Generic Forward and Backward Simulations

Ichiro Hasuo Radboud Universiteit Nijmegen The Netherlands

Radboud University Nijmegen

Slogan, almost [Vardi]

Everything you can do

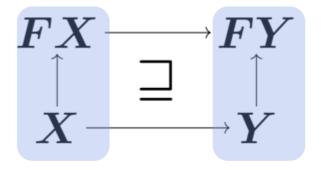
I can do "better" with coalgebras

- More genericity
- More abstraction
- More fun (for me)
- This work aims at a generic, coalgebraic version of

N. Lynch & F. Vaandrager. Forward and Backward Simulations I. Untimed Systems. Information and Computation, 1995

Contents

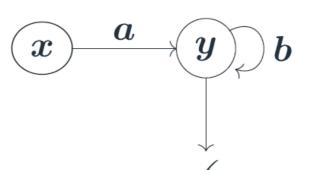
- 1. Theory of traces and simulations, conventionally
- 2. Generic theory
 - Forward simulation as



- Uniformly for non-determinism and probability
- Main result: general soundness theorem
- 3. Illustration of generic theory
- 4. New application field of coalgebras

Traces, conventionally

- Let's focus on labelled transition systems (LTS)
- Trace = set of possible linear-time behavior



 $\mathsf{trace}(x) = \{a\checkmark, \, ab\checkmark, \, abb\checkmark, \, \ldots \}$

• Disclaimer:

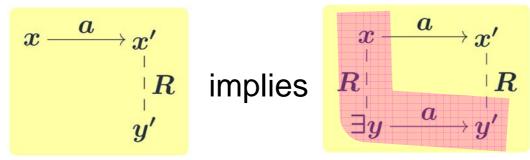
In this work we only work with finite traces

better captured by our coalgebraic framework

Simulations, conventionally

- Two systems: ${\cal S}$ and ${\cal T}$
- **R** : a relation between state spaces
 - *R* is a forward simulation if

• R is a backward simulation if



Soundness theorem

∃ forward/backward simulation

Summary: theory of traces and simulations

We have reviewed:

• Traces

$$x \xrightarrow{a} y) b$$

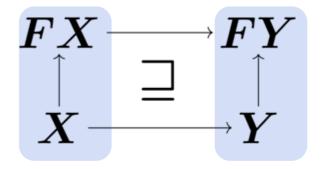
$$\downarrow \quad \mathsf{trace}(x) = \{a\checkmark, ab\checkmark, abb\checkmark, \dots\}$$

Forward/backward simulations

Soundness theorem

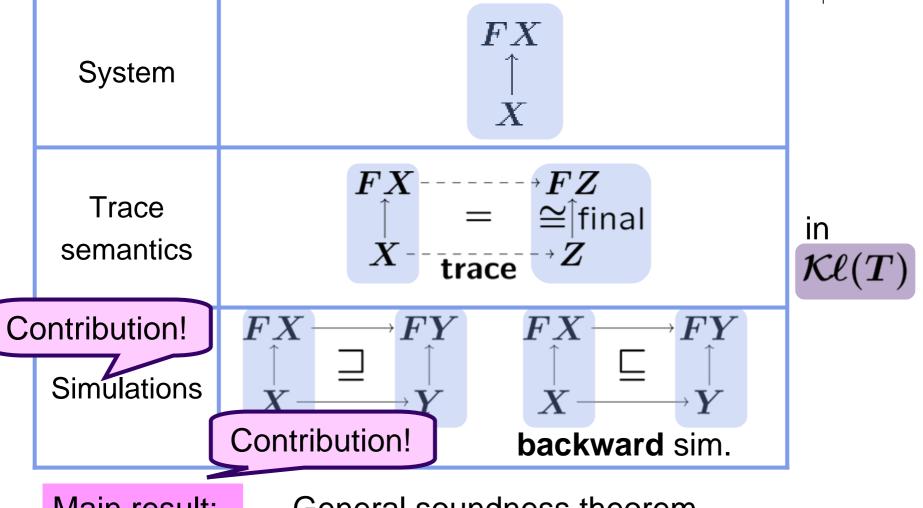
Contents

- 1. Theory of traces and simulations, conventionally
- 2. Generic theory
 - Forward simulation as

