Trace Everywhere

Ichiro Hasuo
University of Tokyo (JP)
Three “Traces”

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ-calculus

Hasuo (Tokyo)
Three “Traces”

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ-calculus

Coinduction in $Kl(B)$

$FX \xrightarrow{F\text{beh}(c)} FZ$

$c \uparrow$

$X \xrightarrow{\text{beh}(c)} Y$

\uparrow_{final}

Tuesday, October 9, 12
Three “Traces”

Coalgebraic Trace Semantics

Traced monoidal category

Quantum \(\lambda \)-calculus

\[
\begin{align*}
F \text{beh}(c) & : FX \rightarrow FZ \\
c \uparrow & \quad \uparrow \text{final} \\
X \text{beh}(c) & \rightarrow Y
\end{align*}
\]

Coinduction in \(Kl(B) \)

Categorical GoI

[Abramsky, Haghverdi, Scott]
Three “Traces”

Coalgebraic \textbf{Trace} Semantics

\textbf{Traced} monoidal category

Quantum λ-calculus

Measurements by \textit{tracing out} matrices

Coinduction in $Kl(B)$

Categorical GoI

[Abramsky, Haghverdi, Scott]
Three “Traces”

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ-calculus

Goal: Denotational model of a quantum λ-calculus

Measurements by tracing out matrices

Categorical GoI

[Abramsky, Haghverdi, Scott]

Coinduction in $Kl(B)$
Three “Traces”

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ-calculus

appl

Goal: Denotational model of a quantum λ-calculus

Categorical GoI

[Abramsky, Haghverdi, Scott]

Hasuo (Tokyo)

\[
\begin{align*}
F_{\text{beh}(c)} : FX & \xrightarrow{\uparrow} FZ \\
X & \xrightarrow{\uparrow_{\text{final}}} Y
\end{align*}
\]

Coinduction in $KL(B)$
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88
* Provides denotational semantics $\left[M\right]$ for linear λ-term M
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88
* Provides denotational semantics $\left[{M}\right]$ for linear \(\lambda\)-term \(M\)
* In this talk:
 * Its categorical formulation
 [Abramsky, Haghverdi, Scott ’02]
 * “The GoI Animation”
The GoI Animation

\[[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{ a partial function}) \]

= "piping"

\[\begin{array}{cccccc}
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
1 & 2 & 3 & 4 & \cdots & \text{(countably many)}
\end{array} \]
The GoI Animation

\[
[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{ a partial function })
\]

= “piping”

1 2 3 4 ... (countably many)
\[
[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{ a partial function})
\]

= “piping”

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\end{array}
\]

... (countably many)
The GoI Animation

\[
[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{a partial function})
\]

\[= \text{“piping”}
\]

... (countably many)

Hasuo (Tokyo)
The GoI Animation

\[
[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{a partial function})
\]

= “piping”

\[
\begin{align*}
1 & \quad \downarrow & \quad 2 & \quad \downarrow & \quad 3 & \quad \downarrow & \quad 4 & \quad \downarrow & \quad \ldots
\end{align*}
\]

(countably many)
\[[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{a partial function}) \]

= “piping”

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\end{array} \]

... (countably many)
\[[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{ a partial function}) = \text{“piping”} \]

Hasuo (Tokyo)
The GoI Animation

* Function application $[MN]$

* by “parallel composition + hiding”
\[M N \] = [M] ... [N]
\[MN \]

=

\[M \]

\[N \]
\[M N \]

\[
\begin{bmatrix}
M \\
N
\end{bmatrix}
\]

\[
\begin{bmatrix}
M \\
N
\end{bmatrix} =
\]

\[
\begin{bmatrix}
M \\
N
\end{bmatrix}
\]
\[MN \] = [M] [N]
\[MN \]

=

\[M \]

\[N \]
\[MN \] = \[M \] \parallel \[N \] + hiding

"parallel composition + hiding" (cf. AJM games)
\[\[M N\] = \]

\[\[M\] \]

\[\[N\] \]

\[
\begin{align*}
M &= \lambda x. x + 1 & N &= 2 \\
M &= \lambda x. 1 & N &= 2 \\
M &= \lambda f. f1 & N &= \lambda x. (x + 1)
\end{align*}
\]
\[\boxed{\boxed{M N}} \]

\[= \]

\[\boxed{\boxed{M}} \quad \boxed{\boxed{N}} \]

\[\rightarrow \quad M = \lambda x. \, x + 1 \quad N = 2 \]
\[M = \lambda x. \, 1 \quad N = 2 \]
\[M = \lambda f. \, f\!1 \quad N = \lambda x. \, (x + 1) \]
... $M = \lambda x. x + 1 \quad N = 2$

$M = \lambda x. 1 \quad N = 2$

$M = \lambda f. f1 \quad N = \lambda x. (x + 1)$
\[MN \] =

\[M = \lambda x. x + 1 \quad N = 2 \]
\[M = \lambda x. 1 \quad N = 2 \]
\[M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
\[M = \lambda x. x + 1 \quad N = 2 \]
\[M = \lambda x. I \quad N = I + x + 1 \]
\[[MN] \]

...

\[[M] \]
\[[N] \]

...

\[M = \lambda x. x + 1 \]
\[N = 2 \]

\[M = \lambda x. 1 \]
\[N = 2 \]

\[M = \lambda f. f1 \]
\[N = \lambda x. (x + 1) \]
\[M N \]

\[= \]

\[M = \lambda x. x + 1 \quad N = 2 \]

\[M = \lambda x. 1 \quad N = 2 \]

\[M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
\[[MN] = [M] \odot [N] \]

\[
\begin{align*}
M &= \lambda x. x + 1 \\
N &= 2
\end{align*}
\]

\[
\begin{align*}
M &= \lambda x. 1 \\
N &= 2
\end{align*}
\]

\[
\begin{align*}
M &= \lambda f. f \, 1 \\
N &= \lambda x. (x + 1)
\end{align*}
\]
$[MN] = \ldots$

$M = \lambda x. x + 1$

$N = 2$

$M = \lambda x. 1$

$N = 2$

$M = \lambda f. f1$

$N = \lambda x. (x + 1)$
\[[MN] \]

\[= \]

\[\cdots \]

\[[M] \]

\[[N] \]

\[[MN] \]

\[M = \lambda x. x + 1 \quad N = 2 \]

\[M = \lambda x. 1 \quad N = 2 \]

\[\rightarrow M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
\[MN\] = [...]

