The Microcosm Principle and Concurrency in Coalgebras

Ichiro Hasuo

Radboud University Nijmegen, the Netherlands Kyoto University, Japan

Joint work with

Bart Jacobs

Radboud U. Nijmegen, NL

Ana Sokolova

U. Salzburg, Austria

Radboud University Nijmegen

Concurrency

• is about **parallel composition C || D**

- running **C** and **D** at the same time
- with communication/synchronization between C and D

o is everywhere

- computer networks
- multi-core processors

 $\mathscr{B}(a)$

Picture by

Bocchi, Fiadeiro, Lopes

o is hard to get right

- e.g. so easy to get into *deadlocks*
- cf. Edward Lee. Making Concurrency Mainstream.
 Invited talk at CONCUR 2006.
 http://ptolemy.eecs.berkeley.edu/presentations/main.htm

Compositionality

Behavior of C || D

is determined by

behavior of C and behavior of D

Enables *compositional* verification of complex systems
Conventional presentation:

$C \sim C', \quad D \sim D' \quad \Rightarrow \quad C \parallel D \sim C' \parallel D'$

- ~: process/observational/behavioral equivalence
 - o bisimilarity, trace equivalence, etc.
- "bisimilarity is a congruence"

Compositionality in coalgebras

• Final coalgebra semantics as $FX \xrightarrow{FZ}$ "process semantics". $FX \xrightarrow{FZ}$ $\stackrel{C|}{\cong}$ $\stackrel{FZ}{\cong}$

o "Coalgebraic compositionality"

$$\mathsf{beh}egin{pmatrix} FX & FY \ c^{\uparrow} & d^{\uparrow} \ X \end{pmatrix} &= \mathsf{beh}egin{pmatrix} FX \ c^{\uparrow} \ X \end{pmatrix} &\mathsf{beh}egin{pmatrix} FY \ d^{\uparrow} \ Y \end{pmatrix}$$

Two different || ! II: Coalg_F x Coalg_F → Coalg_F on coalgebras II: Z x Z → Z on states

 $\begin{array}{cccc} \operatorname{Coalg}_{F} &\times & \operatorname{Coalg}_{F} & \stackrel{\|}{\longrightarrow} & \operatorname{Coalg}_{F} & \begin{pmatrix} WIII \\ & \\ & \\ Z & & \\ & Z & \stackrel{\|}{\longrightarrow} & Z & \begin{pmatrix} FZ \\ \cong \hat{f} & \\ & Z & \end{pmatrix} \in \operatorname{Coalg}_{F} \end{array}$

with

The same "algebraic structure"

- operations (binary ||)
- equations (e.g. associativity of ||)
- o is carried by
 - the category Coalg_F and
 - its object $Z \in Coalg_{F}$

in a nested manner!

"Microcosm principle" (Baez & Dolan)

Microcosm in macrocosm

The microcosm principle

You may have seen it

• "a monoid is in a monoidal category"

monoidal cat. C		monoid $M\in\mathbb{C}$
$\otimes:\mathbb{C}\times\mathbb{C}\to\mathbb{C}$	mult.	$M\otimes M\stackrel{m}{ ightarrow}M$
$I \in \mathbb{C}$	unit	$I \stackrel{e}{ ightarrow} M$
$I\otimes X\cong X\cong X\otimes I$	unit law	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$(X\otimes Y)\otimes Z\cong X\otimes (Y\otimes Z)$	assoc. law	$ig egin{array}{ccc} M \otimes M \otimes M \longrightarrow M \otimes M \ & ig \ M \otimes M \longrightarrow M \ & ig \ M \otimes M \longrightarrow M \end{array}$

• Notice:

• The "inner" structure depends on the "outer" one

• We identify (probably) the first CS example

Formalizing the microcosm principle

What do we mean exactly by the "microcosm principle"?

- When a category *L* presents an algebraic theory Ο (Lawvere theory),
- o Its (set-theoretic) model is

How about a **<u>nested model</u>** as in the microcosm principle? Ο → Our answer: a lax natural transformation

Outline

- Microcosm principle for concurrency (and
 - and essentially arise from
 "synchronization" natural transformation

 $\mathsf{sync}: FX \otimes FY \to F(X \otimes Y)$

- The microcosm principle syntactically
 - Algebraic structure is syntactically presented as (Σ, E)
 - ... (Ana can tell you more!)
- <u>The microcosm principle 2-categorically</u>
 - (Common) alg. str. is presented by a *Lawvere theory*
 - Applications:
 - o generic compositionality theorem
 - o generic soundness theorem

Part I: Parallel composition of coalg. via sync nat. trans.