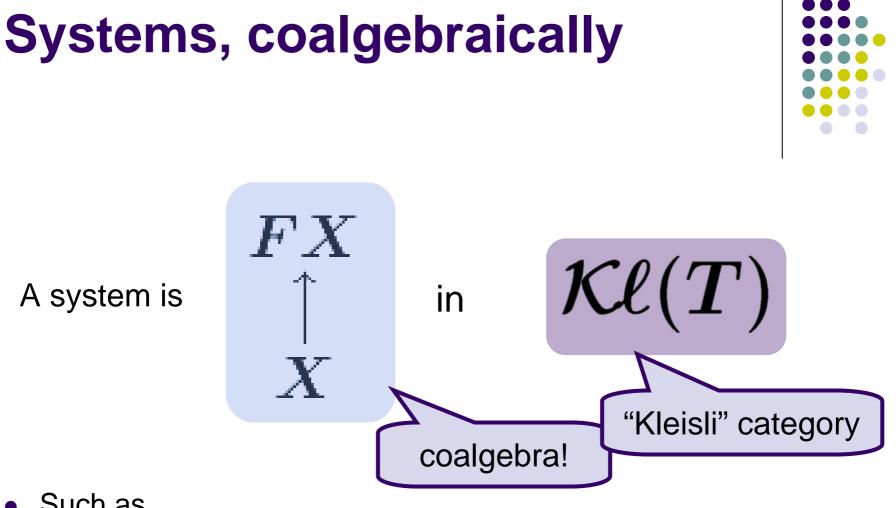


- Uniformly for non-determinism and probability
- Main result: general soundness theorem
- 3. Illustration of generic theory
- 4. New application field of coalgebras

Traces and simulations, coalgebraically



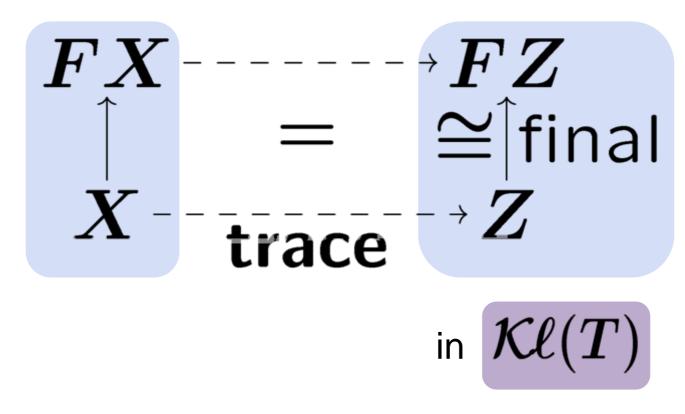
Main result: General soundness theorem



- Such as
 - LTS
 - Generative probabilistic systems
 - etc.
- [Power&Turi CTCS'99] [Jacobs CMCS'04]

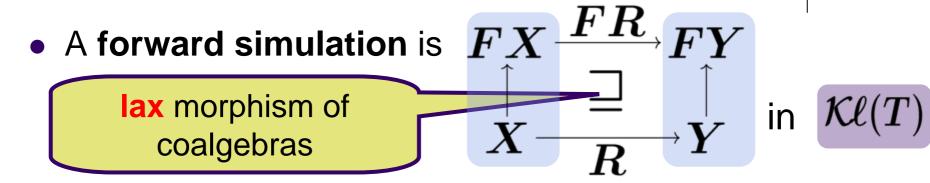
Traces, coalgebraically

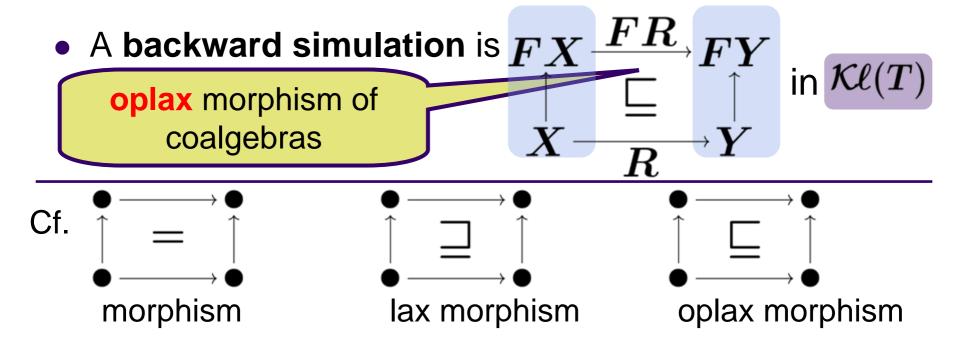
Trace semantics is by coinduction

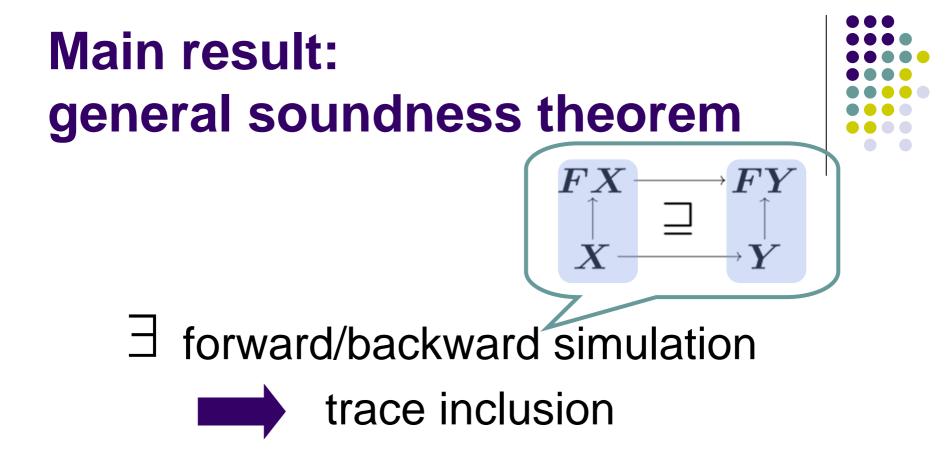


• [IH, Jacobs & Sokolova, CMCS'06]