\[M\] = \(\lambda x. x + 1\)
\[N\] = 2

\[M\] = \(\lambda x. 1\)
\[N\] = 2

\[M\] = \(\lambda f. f 1\)
\[N\] = \(\lambda x. (x + 1)\)
\[MN\] = [...]

\[M\] = \(\lambda x. x + 1\) \(N = 2\)

\[N\] = \(\lambda x. 1\) \(N = 2\)

\[M\] = \(\lambda f. f1\) \(N = \lambda x. (x + 1)\)
\[
\begin{align*}
M N & = \lambda x. x + 1 & N & = 2 \\
M & = \lambda x. 1 & N & = 2 \\
\rightarrow M & = \lambda f. f1 & N & = \lambda x. (x + 1)
\end{align*}
\]
\[MN\] = \[M\] \[N\]

\[M = \lambda x. x + 1 \quad N = 2\]
\[M = \lambda x. 1 \quad N = 2\]
\[M = \lambda f. f1 \quad N = \lambda x. (x + 1)\]
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88
* Provides denotational semantics $[M]$ for linear λ-term M
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88
* Provides denotational semantics $[M]$ for linear λ-term M
* Similar to game semantics [AJM/HO]
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88
* Provides denotational semantics $[M]$ for linear λ-term M

 * Similar to game semantics $[\text{AJM/HO}]$

 * Linearity: simplicity; no-cloning
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88
* Provides denotational semantics $[M]$ for linear λ-term M
* Similar to game semantics $[AJM/HO]$
* Linearity: simplicity; no-cloning
* Girard translation $A \rightarrow B$ as $!A \rightarrow B$
GoI: Geometry of Interaction

- J.-Y. Girard, at Logic Colloquium ’88
- Provides denotational semantics $\llbracket M \rrbracket$ for linear λ-term M
- Similar to game semantics [AJM/HO]
- Linearity: simplicity; no-cloning
- Girard translation
- “Geometry”: invariant under β-reductions

$$\begin{array}{c}
A \rightarrow B \\
as \quad !A \rightarrow B
\end{array}$$

$$\boxempty = |$$

(Tokyo)
Categorical GoI

* Axiomatics of GoI in the categorical language

* Our main reference:

 * Especially its technical report version (Oxford CL), since it’s a bit more detailed
The Categorical GoI Workflow

- Traced monoidal category \mathcal{C}
 + other constructs \rightarrow "GoI situation" [AHS02]

- Categorical GoI [AHS02]

- Linear combinatory algebra

- Realizability

- Linear category
The Categorical GoI

Workflow

Traced monoidal category \mathcal{C}
+ other constructs \rightarrow "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category
The Categorical GoI Workflow

Traced monoidal category C
+ other constructs \rightarrow “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

* Applicative str. + combinators
* Model of untyped calculus

Hasuo (Tokyo)
The Categorical GoI Workflow

- Traced monoidal category C
 + other constructs \rightarrow “GoI situation” [AHS02]

- Categorical GoI [AHS02]
 - Applicative str. + combinators
 - Model of untyped calculus

- Linear combinatory algebra

- Realizability

- Linear category
 - Model of typed calculus

Hasuo (Tokyo)
The Categorical GoI Workflow

Traced monoidal category \mathcal{C} + other constructs \rightarrow “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

PER, ω-set, assembly, ...

“Programming in untyped λ”

Model of typed calculus
The Categorical GoI Workflow

Traced monoidal category \mathcal{C}
+ other constructs \rightarrow “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Model of typed calculus

Applicative str. + combinators

Model of untyped calculus

PER, ω-set, assembly, ...

“Programming in untyped λ”
Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

- a binary operator (called an *applicative structure*)

 $\cdot : A^2 \rightarrow A$

- a unary operator

 $!: A \rightarrow A$

- (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$
satisfying

\[
\begin{align*}
Bxyz &= x(yz) & \text{Composition, Cut} \\
Cxyz &= (xz)y & \text{Exchange} \\
I &= x & \text{Identity} \\
K &= x & \text{Weakening} \\
W &= x & \text{Contraction} \\
D &= x & \text{Dereliction} \\
\delta &= x & \text{Comultiplication} \\
F &= xy & \text{Monoidal functoriality}
\end{align*}
\]

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.
Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

- a binary operator (called an *applicative structure*)

 $$ \cdot : A^2 \rightarrow A $$

- a unary operator

 $$! : A \rightarrow A $$

- *(combinators)* distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

 \[
 \begin{align*}
 Bxyz &= x(yz) & \text{Composition, Cut} \\
 Cxyz &= (xz)y & \text{Exchange} \\
 lx &= x & \text{Identity} \\
 Kxy &= x & \text{Weakening} \\
 Wxy &= x!!y & \text{Contraction} \\
 Dx &= x & \text{Dereliction} \\
 \delta x &= !!!x & \text{Comultiplication} \\
 Fxy &= !(!x) & \text{Monoidal functoriality}
 \end{align*}
 \]

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.
Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

- a binary operator (called an applicative structure)
 \[\cdot : A^2 \rightarrow A \]
- a unary operator
 \[! : A \rightarrow A \]
- (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$
 satisfying

\begin{align*}
Bxyz &= x(yz) & \text{Composition, Cut} \\
Cxyz &= (xz)y & \text{Exchange} \\
Ix &= x & \text{Identity} \\
Kx!y &= x & \text{Weakening} \\
Wx!y &= x!y!y & \text{Contraction} \\
D!x &= x & \text{Dereliction} \\
\delta!x &= !!x & \text{Comultiplication} \\
F!x!y &= !(xy) & \text{Monoidal functoriality}
\end{align*}

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.
Linear Combinatory Algebra (LCA)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

- a binary operator (called an applicative structure)

 $· : A^2 \rightarrow A$

- a unary operator

 $!: A \rightarrow A$

- (combinators) distinguished elements $B, C, I, K, W, D, δ, F$ satisfying

 $Bxyz = x(yz)$
 Composition, Cut

 $Cxyz = (xz)y$
 Exchange

 $lx = x$
 Identity

 $Kx!y = x$
 Weakening

 $Wx!y = x!y!y$
 Contraction

 $Dx = x$
 Dereliction

 $δx = !x$
 Comultiplication

 $Fx!y = !(xy)$
 Monoidal functoriality

Here: $·$ associates to the left; $·$ is suppressed; and $!$ binds stronger than $·$ does.