Parallel composition of coalgebras

- || : bifunctor $\operatorname{Coalg}_F \times \operatorname{Coalg}_F \rightarrow \operatorname{Coalg}_F$ → usually denoted by ⊗ (tensor)
- o <u>Theorem</u> If
 - the base category **C** has associative tensor

 \otimes : C x C \rightarrow C

- and $F: \mathbf{C} \rightarrow \mathbf{C}$ comes with natural transformation
 - $\operatorname{sync}_{X,Y}$: $FX \otimes FY \rightarrow F(X \otimes Y)$
- then we have \otimes : Coalg_F x Coalg_F \rightarrow Coalg_F

Parallel composition arises from **sync**

Parallel composition of coalgebras

Different sync yield different (8)

Examples of **sync** : $FX \otimes FY \rightarrow F(X \otimes Y)$

 $C = Sets, F = P_{fin}(\Sigma \times _)$ for LTS Cartesian product as \otimes

 \circ <u>CSP-style</u> (Hoare) $a.P \parallel a.Q \xrightarrow{a} P \parallel Q$

$$egin{aligned} \mathcal{P}_{ ext{fin.}}(\Sigma imes X) imes \mathcal{P}_{ ext{fin.}}(\Sigma imes Y) & \stackrel{ ext{sync}_{X,Y}}{\longrightarrow} & \mathcal{P}_{ ext{fin.}}ig(\Sigma imes (X imes Y)ig) \ (S,T) & \longmapsto & ig\{ (a,(x,y)) \mid (a,x) \in S \land (a,y) \in T ig\} \end{aligned}$$

 $\circ \underline{\text{CCS-style}} \text{ (Milner)} \quad a.P \parallel \overline{a}.Q \xrightarrow{\tau} P \parallel Q \\ \text{Assuming} \quad \Sigma = \{a, a', \dots\} + \{\overline{a}, \overline{a'}, \dots\} + \{\tau\}$

 $\begin{array}{ccc} \mathcal{P}_{\mathrm{fin.}}(\Sigma \times X) \times \mathcal{P}_{\mathrm{fin.}}(\Sigma \times Y) & \stackrel{\mathrm{sync}_{X,Y}}{\longrightarrow} & \mathcal{P}_{\mathrm{fin.}}(\Sigma \times (X \times Y)) \\ & (S,T) & \longmapsto & \big\{ \left(\tau, (x,y)\right) \ | \ (a,x) \in S \ \land \ (\overline{a},y) \in T \, \big\} \end{array}$

Compositionality result

0

Compositionality result

• <u>Theorem</u> Given that

- F has $sync_{X,Y}$: $FX \otimes FY \rightarrow F(X \otimes Y)$
- there is a final coalgebra $Z \rightarrow FZ$

we have *compositionality*

$$\mathsf{beh}egin{pmatrix} FX & FY \ c^{\uparrow}_{\uparrow} & \otimes d^{\uparrow}_{\uparrow} \ X & Y \end{pmatrix} \quad = \quad \mathsf{beh}egin{pmatrix} FX \ c^{\uparrow}_{\uparrow} \ X \end{pmatrix} ightharpoon \mathsf{beh}egin{pmatrix} FY \ d^{\uparrow}_{\uparrow} \ Y \end{pmatrix}$$

- "Compositionality for free"
- It follows: $C \sim C', D \sim D' \rightarrow C \parallel D \sim C' \parallel D'$
- <u>Proof</u> By finality
- We shall generalize this to an *arbitrary* (single-sorted) algebraic theory

Part II: 2-categorical formulation of the microcosm principle

Microcosm principle (Baez & Dolan)

• The same algebraic theory

 \circ interpreted both on **C** and on $X \in \mathbf{C}$

- C : outer model
- X ∈ C : *inner* model

o Examples:

- monoid in a monoidal category
- final coalgebra in Coalg_F with ⊗

What is microcosm principle, mathematically?