Simulations, coalgebraically [This work]

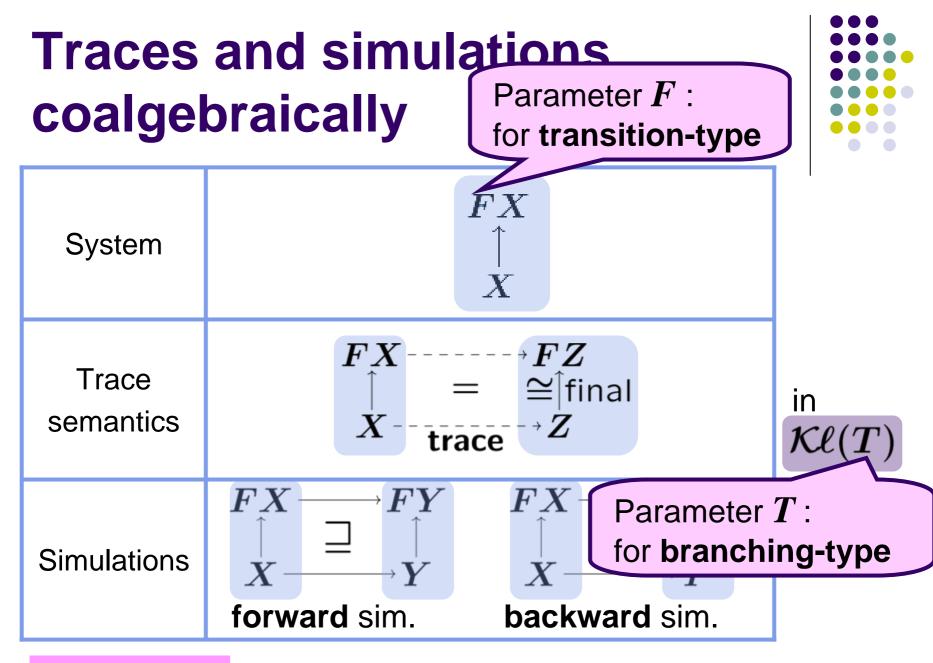




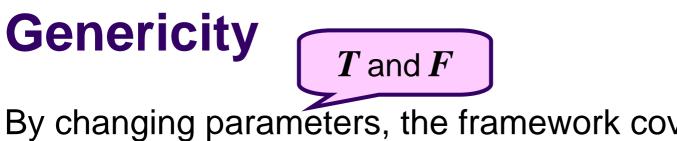


Also completeness result:

trace inclusion $\Rightarrow \exists$ a hybrid simulation



Main result: General soundness theorem



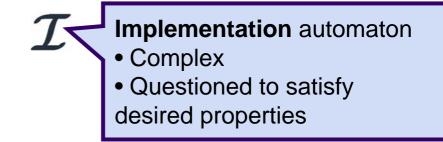
By changing parameters, the framework covers

- different branching-types by different T
 - non-determinism
 - probabilistic branching
- different transition-types by different F
 - LTS: $x \mapsto (a, x')$
 - Context-free grammar: $x \mapsto \langle \text{``¬''}, x \rangle$ $X \mapsto \langle X, \land \land, X \rangle$

Significance of soundness thm

Scenario: verification by finding a simulation

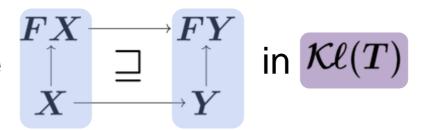
- Specification automaton
 - Simple
 - Known to satisfy desired properties



 ${\mathcal I}$ satisfies a **safety** property ${m P}$ Goal: • \mathcal{S} satisfies P• trace(\mathcal{I}) \subseteq trace(\mathcal{S}) < Soundness theorem \exists forward/backward simulation from $\mathcal I$ to $\mathcal S$

Practical implication, an envisaged scenario

- Given an (exotic) kind of systems,
 - Whether non-deterministic or probabilistic
 - No idea what is an appropriate def. of simulations



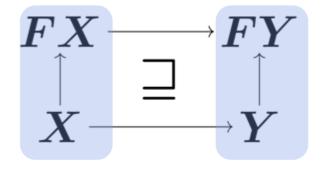
- Instantiate
 - We obtain def. of fwd/bwd simulations