What we want (outcome):

- **Model of untyped linear $λ$**
- $a \in A \approx$ closed linear $λ$-term
Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

- a binary operator (called an applicative structure)
 $$\cdot: A^2 \to A$$

- a unary operator
 $$! : A \to A$$

- (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

 $\begin{align*}
 Bxyz &= x(yz) & \text{Composition, Cut} \\
 Cxyz &= (xz)y & \text{Exchange} \\
 lx &= x & \text{Identity} \\
 Kxy &= x & \text{Weakening} \\
 Wxy &= x!y!y & \text{Contraction} \\
 Dx &= x & \text{Dereliction} \\
 \delta x &= !!x & \text{Comultiplication} \\
 Fxy &= !(xy) & \text{Monoidal functoriality}
 \end{align*}$

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.
GoI situation

Defn. (GoI situation [AHS02])

A *GoI situation* is a triple \((C, F, U)\) where

- **\(C = (\mathbb{C}, \otimes, I)\)** is a traced symmetric monoidal category (TSMC);
- **\(F : C \to C\)** is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 \[
 \begin{align*}
 e : FF \triangleleft F & : e' \quad \text{Comultiplication} \\
 d : \text{id} \triangleleft F & : d' \quad \text{Dereliction} \\
 c : F \otimes F \triangleleft F & : c' \quad \text{Contraction} \\
 w : K_I \triangleleft F & : w' \quad \text{Weakening}
 \end{align*}
 \]

 Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- **\(U \in C\)** is an object (called *reflexive object*), equipped with the following retractions.

 \[
 \begin{align*}
 j : U \otimes U \triangleleft U & : k \\
 & I \triangleleft U \\
 u : FU \triangleleft U & : v
 \end{align*}
 \]
GoI situation

Defn. (GoI situation [AHS02])

A GoI situation is a triple \((C, F, U)\) where

- \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : FF \triangleleft F : e'\) Comultiplication
 - \(d : \text{id} \triangleleft F : d'\) Dereliction
 - \(c : F \otimes F \triangleleft F : c'\) Contraction
 - \(w : K_I \triangleleft F : w'\) Weakening

Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- \(U \in C\) is an object (called reflexive object), equipped with the following rejections.
 - \(j : U \otimes U \triangleleft U : k\)
 - \(I \triangleleft U\)
 - \(u : FU \triangleleft U : v\)

Monoidal category \((C, \otimes, I)\)

String diagrams
GoI situation

* Monoidal category \((\mathcal{C}, \otimes, I)\)

* String diagrams

Defn. (GoI situation [AHS02])

A *GoI situation* is a triple \((\mathcal{C}, F, U)\) where

- \(\mathcal{C} = (\mathcal{C}, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : \mathcal{C} \to \mathcal{C}\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(\epsilon : FF \triangleleft F : \epsilon'\) Comultiplication
 - \(d : \text{id} \triangleleft F : d'\) Dereliction
 - \(c : F \otimes F \triangleleft F : c'\) Contraction
 - \(w : K_I \triangleleft F : w'\) Weakening

Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- \(U \in \mathcal{C}\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U \triangleleft U : k\)
 - \(I \triangleleft U\)
 - \(u : FU \triangleleft U : v\)
GoI situation

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

- $C = (C, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : C \to C$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - $e : FF \otimes F \to F : e'$ (Comultiplication)
 - $d : \text{id} \otimes F \to F : d'$ (Dereliction)
 - $c : F \otimes F \otimes F \to F : c'$ (Contraction)
 - $w : K_I \otimes F \to F : w'$ (Weakening)

Here K_I is the constant functor into the monoidal unit I;

- $U \in C$ is an object (called reflexive object), equipped with the following retractions.
 - $j : U \otimes U \otimes U \to U : k$
 - $I \otimes U$
 - $u : FU \otimes U \to U : v$

Monoidal category (C, \otimes, I)

String diagrams

\[
\begin{align*}
 &\quad A \xrightarrow{f} B \quad B \xrightarrow{g} C \\
 &\quad A \xrightarrow{g \circ f} C
\end{align*}
\]

\[
\begin{align*}
 &\quad A \xrightarrow{f} B \quad C \xrightarrow{g} D \\
 &\quad A \otimes C \xrightarrow{f \otimes g} B \otimes D \\
 &\quad h \circ (f \otimes g)
\end{align*}
\]
GoI situation

Traced monoidal category

* "feedback"

\[
\begin{align*}
A \otimes C & \overset{f}{\longrightarrow} B \otimes C \\
A & \overset{\text{tr}(f)}{\longrightarrow} B
\end{align*}
\]

that is

\[
\begin{tikzpicture}
\node (A) at (0,0) {A};
\node (B) at (0,-1) {B};
\node (C) at (1,0) {C};
\node (C') at (2,0) {C};
\node (A') at (2,0) {A};
\node (A'') at (2,-1) {B};
\draw[->] (A) -- (B) node[midway,above] {f};
\draw[->] (A') -- (A'') node[midway,above] {$\text{tr}(f)$};
\end{tikzpicture}
\]

Defn. (GoI situation [AHS02])

A GoI situation is a triple \((\mathcal{C}, F, U)\) where

- \(\mathcal{C} = (\mathcal{C}, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : \mathcal{C} \to \mathcal{C}\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : FF \triangleleft F \to e'\) Comultiplication
 - \(d : \text{id} \triangleleft F \to d'\) Dereliction
 - \(c : F \otimes F \triangleleft F \to c'\) Contraction
 - \(w : K_I \triangleleft F \to w'\) Weakening

Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- \(U \in \mathcal{C}\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U \triangleleft U \to k\)
 - \(I \triangleleft U\)
 - \(u : FU \triangleleft U \to v\)
I use two ways of depicting partial functions $\mathbb{N} \rightarrow \mathbb{N}$.
I use two ways of depicting partial functions $\mathbb{N} \rightarrow \mathbb{N}$.

In the monoidal category $(\text{Pfn}, +, 0)$.

