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1-slide review of coalgebra/coinduction

Theory of coalgebras
= “categorical theory of state-based systems”

categorically

system coalgebra

behavior- 
preserving map morphism of coalgebras

behavior
coinduction
(via final coalgebra)

abstraction, genericity, (joy)

in Sets : bisimilarity
in Kleisli : trace semantics

[Hasuo,Jacobs,Sokolova]



Concurrency

is about parallel composition C || D
running C and D at the same time
with communication/synchronization between C and D

is everywhere
computer networks
multi-core processors
modular, component-based design of complex systems

is hard to get right
e.g. so easy to get into deadlocks
cf. Edward Lee. Making Concurrency Mainstream.
Invited talk at CONCUR 2006. 
http://ptolemy.eecs.berkeley.edu/presentations/main.htm

Picture by                
Bocchi, Fiadeiro, Lopes



Compositionality

Behavior of C || D
is determined by

behavior of C and behavior of D

Enables compositional verification of complex systems
Conventional presentation:

C ~ C’,     D ~ D’ C || D ~ C’ || D’

~ : process/observational/behavioral equivalence
bisimilarity, trace equivalence, etc.

“bisimilarity is a congruence”



Compositionality in coalgebras

Final coalgebra semantics as
“process semantics”.

“Coalgebraic compositionality”

Two different || !
|| : CoalgF x CoalgF CoalgF on coalgebras
|| : Z x Z  Z on states



Nested algebraic structures: 
the microcosm principle

The same “algebraic structure”
operations (binary ||)
equations    (e.g. associativity of ||)

is carried by
the category CoalgF and
its object Z ∈ CoalgF

in a nested manner!
“Microcosm principle” (Baez & Dolan)

with



Microcosm in macrocosm

X



The microcosm principle

You may have seen it
“a monoid is in a monoidal category”

Notice:
The “inner” structure depends on the “outer” one

We identify (probably) the first CS example



Formalizing the microcosm principle

When a category L presents an algebraic theory     
(Lawvere theory), 
Its (set-theoretic) model is
a FP-preserving functor

How about a nested model as in the microcosm principle?
Our answer: a lax natural transformation

What do we mean exactly by the “microcosm principle”?



Outline

Microcosm principle for concurrency (|| and ||)

|| and || essentially arise from
“synchronization” natural transformation

sync : FX ⊗
 

FY F(X ⊗Y)

The microcosm principle syntactically
Algebraic structure is syntactically presented as (Σ, E)
… (Ana can tell you more!)

The microcosm principle 2-categorically
(Common) alg. str. is presented by a Lawvere theory
Applications:

generic compositionality theorem
generic soundness theorem



Part I:
Parallel composition of coalg.

via sync nat. trans.



Parallel composition of coalgebras

|| : bifunctor CoalgF x CoalgF CoalgF
usually denoted by ⊗ (tensor)

Theorem If
the base category C has associative tensor 

⊗
 

: C x C C
and F : C C comes with natural transformation

syncX,Y :  FX ⊗
 

FY F(X ⊗ Y)
then we have ⊗ : CoalgF x CoalgF CoalgF

Parallel composition arises from sync



Parallel composition of coalgebras

Different sync yield different ⊗

??

??F

X ⊗
 

Y

(X ⊗
 

Y)

FX ⊗
 

FY
c ⊗

 
d

syncX,Y

⊗
 

on base 
category



Examples of 
sync : FX ⊗

 
FY F(X ⊗ Y)

C = Sets, F = Pfin (Σ
 

x _)     for LTS

CSP-style (Hoare)  

CCS-style (Milner)
Assuming

Cartesian product as ⊗



Compositionality result



Compositionality result

Theorem
Given that 

we have compositionality

“Compositionality for free”
It follows:     C ~ C’, D ~ D’ C || D ~ C’ || D’
Proof By finality
We shall generalize this to an arbitrary (single-sorted) 
algebraic theory

C has tensor ⊗
F  has syncX,Y :  FX ⊗ FY F(X ⊗ Y)

there is a final coalgebra Z FZ



Part II:
2-categorical formulation of

the microcosm principle



Microcosm principle (Baez & Dolan)

The same algebraic theory

interpreted both on C and on X ∈ C
C : outer model
X ∈ C : inner model

Examples:
monoid in a monoidal category
final coalgebra in CoalgF with ⊗

What is microcosm principle, mathematically?