Soundness thm. comes for free

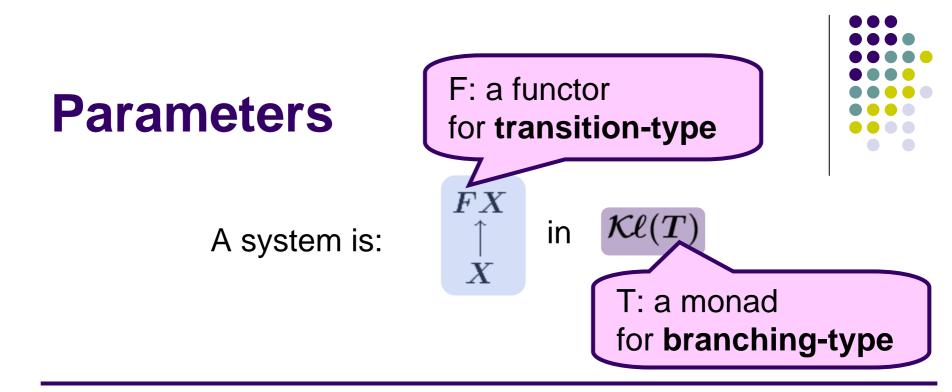
In particular, a move: non-det. ⇒ prob.
 is trivial by changing a parameter.

Contents

- 1. Theory of traces and simulations, conventionally
- 2. Generic theory
 - Forward simulation as



- Uniformly for non-determinism and probability
- Main result: general soundness theorem
- 3. Illustration of generic theory
- 4. New application field of coalgebras



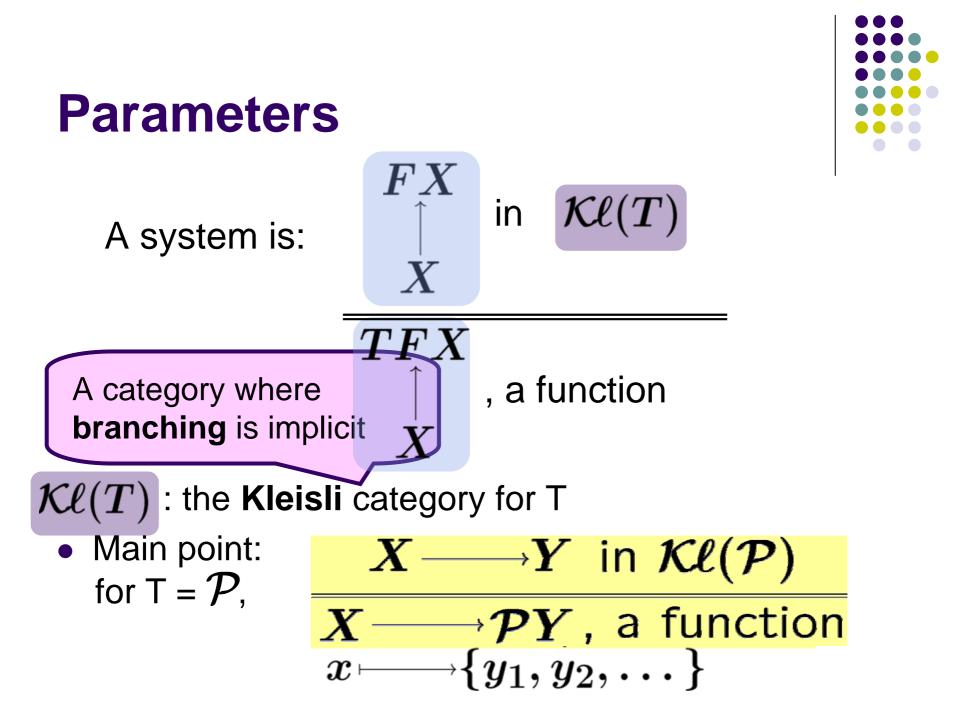
• T is a **monad**, for branching-type. Examples:

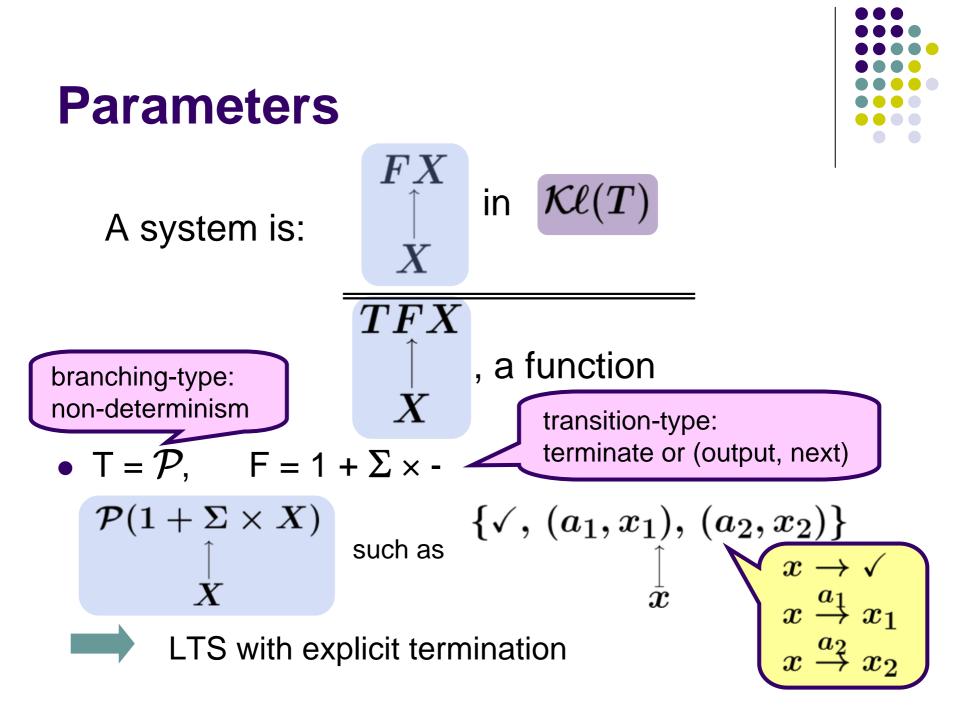
- \mathcal{P} , powerset monad
 - for non-determinism
- ${\cal D}$, subdistribution monad

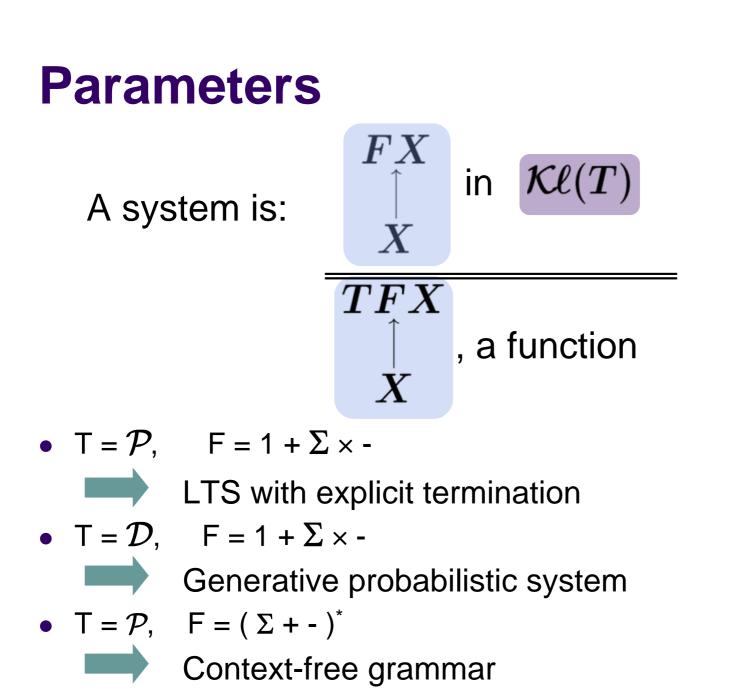
 $\mathcal{D}X = \{$ probability subdistributions on $X\}$

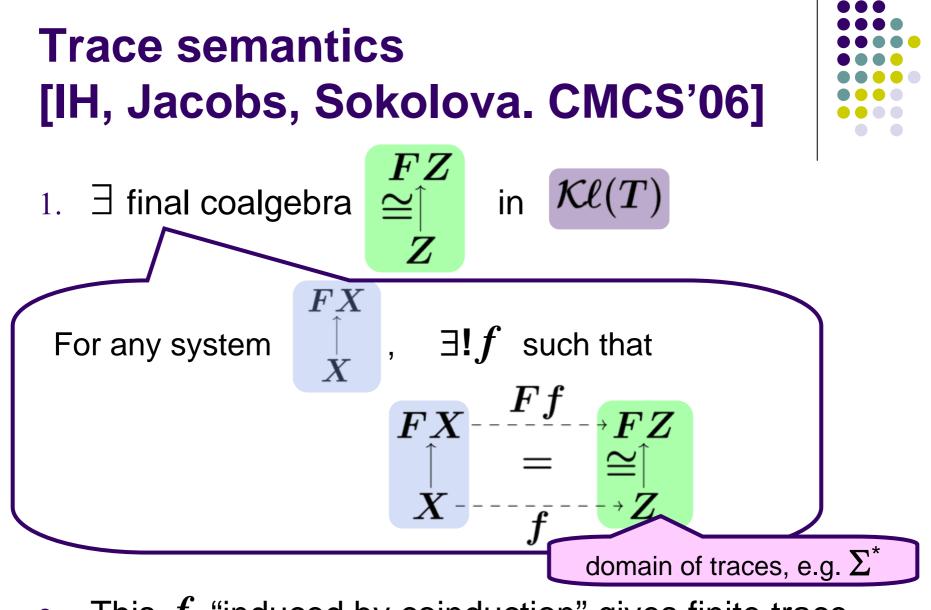
$$= \{d: X
ightarrow [0,1] \mid \sum_{x \in X} d(x) \leq 1\}$$