Pipe diagram

String diagram
Traced Sym. Monoidal Category
\((\text{Pfn}, +, 0)\)

* Category Pfn of partial functions

* Obj. A set \(X\)

* Arr. A partial function

\[X \rightarrow Y \text{ in Pfn} \]

\[X \leftarrow Y, \text{ partial function} \]
Traced Sym. Monoidal Category (Pfn, +, 0)

* Category Pfn of partial functions

* Obj. A set \(X \)

* Arr. A partial function

\[
\begin{array}{c}
X
\rightarrow Y \text{ in Pfn} \\
X
\rightarrow Y, \text{ partial function}
\end{array}
\]

* is traced symmetric monoidal
Traced Sym. Monoidal Category
\((Pfn, +, 0)\)

\[
\begin{align*}
X + Z \xrightarrow{f} Y + Z & \quad \text{in } Pfn \\
X \xrightarrow{\text{tr}(f)} Y & \quad \text{in } Pfn
\end{align*}
\]

How?
Traced Sym. Monoidal Category
\[(Pfn, +, 0)\]

\[
\begin{align*}
X + Z & \xrightarrow{f} Y + Z & \text{in } Pfn \\
X & \xrightarrow{\text{tr}(f)} Y & \text{in } Pfn
\end{align*}
\]
Traced Sym. Monoidal Category

\((\text{Pfn}, +, 0)\)

\[
\begin{align*}
X + Z & \xrightarrow{f} Y + Z \quad \text{in Pfn} \\
X & \xrightarrow{\text{tr}(f)} Y \quad \text{in Pfn}
\end{align*}
\]
Traced Sym. Monoidal Category
(Pfn, +, 0)

\[X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn} \]
\[X \xrightarrow{\text{tr}(f)} Y \quad \text{in Pfn} \]

How?

\[f_{XY}(x) := \begin{cases} f(x) & \text{if } f(x) \in Y \\ \bot & \text{o.w.} \end{cases} \]

Similar for \(f_{XZ}, f_{ZY}, f_{ZZ} \)
Traced Sym. Monoidal Category (Pfn, +, 0)

\[
X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}
\]

\[
X \xrightarrow{\text{tr}(f)} Y \quad \text{in Pfn}
\]

How?

\[
f_{XY}(x) := \begin{cases}
 f(x) & \text{if } f(x) \in Y \\
 \bot & \text{o.w.}
\end{cases}
\]

Similar for \(f_{XZ}, f_{ZY}, f_{ZZ} \)

Trace operator:
Traced Sym. Monoidal Category

\[(\text{Pfn}, +, 0)\]

\[\begin{align*}
X + Z & \overset{f}{\rightarrow} Y + Z \quad \text{in Pfn} \\
X & \overset{\text{tr}(f)}{\rightarrow} Y \quad \text{in Pfn}
\end{align*}\]

How?

\[f_{XY}(x) := \begin{cases}
 f(x) & \text{if } f(x) \in Y \\
 \bot & \text{o.w.}
\end{cases}\]

Similar for \(f_{XZ}, f_{ZY}, f_{ZZ}\)

Trace operator:

\[\text{tr}(f) = f_{XY} \sqcup \left(\coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} \right)\]
Traced Sym. Monoidal Category

\[(Pfn, +, 0)\]

\[
\begin{align*}
X + Z & \xrightarrow{f} Y + Z \quad \text{in } Pfn \\
X & \xrightarrow{\text{tr}(f)} Y \quad \text{in } Pfn
\end{align*}
\]

Trace operator:

\[
\begin{align*}
\text{tr}(f) = \\
f_{XY} \sqcup \left(\coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} \right)
\end{align*}
\]

\[f_{XY}(x) :=
\begin{cases}
 f(x) & \text{if } f(x) \in Y \\
 \perp & \text{o.w.}
\end{cases}
\]

Similar for \(f_{XZ}, f_{ZY}, f_{ZZ}\)

- **Execution formula** (Girard)
- Partiality is essential (infinite loop)
GoI situation

* Traced sym. monoidal cat.

* Where one can “feedback”

* Why for GoI?

Defn. (GoI situation [AHS02])

A GoI situation is a triple (\mathcal{C}, F, U) where

- $\mathcal{C} = (\mathcal{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathcal{C} \to \mathcal{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - $e : FF < F : e'$ (Comultiplication)
 - $d : \text{id} < F : d'$ (Dereliction)
 - $c : F \otimes F < F : c'$ (Contraction)
 - $w : K_I < F : w'$ (Weakening)

Here K_I is the constant functor into the monoidal unit I;

- $U \in \mathcal{C}$ is an object (called reflexive object), equipped with the following retractions.
 - $j : U \otimes U < U : k$
 - $I < U$
 - $u : FU < U : v$
\[MN \] = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} N \end{bmatrix} \]
\[
\begin{bmatrix}
M \\
N
\end{bmatrix}
= \begin{bmatrix}
M \\
\end{bmatrix}
\begin{bmatrix}
N
\end{bmatrix}
\text{ in string diagram}
\]
GoI situation

Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Leading example: Pfn
Defn. (GoI situation [AHS02])
A GoI situation is a triple \((C, F, U)\) where

- \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \rightarrow C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : FF \triangleleft F : e'\) (Comultiplication)
 - \(d : id \triangleleft F : d'\) (Dereliction)
 - \(c : F \otimes F \triangleleft F : c'\) (Contraction)
 - \(w : K_I \triangleleft F : w'\) (Weakening)

Here \(K_I\) is the constant functor into the monoidal unit \(I\).
- \(U \in C\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U \triangleleft U : k\)
 - \(I \triangleleft U\)
 - \(u : FU \triangleleft U : v\)

Defn. (Retraction)
A retraction from \(X\) to \(Y\),
\[
f : X \triangleleft Y : g,
\]
is a pair of arrows
\[
\text{id}
\begin{array}{c}
\circlearrowleft F \\
\circlearrowright \\
g
\end{array}
\text{id}
\]
such that \(g \circ f = \text{id}_X\).

* **Functor** \(F\)

* For obtaining \(!: A \rightarrow A\)
GoI situation

Defn. (GoI situation [AHS02])

A GoI situation is a triple \((\mathcal{C}, F, U)\) where

- \(\mathcal{C} = (\mathcal{C}, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : \mathcal{C} \to \mathcal{C}\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 - \(e : FF \trianglelefteq F : e'\) Comultiplication
 - \(d : \text{id} \trianglelefteq F : d'\) Dereliction
 - \(c : F \otimes F \trianglelefteq F : c'\) Contraction
 - \(w : K_I \trianglelefteq F : w'\) Weakening

Here \(K_I\) is the constant functor into the monoidal unit \(I\).

- \(U \in \mathcal{C}\) is an object (called reflexive object), equipped with the following retractions.

 - \(j : U \otimes U \trianglelefteq U : k\)
 - \(I \trianglelefteq U\)
 - \(u : FU \trianglelefteq U : v\)
GoI situation

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

- $C = (C, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : C \to C$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e : FF \otimes F \to F' \quad$ Comultiplication

 $d : \text{id} \otimes F \to F' \quad$ Dereliction

 $c : F \otimes F \otimes F \to F' \quad$ Contraction

 $w : K_I \otimes F \to F' \quad$ Weakening

Here K_I is the constant functor into the monoidal unit I.