Setting

- 2-categorical
 - 2-categories: categories in categories
 - suitable for microcosm structures, i.e. algebras in algebras

Categorical presentation of an algebraic specification/theory

<u>Definition</u>

A *Lawvere theory L* is a small category s.t.

- *L*'s objects are natural numbers
- *L* has finite products

Models for Lawvere theory

 Cf. A <u>(set-theoretic) model</u> is a FP-preserving functor

- A set with **L**-structure
- "Functorial semantics"
- How about the microcosm principle:
 L-algebraic structures on
 - C: outer model
 - *X* ∈ **C** : *inner* model

Outer model: *L*-category

Outer model =
 a <u>category</u> with L-structure → "L-category"

• *L*-category: an FP-preserving functor

In fact, a *pseudo-*functor (equations are up-to-iso)

Inner model: L-object

Definition

Generic compositionality result

<u>Theorem</u>Given that

• **C** is an **L**-category

• $F: \mathbf{C} \rightarrow \mathbf{C}$ is a lax *L*-functor

there is a final coalgebra $Z \rightarrow FZ$

the functor

is a (strict) *L*-functor.

• This subsumes the previous compositionality result $\begin{array}{c|c} \mathsf{beh}\begin{pmatrix}FX & FY\\ c^{\uparrow} & \boxtimes d^{\uparrow}\\ X & Y\end{pmatrix} &= \begin{array}{c|c} \mathsf{beh}\begin{pmatrix}FX\\ c^{\uparrow}\\ X\end{pmatrix} & \operatorname{beh}\begin{pmatrix}FY\\ d^{\uparrow}\\ Y\end{pmatrix}\end{array}$

Related work: bialgebras

- Related to the study of *bialgebraic structures* [Turi-Plotkin, Bartels, Klin, ...]
 - Algebraic structures on coalgebras

• In the current work:

- Equations, not only operations, are also an integral part
- Algebraic structures are *nested*, *higherdimensional*

Conclusion

Concurrency in coalgebras as a CS example

• Preprint available: http://www.cs.ru.nl/~ichiro

Thank you for your attention!

Ichiro Hasuo, Kyoto U., Japan

(At U. Nijmegen, NL, till 2008.3)

http://www.cs.ru.nl/~ichiro

Behavior by coinduction: example

- in Sets: *bisimilarity*
- in certain Kleisli categories: trace equivalence [Hasuo,Jacobs,Sokolova,CMCS'06]

Examples of sync : $FX \otimes FY \rightarrow F(X \otimes Y)$

O Note:

Asynchronous/interleaving compositions don't fit in this framework

• such as $a.P \parallel Q \xrightarrow{a} P \parallel Q$

We have to use, instead of *F*,
 the *cofree comonad* on *F*

Lawvere theory

• Presentation of an algebraic theory as a category:

• <u>objects</u>: 0, 1, 2, 3, ... "*arities*" • <u>arrows</u>: "*terms* (in a context)" 2 $\xrightarrow{\pi_1}{\pi_2}$ 1 2 $\xrightarrow{x_1, x_2 \vdash x_1}$ projections 2 \xrightarrow{m} 1 2 $\xrightarrow{x_1, x_2 \vdash x_2}$ 1 operation 3 $\xrightarrow{m(m(\pi_1, \pi_2), \pi_3)}$ 1 3 $\xrightarrow{x_1, x_2, x_3 \vdash m(m(x_1, x_2), x_3)}$ 1 composed term

<u>commuting diagrams</u> are understood as "equations"

arises from

o (single-sorted) algebraic specification (Σ , E) as the syntactic category

o FP-sketch

Outline

• In a coalgebraic study of *concurrency*,

• *Nested* algebraic structures

- on a category C and
- on an **object** $X \in \mathbf{C}$

arise naturally (microcosm principle)

- Our contributions:
 - Syntactic formalization of microcosm principle
 - 2-categorical formalization with Lawvere theories
 - Application to coalgebras:
 - o generic compositionality theorem

Generic soundness result

A Lawvere theory *L* is for

- operations, and
- *equations* (e.g. associativity, commutativity)
- **Coalg**_{*F*} is an *L*-category
 - ➔ Parallel composition ⊗ is automatically <u>associative</u> (for example)
 - Ultimately, this is due to the *coherence condition* on the lax *L*-functor *F*
- **Possible application** :

Study of *syntactic formats* that ensure associativity/commutativity (future work)