Setting

2-categorical
2-categories: categories in categories
suitable for microcosm structures, i.e. 
algebras in algebras 



Lawvere theory L

Categorical presentation of an algebraic 
specification/theory

Definition
A Lawvere theory L is a small category 
s.t.

L’s objects are natural numbers
L has finite products 



is a category L that has

Arrows for operations

Commutativity for equations

~ unit law                                        ~ assoc. law

Other arrows:
projections
(composed) terms

Lawvere theory

arity arity



Models for Lawvere theory

Cf. A (set-theoretic) model is
a FP-preserving functor

A set with L-structure
“Functorial semantics”

How about the microcosm principle:  
L-algebraic structures on

C : outer model
X ∈ C : inner model



Outer model: L-category

Outer model  =
a category with L-structure “L-category”

L-category: an FP-preserving functor

In fact, a pseudo-functor (equations are up-to-iso)



lax naturality

Inner model: L-object

Definition
An L-object in an L-category 
is a lax natural transformation

compatible with products.

Components

Recall: Inner alg. structure
occurs from lax naturality

Outer model



Facts

L-functor preserves L-objects

C: L-category
F: C C, lax L-functor

CoalgF is an L-category

F: C C, oplax L-functor
AlgF is an L-category

X ∈ C , L-object
C/X is an L-category

Final object is an L-object

F : lax,  G : oplax
Inserter Ins(F, G) is 

an L-category

L-functor: (strict) natural transformation
lax L-functor: lax natural trans.

lax naturality:

lax L-functor
= functor with sync.



Generic compositionality result

Theorem
Given that

the functor

is a (strict) L-functor.

This subsumes the previous compositionality result 

by coinduction

C is an L-category

F : C C is a lax L-functor

there is a final coalgebra Z FZ



Related work: bialgebras

Related to the study of bialgebraic structures 
[Turi-Plotkin, Bartels, Klin, …]  

Algebraic structures on coalgebras

In the current work:
Equations, not only operations, are also an 
integral part
Algebraic structures are nested, higher-
dimensional



Conclusion

Microcosm principle : 
same algebraic structure

on a category C and
on an object X ∈ C

2-categorical formulation:

Concurrency in coalgebras as a CS example
Preprint available:
http://www.cs.ru.nl/~ichiro

Thank you for your attention!
Ichiro Hasuo, Kyoto U., Japan

(At U. Nijmegen, NL, till 2008.3)

http://www.cs.ru.nl/~ichiro

Algebraic theory
Outer model

Inner model



Take   F = Pfin

 

(Σ
 

×
 

_)  in Sets.

System as coalgebra:

Behavior by coinduction:

in Sets: bisimilarity
in certain Kleisli categories: trace equivalence 
[Hasuo,Jacobs,Sokolova,CMCS’06]

Behavior by coinduction: example

the set of 
finitely branching
edges labeled with Σ
infinite-depth

trees,

such as

x
process 

graph of x



Examples of 
sync : FX ⊗

 
FY F(X ⊗ Y)

Note:
Asynchronous/interleaving compositions 
don’t fit in this framework

such as 
We have to use, instead of F,
the cofree comonad on F



Lawvere theory

Presentation of an algebraic theory as a category: 
objects: 0, 1, 2, 3, … “arities”
arrows:  “terms (in a context)”

commuting diagrams are understood as “equations”

~ unit law                       ~ assoc. law

arises from
(single-sorted) algebraic specification (Σ, E) as the syntactic category
FP-sketch

projections

operation

composed term



Outline

In a coalgebraic study of concurrency,

Nested algebraic structures 
on a category C and
on an object X ∈ C

arise naturally (microcosm principle)

Our contributions:
Syntactic formalization of microcosm principle
2-categorical formalization with Lawvere theories
Application to coalgebras:

generic compositionality theorem



Generic soundness result

A Lawvere theory L is for 
operations, and 
equations (e.g. associativity, commutativity)

CoalgF is an L-category
Parallel composition ⊗ is automatically 
associative (for example)

Ultimately, this is due to the coherence condition on 
the lax L-functor F

Possible application : 
Study of syntactic formats that ensure 
associativity/commutativity (future work)
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