- $U \in C$ is an object (called reflexive object), equipped with the following retractions.

 $j : U \otimes U \to U \otimes U \quad \text{with} \quad k = \text{id}$

- $\text{Retr. } U \otimes U \to U \quad j \quad k$
GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple \((\mathbb{C}, F, U)\) where

- \(\mathbb{C} = (\mathbb{C}, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : \mathbb{C} \to \mathbb{C}\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 - \(e : FF \triangleleft F : e'\) (Comultiplication)
 - \(d : \text{id} \triangleleft F : d'\)
 - \(c : F \otimes F \triangleleft F : c'\)
 - \(w : K_I \triangleleft F : w'\)

 Here \(K_I\) is the constant functor.

- \(U \in \mathbb{C}\) is an object (called reflexive object), equipped with the following retractions.

 - \(j : U \otimes U \triangleleft U : k\)
 - \(I \triangleleft U\)
 - \(u : FU \triangleleft U : v\)

* The reflexive object \(U\)

* Why for GoI?

* Example in Pfn:
GoI situation

* The reflexive object U

* Why for GoI?

* Example in Pfn:

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

- $C = (C, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : C \to C$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - $e : FF \triangleleft F : e'$ Comultiplication
 - $d : \text{id} \triangleleft F : d'$
 - $c : F \otimes F \triangleleft F : c'$ Dereliction
 - $w : K_I \triangleleft F : w'$ Contraction
 - K_I is the constant functor
- $U \in C$ is an object (called reflexive object), equipped with the following retractions.
 - $j : U \otimes U \triangleleft U : k$
 - $I \triangleleft U$
 - $u : FU \triangleleft U : v$

Hasuo (Tokyo)
GoI situation

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

- $C = (C, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : C \to C$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 - $e : FF \bowtie F : e'$
 - $d : id \bowtie F : d'$
 - $c : F \otimes F \bowtie F : c'$
 - $w : K_I \bowtie F : w'$

Here K_I is the constant functor.

- $U \in C$ is an object (called *reflexive object*), equipped with the following retractions.

 - $j : U \otimes U \bowtie U : k$
 - $I \bowtie U$
 - $u : FU \bowtie U : v$

Why for GoI?

Example in Pfn:

$N \in \text{Pfn}$, with

- $N + N \cong N$,
- $N \cdot N \cong N$
GoI Situation: Summary

* Categorical axiomatics of the “GoI animation”

Defn. (GoI situation [AHS02])

A GoI situation is a triple \((C, F, U)\) where

- \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : FF \triangleleft F \triangleleft e'\)
 Comultiplication
 - \(d : \text{id} \triangleleft F \triangleleft d'\)
 Dereliction
 - \(c : F \otimes F \triangleleft F \triangleleft c'\)
 Contraction
 - \(w : K_I \triangleleft F \triangleleft w'\)
 Weakening

Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- \(U \in C\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U \triangleleft U \triangleleft k\)
 \(I \triangleleft U\)
 - \(u : FU \triangleleft U \triangleleft v\)

Example:

\((\text{Pfn}, N \cdot __, N)\)
Defn. (GoI situation [AHS02])
A GoI situation is a triple (A, F, U) where

- $C = (C, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : C \to C$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - $e : FF < F : e'$ Comultiplication
 - $d : id < F : d'$ Dereliction
 - $c : F \otimes F < F : c'$ Contraction
 - $w : K_I < F : w'$ Weakening

Here K_I is the constant functor into the monoidal unit I;
- $U \in C$ is an object (called reflexive object), equipped with the following retractions.
 - $j : U \otimes U < U : k$
 - $I < U$
 - $u : FU < U : v$

Example:

$(\text{Pfn}, \ N \cdot _ \ , \ N)$
Categorical axiomatics of the "GoI animation"

Example:

\[(\text{Pfn}, N \cdot __ N)\]
Categorical axiomatics of the “GoI animation”

Definition (GoI situation [AHS02])

A GoI situation is a triple \((C, F, U)\) where:

- \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations):
 - \(e : FF \otimes F \to F : e'\) (Dereliction)
 - \(d : \text{id} \otimes F \to F : d'\) (Comultiplication)
 - \(c : F \otimes F \otimes F \to F : c'\) (Contraction)
 - \(w : K_I \otimes F \to F : w'\) (Weakening)

Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- \(U \in C\) is an object (called reflexive object), equipped with the following retractions:
 - \(j : U \otimes U \to U : k\)
 - \(u : FU \to U : v\)

For \(!\), via

\[f \xrightarrow{F} f\]

Example:

\[(\text{Pfn}, N \cdot _{-}, N)\]
Categorical axiomatics of the "GoI animation"

Example:

(Pfn, \(N \cdot _{-} \cdot N \))
Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation \((\mathcal{C}, F, U)\), the homset

\[\mathcal{C}(U, U) \]

carries a canonical LCA structure.
Thm. ([AHS02])
Given a GoI situation \((\mathcal{C}, F, U)\), the homset \(\mathcal{C}(U, U)\) carries a canonical LCA structure.

- Applicative str. •
- ! operator
- Combinators B, C, I, ...
Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation \((\mathbb{C}, F, U)\), the homset \(\mathbb{C}(U, U)\) carries a canonical LCA structure.

- Applicative str. \(\cdot\)
- ! operator
- Combinators B, C, I, ...

\[
\begin{array}{c}
U \\
\downarrow \\
U \\
\end{array}
\xrightarrow{f} \in \mathbb{C}(U, U)
\]
Categorical GoI: Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation \((\mathcal{C}, F, U)\), the homset \(\mathcal{C}(U, U)\) carries a canonical LCA structure.

- **Applicative str. \cdot**
- **! operator**
- **Combinators B, C, I, ...**

\[
g \cdot f := \text{tr}((U \otimes f) \circ k \circ g \circ j)
\]
Thm. ([AHS02])
Given a GoI situation \((C, F, U)\), the homset \(C(U, U)\) carries a canonical LCA structure.

\[\text{Applicative str. } \cdot \]
\[\text{! operator} \]
\[\text{Combinators } B, C, I, \ldots \]

\[! f := u \circ Ff \circ v \]

Pipe diagram
Categorical GoI: Constr. of an LCA

* Combinator \(B_{xyz} = x(yz) \)

Figure 7: Composition Combinator B

from [AHS02]
Categorical GoI: Constr. of an LCA

* Combinator \(B_{xyz} = x(yz) \)
Hasuo (Tokyo)

Categorical GoI: Constr. of an LCA

Combinator

\[B_{xyz} = x(yz) \]
Categorical GoI: Constr. of an LCA

\[Bxyz = x(yz) \]
Categorical GoI: Constr. of an LCA

\[Bxyz = x(yz) \]
Categorical GoI: Constr. of an LCA

* Combinator \(Bxyz = x(yz) \)

Figure 7: Composition Combinator B

from [AHS02]
Categorical GoI: Constr. of an LCA

* Combinator \(B_{xyz} = x(yz) \)

Nice dynamic interpretation of (linear) computation!!

