mathbb{L} \overset{X}{\longrightarrow} \mathrm{Sets}$$
 product-preserving

$$egin{array}{cccc} \mathbf{2} & & X^2 \ |\mathbf{m} & \longmapsto & |[\mathbf{m}]| \ \mathbf{X} \end{array}$$

 $\begin{array}{c} \text{binary opr.} \\ \text{on } X \end{array}$

Formalizing pseudo alg. str.

- Lawvere 2-theory [Power, Lack]
 - explicit isomorphisms, explicit coherence
 - theory of monoids:

$$\begin{array}{c} 3 \xrightarrow{\mathbf{m} \times \mathrm{id}} 2 \\ \mathrm{id} \times \underset{2}{\overset{\mathbf{m}}{\bigvee}} \xrightarrow{\mathbf{m}} 1 \end{array} \quad \text{in } \mathbb{L}$$

• theory of monoidal categories:

$$\operatorname{id} \times \operatorname{m} \downarrow \xrightarrow{\stackrel{\mathbf{m} \times \operatorname{id}}{\underset{2}{\nearrow}} 2} \operatorname{m} \quad \operatorname{in} \ \mathbb{L}$$

- "2-functorial semantics"
 - model = category with \mathbb{L} -structure
 - it is a product-preserving 2-functor $\mathbb{L} \to \mathrm{CAT}$
- not quite a suitable solution for us...

Formalizing pseudo alg. str.

Pseudo functorial semantics

Hasuo, preprint 2009 available on the web

Definition

An \mathbb{L} -category is a finite-product preserving pseudo functor $\mathbb{L} \to \mathbf{CAT}$

- Segal took the same approach in TQFT, topological quantum field theory
 - ullet but for **monoidal** (not cartesian/Lawvere) theory ${\mathbb L}$

Pseudo functorial semantics

Definition

An \mathbb{L} -category is a finite-product preserving pseudo functor $\mathbb{L} \to \mathbf{CAT}$

pseudo functor preserves compositions/identities up-to iso:

$$F(g \circ f) \stackrel{\cong}{\Rightarrow} Fg \circ Ff, \quad F(\mathrm{id}) \stackrel{\cong}{\Rightarrow} \mathrm{id}$$

 $[\mathbf{m} \circ (\mathbf{m} \times \mathrm{id})]$

 $= [\mathbf{m} \circ (\mathrm{id} \times \mathbf{m})]$

m

[m]

 $\llbracket id \times m \rrbracket$

Pseudo functorial semantics

Definition

An \mathbb{L} -category is a finite-product preserving pseudo functor $\mathbb{L} \to \mathbf{CAT}$

subtle, needs fine-tuning

Definition 4.1 (\mathbb{L} -category) An \mathbb{L} -category is a pseudo functor $\mathbb{C}: \mathbb{L} \to \mathbf{CAT}$ which is "FP-preserving" in the following sense:¹⁰

- 1. the canonical map $\langle \mathbb{C}\pi_1, \mathbb{C}\pi_2 \rangle : \mathbb{C}(A_1 \times A_2) \to \mathbb{C}(A_1) \times \mathbb{C}(A_2)$ is an isomorphism for each $A_1, A_2 \in \mathbb{L}$;
- 2. the canonical map $\mathbb{C}(1) \to \mathbf{1}$ is an isomorphism;
- 3. it preserves identities up-to identity: $\mathbb{C}(id) = id$;
- 4. it preserves pre- and post-composition of identities up-to identity: $\mathbb{C}(\mathrm{id} \circ \mathsf{a}) = \mathbb{C}(a) = \mathbb{C}(\mathsf{a} \circ \mathrm{id});$
- 5. it preserves composition of the form $\pi_i \circ \mathsf{a}$ up-to identity: $\mathbb{C}(\pi_i \circ \mathsf{a}) = \mathbb{C}(\pi_i) \circ \mathbb{C}(\mathsf{a})$. Here $\pi_i : A_1 \times A_2 \to A_i$ is a projection.

natural, from an **operadic** point of view

$$\mathbb{C}(\pi_i \circ \mathsf{a}) = \mathbb{C}\pi_i \circ \mathbb{C}\mathsf{a}$$

 $\mathbb{C}(\mathsf{a} \circ \pi_i) \cong \mathbb{C}\mathsf{a} \circ \mathbb{C}\pi_i$

Theorem

 $[MonTh, CAT]_{pseudo, prod.-pres.} \cong BalMonCAT$ [Leinster] $\simeq MonCAT$

Compositionality theorem again

Assume

- \circ $\mathbb C$ is an $\mathbb L$ -category
- \circ $F:\mathbb{C} \to \mathbb{C}$ is a lax \mathbb{L} -functor
- \circ there is a final coalgebra Z o FZ