for (generative) probabilistic branching

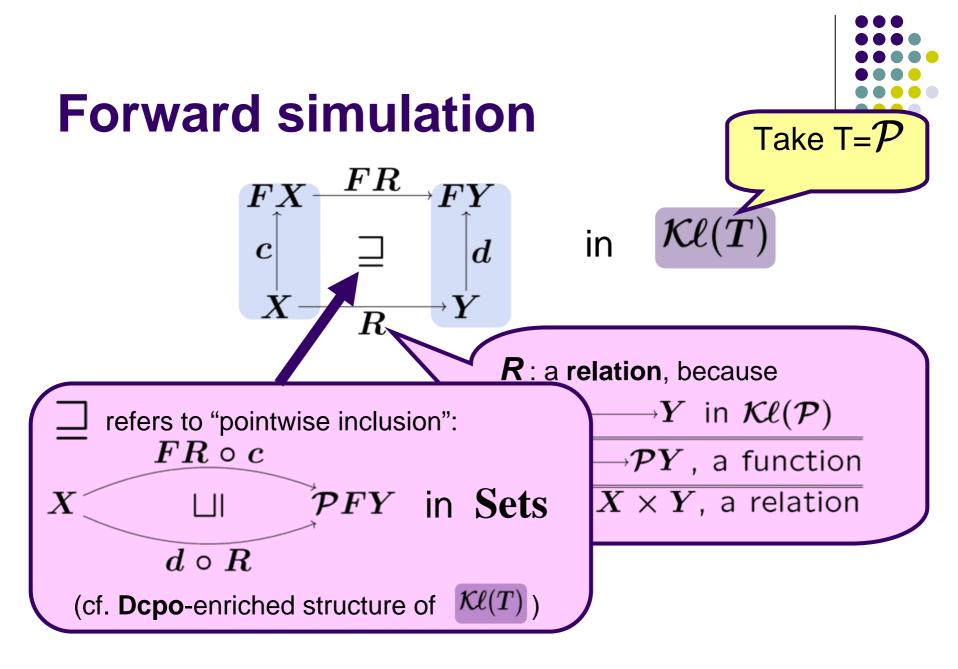


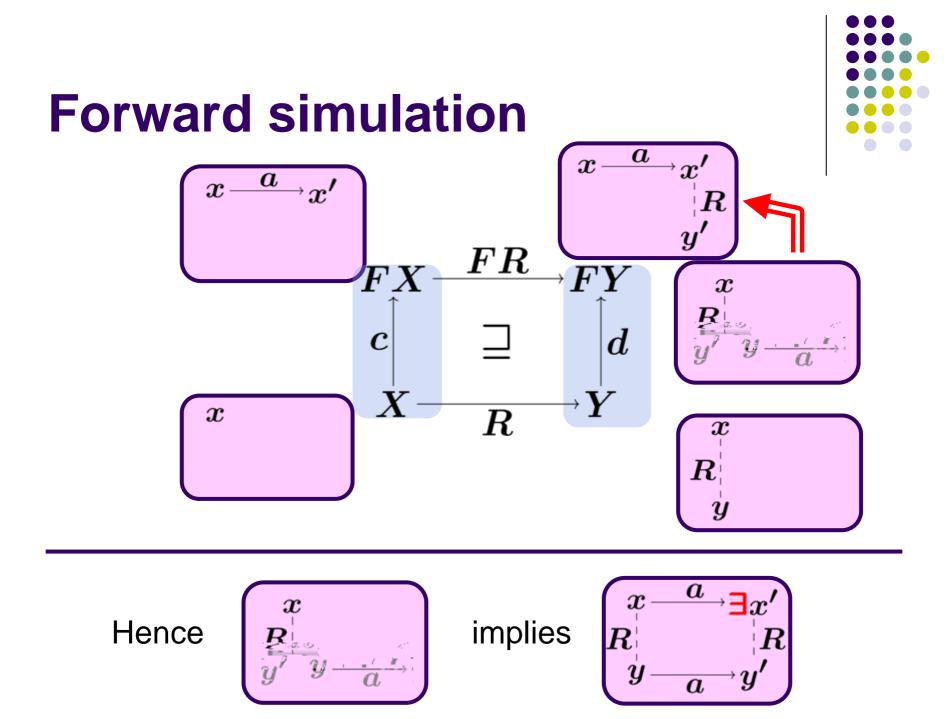


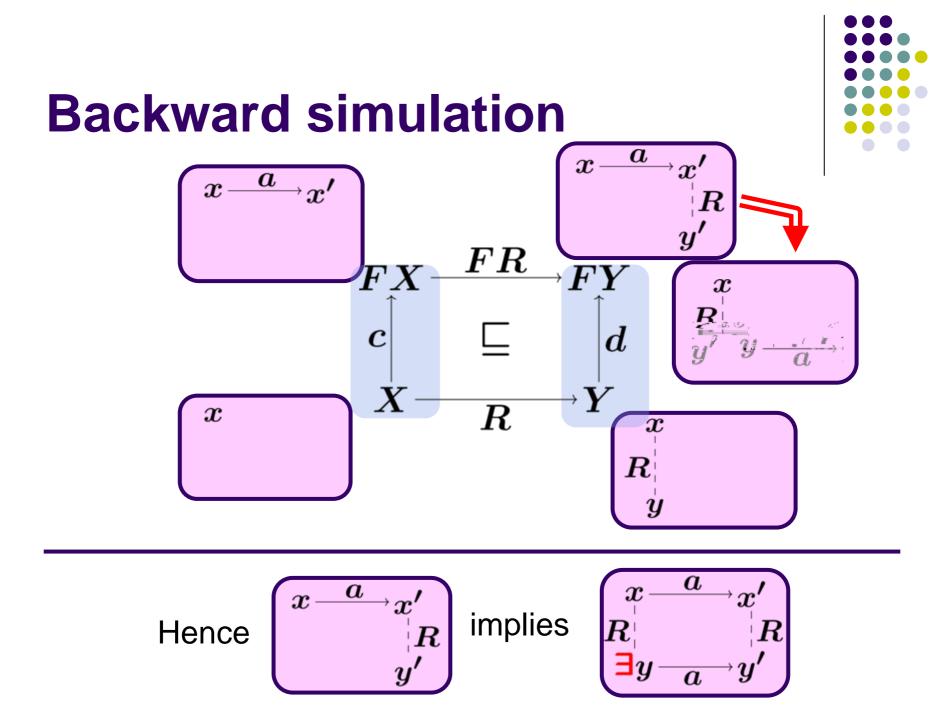


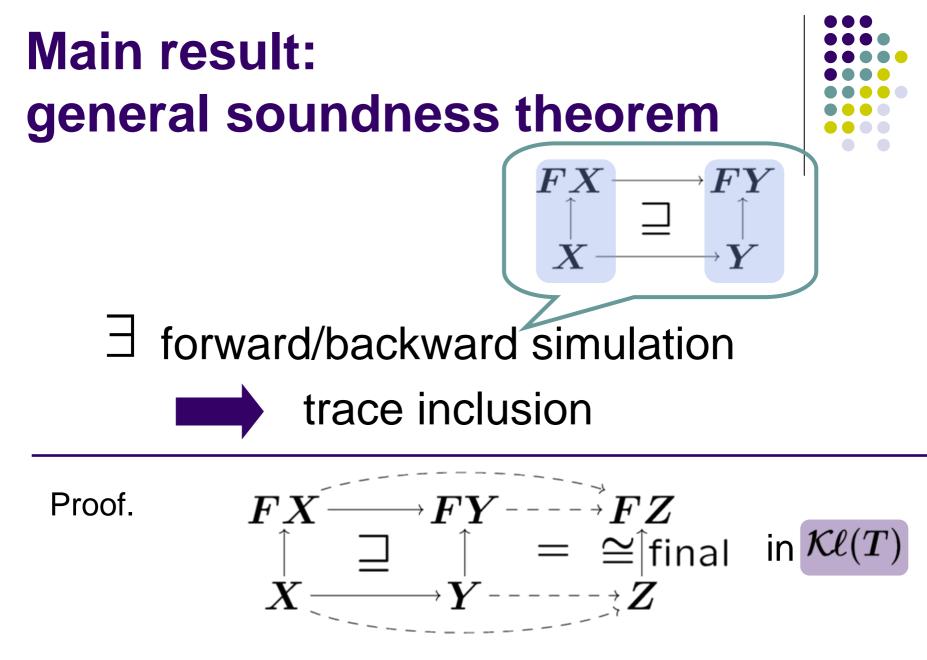


2. This f "induced by coinduction" gives finite trace semantics



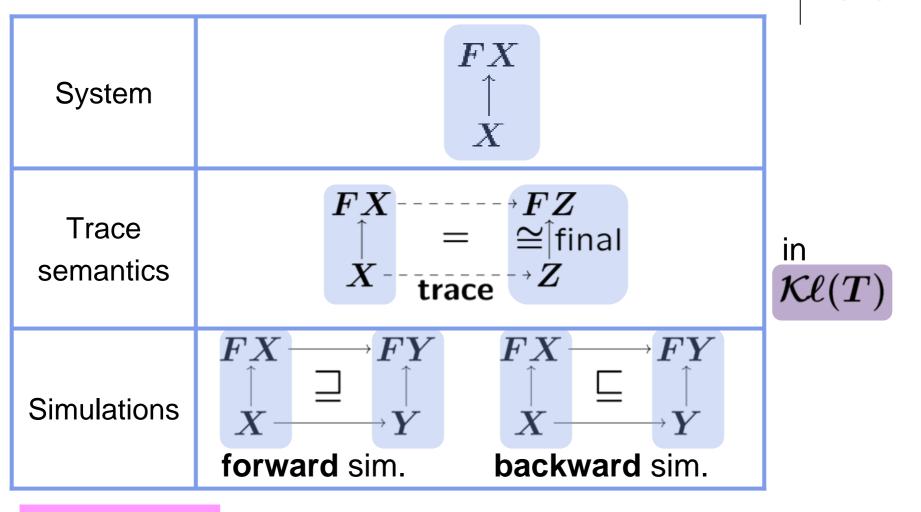






Also completeness result, as easily

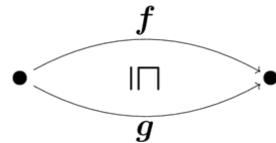
Summary: we have illustrated



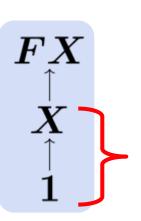
Main result: General soundness theorem

In the paper, we have

- More details on examples
- More technical details
 - **DCpo**-enriched structure of $\mathcal{K}\ell(T)$

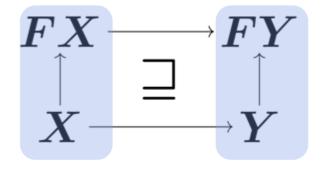


- : **g** yields **more** behavior than **f**
- Explicit start states: a system is actually
- An extended version is available: http://www.cs.ru.nl/~ichiro



Contents

- 1. Theory of traces and simulations, conventionally
- 2. Generic theory
 - Forward simulation as



- Uniformly for non-determinism and probability
- Main result: general soundness theorem
- 3. Illustration of generic theory
- 4. New application field of coalgebras