Figure 7: Composition Combinator B from [AHS02]
Summary: Categorical GoI

Defn. (GoI situation [AHS02])

A *GoI situation* is a triple (\mathcal{C}, F, U) where

- $\mathcal{C} = (\mathcal{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathcal{C} \to \mathcal{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - $e : FF \triangleright F : e'$ \hspace{1cm} Comultiplication
 - $d : \text{id} \triangleleft F : d'$ \hspace{1cm} Dereliction
 - $c : F \otimes F \triangleright F : c'$ \hspace{1cm} Contraction
 - $w : K_I \triangleright F : w'$ \hspace{1cm} Weakening

Here K_I is the constant functor into the monoidal unit I;
- $U \in \mathcal{C}$ is an object (called *reflexive object*), equipped with the following retractions.
 - $j : U \otimes U \triangleleft U : k$
 - $I \triangleleft U$
 - $u : FU \triangleright U : v$

Thm. ([AHS02])

Given a GoI situation (\mathcal{C}, F, U), the homset $\mathcal{C}(U, U)$ carries a canonical LCA structure.
Why Categorical Generalization?: Examples Other Than Pfn [AHS02]

* Strategy: find a TSMC!

* "Wave-style" examples
 * \otimes is Cartesian product(-like)
 * in which case,

$$\text{trace} \approx \text{fixed point operator} \quad \text{[Hasegawa/Hyland]}$$

* An example:
 $$((\omega\text{-Cpo}, \times, 1), (_)^N, A^N)$$

* (... less of a dynamic flavor)
Why Categorical Generalization?: Examples Other Than Pfn [AHS02]

* "Particle-style" examples
* Obj. $X \in \mathcal{C}$ is set-like; \otimes is coproduct-like
* The GoI animation is valid

* Examples:
 * Partial functions
 $((\text{Pfn}, +, 0), \mathbb{N} \cdot _ , \mathbb{N})$
 * Binary relations
 $((\text{Rel}, +, 0), \mathbb{N} \cdot _ , \mathbb{N})$
 * "Discrete stochastic relations"
 $((\text{DSRel}, +, 0), \mathbb{N} \cdot _ , \mathbb{N})$
Why Categorical Generalization?:
Examples Other Than Pfn \cite{AHS02}

- **Pfn (partial functions)**

 \[
 \begin{align*}
 &X \to Y \text{ in } \text{Pfn} \\
 \Rightarrow &X \to Y, \text{ partial function} \\
 \Rightarrow &X \to \mathcal{L}Y \text{ in } \text{Sets}
 \end{align*}
 \]
 where \(\mathcal{L}Y = \{ \bot \} + Y \)

- **Rel (relations)**

 \[
 \begin{align*}
 &X \to Y \text{ in } \text{Rel} \\
 \Rightarrow &R \subseteq X \times Y, \text{ relation} \\
 \Rightarrow &X \to \mathcal{P}Y \text{ in } \text{Sets}
 \end{align*}
 \]
 where \(\mathcal{P} \) is the powerset monad

- **DSRel**

 \[
 \begin{align*}
 &X \to Y \text{ in } \text{DSRel} \\
 \Rightarrow &X \to \mathcal{D}Y \text{ in } \text{Sets} \\
 &\text{where } \mathcal{D}Y = \{ d : Y \to [0, 1] \mid \sum_y d(y) \leq 1 \}
 \end{align*}
 \]
Why Categorical Generalization?

Examples Other Than Pfn [AHS02]

* **Pfn** (partial functions)

\[
\begin{align*}
X \to Y & \text{ in Pfn} \\
X \rightarrow Y, \text{ partial function} & \\
X \to \mathcal{L}Y & \text{ in Sets} \\
\end{align*}
\]

where \(\mathcal{L}Y = \{ \bot \} + Y \)

* **Rel** (relations)

\[
\begin{align*}
X \to Y & \text{ in Rel} \\
R \subseteq X \times Y, \text{ relation} & \\
X \to \mathcal{P}Y & \text{ in Sets} \\
\end{align*}
\]

where \(\mathcal{P} \) is the powerset monad

* **DSRel**

\[
\begin{align*}
X \to Y & \text{ in DSRel} \\
X \to \mathcal{D}Y & \text{ in Sets} \\
\end{align*}
\]

where \(\mathcal{D}Y = \{ d : Y \to [0, 1] \mid \sum_y d(y) \leq 1 \} \)

Categories of sets and (functions with different branching/partiality)

Hasuo (Tokyo)

Tuesday, October 9, 12
Why Categorial Generalization? Examples Other Than Pfn [AHS02]

* **Pfn** (partial functions)
 \[
 \frac{X \rightarrow Y \text{ in } \text{Pfn}}{X \rightarrow Y, \text{ partial function}} \quad \text{where } \mathcal{L}Y = \{\bot\} + Y
 \]

* **Rel** (relations)
 \[
 \frac{X \rightarrow Y \text{ in } \text{Rel}}{R \subseteq X \times Y, \text{ relation}} \quad \text{where } \mathcal{P} \text{ is the powerset monad}
 \]

* **DSRel**
 \[
 \frac{X \rightarrow Y \text{ in DSRel}}{X \rightarrow \mathcal{D}Y \text{ in Sets}} \quad \text{where } \mathcal{D}Y = \{d : Y \rightarrow [0, 1] \mid \sum_y d(y) \leq 1\}
 \]

(Potential) non-termination

Non-determinism

Probabilistic branching
Different Branching in The GoI Animation

- **Pfn** (partial functions)
- Pipes can be stuck
- **Rel** (relations)
- Pipes can branch
- **DSRel**
- Pipes can branch probabilistically

Hasuo (Tokyo)

Tuesday, October 9, 12
Different Branching in The GoI Animation

- Pfn (partial functions)
 - Pipes can be stuck

- Rel (relations)
 - Pipes can branch

- DSRel
 - Pipes can branch probabilistically
Different Branching in The GoI Animation