- 1. Coalg_F is an \mathbb{L} -category
- 2. $Z \rightarrow FZ$ is an \mathbb{L} -object
- 3. the **behavior** functor

$$\begin{array}{ccc} \operatorname{Coalg}_F & \xrightarrow{\operatorname{beh}} & \mathbb{C}/Z \\ \begin{pmatrix} FX \\ c \\ X \end{pmatrix} & \longmapsto & (X \overset{\operatorname{beh}(c)}{\longrightarrow} Z) \end{array} & \begin{bmatrix} \operatorname{by\ coinduction} \\ FX - \cdots \to FZ \\ c \\ C & \cong | \operatorname{final} \\ X - \cdots & \operatorname{beh}(c) \to Z \end{bmatrix} \\ \end{array}$$

is a (strict) L-functor

compositionality results for component calculi

Part 3

PLTh

(PipeLine)

- sorts (I,J)
 - where $oldsymbol{I}$, $oldsymbol{J}$ are sets

$$\left(\begin{array}{ccc} I \downarrow C \stackrel{J}{\longrightarrow} & , & \stackrel{J}{\longrightarrow} d \stackrel{K}{\longrightarrow} \right) & \stackrel{>>>_{I,J,K}}{\longmapsto} & \stackrel{I}{\longrightarrow} c \stackrel{J}{\longrightarrow} d \stackrel{K}{\longrightarrow}$$

operations

- seq. comp.

$$>\!\!>_{I,J,K}:(I,J) imes(J,K)\longrightarrow(I,K)$$

- pure function

 $\operatorname{\mathsf{arr}} f: 1 \longrightarrow (I,J)$ for each $I \stackrel{f}{\to} J$ in Sets

stateless computation

$$\begin{array}{ll} a>\!\!>> (b>\!\!>> c) = (a>\!\!>> b)>\!\!>> c & (>\!\!>> -\mathsf{Assoc}) \\ \mathsf{arr}\,(g\circ f) = \mathsf{arr}\,f>\!\!>> \mathsf{arr}\,g & (\mathsf{arr}\,\,\mathsf{-Func1}) \\ \mathsf{arr}\,\mathrm{id}_I>\!\!>> a = a = a>\!\!>> \mathsf{arr}\,\mathrm{id}_J & (\mathsf{arr}\,\,\mathsf{-Func2}) \end{array}$$

operation

- sideline
$$\mathsf{first}_{I,J,K}:(I,J) \longrightarrow (I \times K, J \times K)$$

$$\begin{array}{ll} \operatorname{first}_{I,J,1} a \ggg \operatorname{arr} \pi = \operatorname{arr} \pi \ggg a & (\rho\operatorname{-NAT}) \\ \operatorname{first}_{I,J,K} a \ggg \operatorname{arr}(\operatorname{id}_J \times f) = \operatorname{arr}(\operatorname{id}_I \times f) \ggg \operatorname{first}_{I,J,L} a & (\operatorname{arr-CENTR}) \\ (\operatorname{first}_{I,J,K \times L} a) \ggg (\operatorname{arr} \alpha_{J,K,L}) = (\operatorname{arr} \alpha_{I,K,L}) \ggg \operatorname{first}(\operatorname{first} a) & (\alpha\operatorname{-NAT}) \\ \operatorname{first}_{I,J,K}(\operatorname{arr} f) = \operatorname{arr}(f \times \operatorname{id}_K) & (\operatorname{arr-PREMON}) \\ \operatorname{first}_{I,K,L}(a \ggg b) = (\operatorname{first}_{I,J,L} a) \ggg (\operatorname{first}_{J,K,L} b) & (\operatorname{first-FUNC}) \end{array}$$

$$\begin{array}{c|c}
NB & \downarrow^{I} & \downarrow^{K} \\
\downarrow^{J} & \downarrow^{L}
\end{array}$$
cf. global state monad

PLTh

(PipeLine)