Interpretation of coalgebraic notions

underlying category	in Sets e.g.[Rutten'00]	in $\mathcal{K}\ell(T^{'})$
captured process semantics	bisimilarity	trace semantics
coalgebra $egin{pmatrix} FX \\ \uparrow \\ X \end{bmatrix}$	a system	a system
by coinduction $FX \xrightarrow{FZ} final$ $X \xrightarrow{FZ} final$	behavior modulo bisimilarity	trace semantics [Power&Turi'99] [IH,Jacobs,Sokolova'06]
morphism of coalg. $FX \longrightarrow FY$ $\uparrow = \uparrow$ $X \longrightarrow Y$	functional bisimulation	lax : forward sim. oplax : backward sim. [current work]

Process theory in categorical/algebraic/coalgebraic terms

- Bisimulation
- Traces and simulations, as in [Lynch&Vaandrager'95]
- Modal logic
- Process algebra and SOS
- Probabilistic system
- Testing semantics, LT-BT spec.

[Rutten, TCS'02] [Power&Turi, CTCS'99] [IH,Jacobs&Sokolova,CMCS'06] [IH, CONCUR'06] [Bonsangue&Kurz, FOSSACS'06] [Cirstea&Pattinson, CONCUR'04] [Schroeder, FOSSACS'06] [Turi&Plotkin, LICS'97] [Bartels, CMCS'02] [Klin, invited talk at EXPRESS'06] [Sokolova, VOSS'04] [Klin&Sobocinski, CONCUR'03] [Pavlovic,M More fun for us AMAST

Everything we can do, we can do "better" with coalgebras

Future work: applicational side

- Generalization of simulation-based verification tools such as IOA toolkit [Garland,Lynch&Vaziri'97]
- More examples
 - Now **non-det.** \Rightarrow **prob.** is trivial
 - E.g. probabilistic ver. of anonymity simulations [Kawabe,Mano,Sakurada&Tsukada,'06] (Ongoing)

Future work: theoretical side

preliminary results by IH

Infinite traces

- Internal actions but not in our paper
- Linear-time logic
- Process algebra and compositionality
- Combination of **both** non-let and probability
 - A lot of bad things occupreliminary results by [Varacca&Winskel,LICS
 [Cheung, PhD Thesis]

Everything we can do, we can do "better" with coalgebras

 \boldsymbol{c}

Conclusion

- (Part of) [Lynch&Vaandrager'95] is done coalgebraically $FX \xrightarrow{FR} FX$
 - Forward simulation as
 - General soundness theorem
- Genericity
 - Non-det. or probabilistic
- Practical implication envisaged
- Lots of topics to be worked out

Thank you for your attention!

d

 $oldsymbol{Y}$

 \boldsymbol{R}

Contact: Ichiro Hasuo

http://www.cs.ru.nl/~ichiro