- **Pfn** (partial functions)
- Pipes can be stuck
- **Rel** (relations)
- Pipes can branch
- **DSRel**
- Pipes can branch probabilistically
Different Branching in The GoI Animation

- \texttt{Pfn} (partial functions)
- Pipes can be stuck
- \texttt{Rel} (relations)
- Pipes can branch
- \texttt{DSRel}
- Pipes can branch probabilistically
Different Branching in The GoI Animation

- **Pfn** (partial functions)
- Pipes can be stuck
- **Rel** (relations)
- Pipes can branch
- **DSRel**
- Pipes can branch probabilistically
Different Branching in The GoI Animation

* **Pfn** (partial functions)
* Pipes can be stuck
* **Rel** (relations)
* Pipes can branch
* **DSRel**
 * Pipes can branch probabilistically
Different Branching in The GoI Animation

- \textbf{Pfn} (partial functions)
- Pipes can be stuck
- \textbf{Rel} (relations)
- Pipes can branch
- \textbf{DSRel}
- Pipes can branch probabilistically
Why Categorical Generalization?
Examples Other Than Pfn

* **Pfn** (partial functions)

\[
\begin{align*}
X & \to Y \text{ in } \text{Pfn} \\
X & \to Y, \text{ partial function} \\
X & \to \mathcal{L}Y \text{ in } \text{Sets}
\end{align*}
\]

\[
\text{where } \mathcal{L}Y = \{ \bot \} + Y
\]

* **Rel** (relations)

\[
\begin{align*}
X & \to Y \text{ in } \text{Rel} \\
R & \subseteq X \times Y, \text{ relation} \\
X & \to \mathcal{P}Y \text{ in } \text{Sets}
\end{align*}
\]

\[
\text{where } \mathcal{P} \text{ is the powerset monad}
\]

* **DSRel**

\[
\begin{align*}
X & \to Y \text{ in } \text{DSRel} \\
X & \to \mathcal{D}Y \text{ in } \text{Sets}
\end{align*}
\]

\[
\text{where } \mathcal{D}Y = \{ d : Y \to [0, 1] | \sum_y d(y) \leq 1 \}
\]

Categories of sets and (functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching
Why Categorical Generalization?

Examples Other Than Pfn

- **Pfn (partial functions)**
 \[
 X \rightarrow Y \in \text{Pfn} \\
 X \rightarrow Y, \text{ partial function} \\
 X \rightarrow \mathcal{L}Y \in \text{Sets}
 \]
 where \(\mathcal{L}Y = \{ \bot \} + Y \)

- **Rel (relations)**
 \[
 X \rightarrow Y \in \text{Rel} \\
 R \subseteq X \times Y, \text{ relation} \\
 X \rightarrow \mathcal{P}Y \in \text{Sets}
 \]
 where \(\mathcal{P} \) is the powerset monad

- **DSRel**
 \[
 X \rightarrow Y \in \text{DSRel} \\
 X \rightarrow \mathcal{D}Y \in \text{Sets}
 \]
 where \(\mathcal{D}Y = \{ d : Y \rightarrow [0, 1] \mid \sum_y d(y) \leq 1 \} \)

\(KL(B) \) for different branching monads \(B \)

(Potential) non-termination
Non-determinism
Probabilistic branching

Categories of sets and \((\text{functions with different branching/partiality})\)

(Kl(B)) for different branching monads \(B \)

Hasuo (Tokyo)
Part 2

Coalgebraic Trace Semantics
Trace Semantics of Systems

\[\text{tr}(x) = \{a, ab, abb, \ldots\} = ab^* \]

* Non-deterministic branching: sign. functor is \(P(1 + \Sigma \times _\)\)
Bisimilarity vs. Trace Sem.
Bisimilarity vs. Trace Sem.
Bisimilarity vs. Trace Sem.
Bisimilarity

Branching structure matters.
Can I choose later?

Trace semantics

Branching structure does not matter.
Anyway we’ll get the same sets of food.
Bisimilarity vs. Trace Sem.

Bisimilarity
Branching structure matters.
Can I choose later?

Trace semantics
Branching structure does not matter.
Anyway we’ll get the same sets of food.

Also by final coalgebra?

\[
\begin{align*}
F \overset{\text{beh}(c)}{\longrightarrow} & \\
FX \overset{\text{beh}(c)}{\longrightarrow} & \overset{\text{beh}(c)}{\longrightarrow} FZ \\
X \overset{\text{beh}(c)}{\longrightarrow} & \overset{\text{beh}(c)}{\longrightarrow} Y \\
\end{align*}
\]
Coinduction in a Kleisli Category

[IH, Jacobs, Sokolova, '07]

\[
\begin{align*}
X & \rightarrow Y \quad \text{in } \mathcal{K}(B) \\
& \rightarrow BY \quad \text{in } \text{Sets}
\end{align*}
\]

Thm. Let \(F \) be an endofunctor, and \(B \) be a monad, both on \(\text{Sets} \). Assume:

1. We have a distributive law \(\lambda : FB \Rightarrow BF \).
2. The functor \(F \) preserves \(\omega \)-colimits, yielding an initial algebra \(\frac{FA}{\alpha} \).
3. The Kleisli category \(\mathcal{K}(B) \) is \(\text{Cpo}_{\perp} \)-enriched and composition in \(\mathcal{K}(B) \) is left-strict.

Then:

1. \(F \) lifts to \(\overline{F} : \mathcal{K}(B) \rightarrow \mathcal{K}(B) \), with \(JF = \overline{FJ} \).
2. \(\frac{\eta \circ \alpha}{A} \) is an initial algebra in \(\mathcal{K}(B) \).
3. In \(\mathcal{K}(B) \) we have initial algebra-final coalgebra coincidence and \(\frac{FA}{\alpha} \) is a final coalgebra.
Coinduction in a Kleisli Category

[IH, Jacobs, Sokolova, ’07]

\[X \rightarrow Y \quad \text{in} \quad \mathcal{K}l(B) \]

\[X \rightarrow BY \quad \text{in} \quad \text{Sets} \]

* Initial algebra lifts from \(\text{Sets} \) to \(Kl(B) \)

* diagram chasing [Johnstone]

Thm. Let \(F \) be an endofunctor, and \(B \) be a monad, both on \(\text{Sets} \). Assume:

1. We have a distributive law \(\lambda : FB \Rightarrow BF \).
2. The functor \(F \) preserves \(\omega \)-colimits, yielding an initial algebra \(\frac{FA}{A} \approx \downarrow \alpha \).
3. The Kleisli category \(\mathcal{K}l(B) \) is \(\text{Cpo}_\perp \)-enriched and composition in \(\mathcal{K}l(B) \) is left-strict.