ArrTh

(Hughes' arrow) = PLTh + first

MArrTh

(Monoidal arrow) = PLTh +

- operation
 - (synchronous) parallel composition

$$c \parallel d = egin{array}{cccc} lack I & lack K \ C & d \ lack J & lack L \end{array}$$

$$\parallel_{I,J,K,L}: (I,J) \times (K,L) \xrightarrow{\bullet} (I \times K,J \times L)$$

$$(a \parallel b) \ggg (c \parallel d) = (a \ggg c) \parallel (b \ggg d) \qquad (\parallel\text{-FUNC1})$$

$$\operatorname{arr} \operatorname{id}_{I} \parallel \operatorname{arr} \operatorname{id}_{J} = \operatorname{arr} \operatorname{id}_{I \times J} \qquad (\parallel\text{-FUNC2})$$

$$a \parallel (b \parallel c) \ggg \operatorname{arr} \alpha = \operatorname{arr} \alpha \ggg (a \parallel b) \parallel c \qquad (\alpha\text{-NAT})$$

$$(a \parallel \operatorname{arr} \operatorname{id}_{1}) \ggg \operatorname{arr} \pi = \operatorname{arr} \pi \ggg a \qquad (\rho\text{-NAT})$$

$$\operatorname{arr}(f \times g) = \operatorname{arr} f \parallel \operatorname{arr} g \qquad (\operatorname{arr-Mon})$$

$$(a \parallel b) \ggg \operatorname{arr} \gamma = \operatorname{arr} \gamma \ggg (b \parallel a) \qquad (\gamma\text{-NAT})$$

$$egin{array}{c} \mathbf{PLTh} & ext{(PipeLine)} \ >>>>, \ \mathbf{arr} f \ \end{array}$$

ArrTh (Hughes' arrow)
$$= \mathbf{PLTh} + \mathbf{first}$$

MArrTh (Monoidal arrow) = PLTh +
$$= PLTh + \| c \| d = \begin{matrix} \downarrow I \\ \downarrow L \end{matrix}$$

Our goal

For $\mathbb{L} \in \{\text{PLTh}, \text{ArrTh}, \text{MArrTh}\},$

• "components as coalgebras" constitute a microcosm model for \mathbb{L} ,

in particular the compositionality theorem

i.e.

$$\operatorname{beh} \left(\begin{array}{cc} F_{I,J}X & F_{J,K}Y \\ \uparrow c & >\!\!>\!\!> \uparrow d \\ X & Y \end{array} \right) \; = \; \operatorname{beh} \left(\begin{array}{c} F_{I,J}X \\ \uparrow c \\ X \end{array} \right) >\!\!>\!\!> \operatorname{beh} \left(\begin{array}{c} F_{J,K}Y \\ \uparrow d \\ Y \end{array} \right)$$

BTW, in functional programming...

- Kleisli category Kl(T)
 - $-\,$ given a monad T for **effect**
 - $-\,$ the category of T-effectful computations:

$$rac{X
ightarrow Y}{X
ightarrow TY} ext{ in } rac{\mathcal{K}\ell(T)}{ ext{sets}}$$

The "hom-model"

$$\mathbb{L} \qquad \stackrel{\mathcal{K}\!\ell(T)}{\longrightarrow}$$

Sets

 $\operatorname{Hom}_{\mathcal{K}\!\ell(T)}(I,K)$

Theorem [Power-Robinson]

1. Kl(T) is a (set-theoretic) model of PLTh

2. T: strong $\rightarrow Kl(T)$ is a model of ArrTh

3. T: commutative ightarrow Kl(T) is a model of MArrTh

arrow [Hughes]

Freyd category

[Levy-Power-Thielecke]

Follow from these outer models:

- inner models
- compositionality

- \bullet T: monad
 - a model

PLTh
$$\stackrel{\mathcal{K}\!\ell(T)}{\longrightarrow}$$
 Sets

$$\overline{}(I,J)\longmapsto \operatorname{Hom}_{\mathcal{K}\!\ell(T)}(I,J)$$

• T: strong monad

$$lack {f ArrTh} \stackrel{{\cal K}\!\ell(T)}{\longrightarrow} {
m Sets}$$

• T: commutative monad

$$lacktriangle$$
 MArrTh $\stackrel{\mathcal{K}\ell(T)}{\longrightarrow}$ Sets

signature: $F_{I,J} = \left(\left. T(J imes _) \,
ight)$

Theorem

- T: monad
 - lack o a model $\operatorname{PLTh} \overset{\operatorname{Coalg}_F}{\longrightarrow} \operatorname{CAT}$

$$\overbrace{\hspace{1cm}}(I,J)\longmapsto\operatorname{Coalg}_{F_{I,J}}$$

• T: strong monad $\xrightarrow{\text{Coalg}_F} \text{CAT}$

• T: commutative monad \longrightarrow $\operatorname{MArrTh} \overset{\operatorname{Coalg}_F}{\longrightarrow} \operatorname{CAT}$

Proof of the theorem

exploiting the results on Kl(T)

Theorem

T: monad

→ a model

 $\operatorname{PLTh} \overset{\operatorname{Coalg}_F}{\longrightarrow} \operatorname{CAT}$

(hence an inner model, compositionality)

lifting

- a model PLTh $\stackrel{\text{Sets}}{\longrightarrow}$ CAT
- $ullet F: \mathbf{Sets} o \mathbf{Sets}$ lax compatible with \mathbf{PLTh}

Lemma

 $\operatorname{PLTh} \xrightarrow{\operatorname{Sets}} \operatorname{CAT}$, a model

$$\left(\begin{array}{ccc} I \downarrow C \stackrel{J}{\longrightarrow} & , & \stackrel{J}{\longrightarrow} d \stackrel{K}{\longrightarrow} \right) & \stackrel{>>>_{I,J,K}}{\longmapsto} & \stackrel{I}{\longrightarrow} c \stackrel{J}{\longrightarrow} d \stackrel{K}{\longrightarrow}$$

"carrier set"

PLTh

 $\xrightarrow{\mathbf{Sets}}$

CAT

 $Sets \times Sets$

↓× Sets (X, Y)

 $X \stackrel{lack}{ imes} Y$

 $(I,J) \times (J,K)$ $\downarrow \gg$

Proof of the theorem

exploiting the results on Kl(T)

Theorem

T: monad

→ a model

 $\operatorname{PLTh} \overset{\operatorname{Coalg}_F}{\longrightarrow} \operatorname{CAT}$

(hence an inner model, compositionality)

/ lifting

- a model PLTh $\stackrel{\text{Sets}}{\longrightarrow}$ CAT
- $ullet F: \mathrm{Sets} o \mathrm{Sets}$ lax compatible with \mathbf{PLTh}

Lemma

 $F: \operatorname{Sets} o \operatorname{Sets}$, lax $\operatorname{\mathbf{PLTh} ext{-}functor}$

operations

$$egin{array}{cccc} \operatorname{Sets} & F_{I,J} imes F_{J,K} & \operatorname{Sets} imes \operatorname{Sets} \\ imes & \swarrow & \operatorname{F}_{>\!>\!>} & \downarrow imes \\ \operatorname{Sets} & & F_{I,K} & \operatorname{Sets} \end{aligned}$$

$$F_{>>>}: F_{I,J}X \times F_{J,K}Y \longrightarrow F_{I,K}(X \times Y)$$

$$\operatorname{Hom}_{\mathcal{K}\ell(T)}(I,J\times X) \times \operatorname{Hom}_{\mathcal{K}\ell(T)}(J,K\times Y)$$
 $\longrightarrow \operatorname{Hom}_{\mathcal{K}\ell(T)}(I,K\times (X\times Y))$

$$F_{I,J}X imes (F_{J,K}Y imes F_{K,L}U) \overset{\mathrm{id} imes F_{J,J}}{\longrightarrow} F_{I,J}X imes F_{J,L}(Y imes U) \overset{F_{\gg >}}{\longrightarrow} F_{I,L}(X imes (Y imes U)) \ (F_{I,J}X imes F_{J,K}Y) imes F_{K,L}U \underset{F_{\gg >}}{\longrightarrow} \overset{\mathrm{id}}{\longrightarrow} F_{I,L}((X imes Y) imes U)$$

Future work

- Richer component calculi
 - feedback → traced monoidal structure?
 - delayed/lossy channels \rightarrow different effect monad T?

- Other "algebra in algebra"
 - for component calculi: \mathbb{L} -algebra in \mathbb{L} -algebra
 - in general: \mathbb{L}_1 -algebra in \mathbb{L}_2 -algebra
 - usually: \mathbb{L}_2 -algebra = "category with finite products"
 - Theory of generalized operads/combinatorial species

[Leinster] [Fiore-Gambino-Hyland-Winskel] [Curien]

Conclusions

The Microcosm Principle

what's new: many-sorted, pseudo algebra

Hughes' arrow,
Freyd category, ...
from functional
programming

components (state-based machines)

> their behaviors

calculus on them as coalgebras

by coalgebra

as algebraic structure

compositionality results

Thanks for your attention!

Ichiro Hasuo (Kyoto, Japan) http://www.kurims.kyoto-u.ac.jp/~ichiro

Conclusion

Compositionality theorem

Assume

- \circ \mathbb{C} is an \mathbb{L} -category
- \circ $F: \mathbb{C} \to \mathbb{C}$ is a lax \mathbb{L} -functor
- \circ there is a final coalgebra $Z \rightarrow FZ$
- 1. Coalg_F is an \mathbb{L} -category

obtaining