Then:

1. \(F \) lifts to \(\overline{F} : \mathcal{K}l(B) \rightarrow \mathcal{K}l(B) \), with \(JF = \overline{F}J \).
2. \(\frac{AF}{A} \eta \circ \alpha \) is an initial algebra in \(\mathcal{K}l(B) \).
3. In \(\mathcal{K}l(B) \) we have initial algebra-final coalgebra coincidence and \(\frac{FA}{A} (\eta \circ \alpha)^{-1} \) is a final coalgebra.
Coinduction in a Kleisli Category

* Initial algebra lifts from Sets to $\mathcal{Kl}(B)$
 * diagram chasing [Johnstone]

* In $\mathcal{Kl}(B)$ we have IA–FC coincidence
 * typical of “domain-theoretic” categories
 * “Algebraically compact” [Freyd]

Thm. Let F be an endofunctor, and B be a monad, both on Sets. Assume:

1. We have a distributive law $\lambda : FB \Rightarrow BF$.
2. The functor F preserves ω-colimits, yielding an initial algebra $\alpha : FA \overset{\approx}{\to} A$.
3. The Kleisli category $\mathcal{Kl}(B)$ is \mathbf{Cpo}_\bot-enriched and composition in $\mathcal{Kl}(B)$ is left-strict.

Then:

1. F lifts to $\overline{F} : \mathcal{Kl}(B) \to \mathcal{Kl}(B)$, with $JF = \overline{F}J$.
2. $\overline{\eta} \circ \alpha$ is an initial algebra in $\mathcal{Kl}(B)$.
3. In $\mathcal{Kl}(B)$ we have initial algebra-final coalgebra coincidence and $\overline{F} \overline{(\eta \circ \alpha)}^{-1}$ is a final coalgebra.
Coinduction in a Kleisli Category

* E.g. \(B = \mathcal{P}, \ F = 1 + \Sigma \times (_) \)

\[
\begin{align*}
1 + \Sigma \times X & \rightarrow 1 + \Sigma \times \Sigma^* \\
\begin{array}{c}
\xymatrix{c & X \ar[l] & 1 + \Sigma \times \text{tr}(c) \\
\text{tr}(c) & \Sigma^* \ar[l] & \text{final} \ar[l]}
\end{array}
\end{align*}
\]

* Separation between \(B \) and \(F \)

Hasuo (Tokyo)
Coinduction in a Kleisli Category

* E.g. \(B = \mathcal{P} \), \(F = 1 + \Sigma \times (__) \)

\[
\begin{array}{c}
P(1 + \Sigma \times X) \\
c \uparrow \\
X
\end{array} \rightarrow \begin{array}{c}
1 + \Sigma \times X \\
1 + \Sigma \times \text{tr}(c) \\
\text{tr}(c)
\end{array} \rightarrow \begin{array}{c}
1 + \Sigma \times \Sigma^* \\
\text{final} \in \mathcal{Kl}(\mathcal{P})
\end{array}

* Separation between \(B \) and \(F \)
Coinduction in a Kleisli Category

* E.g. $B = \mathcal{P}$, $F = 1 + \Sigma \times (_)$

\[
\begin{align*}
1 + \Sigma \times X & \xrightarrow{\cdot c} 1 + \Sigma \times \text{tr}(c) \\
\downarrow & \\
\Sigma^* & \xrightarrow{\text{final}} \mathcal{K}(\mathcal{P})
\end{align*}
\]

* Separation between B and F
Coinduction in a Kleisli Category

* E.g. $B = \mathcal{P}$, $F = 1 + \Sigma \times (_)$

\[
1 + \Sigma \times X \xrightarrow{\Sigma} 1 + \Sigma \times \Sigma^* \xrightarrow{\text{final}} \Sigma^* \xrightarrow{\text{initial}} \text{in } \mathcal{K} \ell(\mathcal{P})
\]

\[
\mathcal{P}(1 + \Sigma \times X) \xrightarrow{c} \text{in Sets}
\]

\[
X \xrightarrow{\text{tr}(c)} \Sigma^* \xrightarrow{\mathcal{P}} \mathcal{P}(\Sigma^*)
\]

* Separation between B and F

Hasuo (Tokyo)
Coinduction in a Kleisli Category

* E.g. $B = \mathcal{P}$, $F = 1 + \Sigma \times (_)$

\[
\begin{array}{c}
1 + \Sigma \times X \\
\uparrow c \\
X
\end{array} \quad \xrightarrow{\text{---} + + - -} \quad \begin{array}{c}
1 + \Sigma \times \Sigma^* \\
\uparrow \text{final} \\
\Sigma^*
\end{array}
\]

\[
\begin{array}{c}
\mathcal{P}(1 + \Sigma \times X) \\
\uparrow c \\
X
\end{array} \quad \xrightarrow{\text{---} + + - -} \quad \begin{array}{c}
\Sigma^* \\
\uparrow \text{final} \\
\mathcal{P}(\Sigma^*)
\end{array}
\]

* Separation between B and F

induced by $1 + \Sigma \times \Sigma^*$, initial Σ^*, in Sets

$\text{tr}(c)$

\[
\text{tr}(x) = \{a, ab, abb, \ldots\} = ab^*
\]
Coinduction in a Kleisli Category

* E.g. \(B = \mathcal{P}, \ F = 1 + \Sigma \times (_) \)

\[
\begin{align*}
\mathcal{P}(1 + \Sigma \times X) & \xrightarrow{c} X \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
1 + \Sigma \times \text{tr}(c) & \rightarrow 1 + \Sigma \times \Sigma^* \\
\uparrow c & \quad \uparrow \text{final} & \uparrow \text{initial} \\
\Sigma^* & \rightarrow \mathcal{K}\ell(\mathcal{P}) \\
\text{tr}(c) & \rightarrow \mathcal{P}(\Sigma^*) \\
\end{align*}
\]

* Separation between \(B \) and \(F \)

\[
\text{tr}(x) = \{a, ab, abb, \ldots \} = ab^*
\]

Hasuo (Tokyo)
Examples

* A branching monad B:
 * Lift monad $\mathcal{L} = 1 + (_)$, powerset monad \mathcal{P}, subdistribution monad \mathcal{D}
 * Precisely those in $\text{A functor } F$: polynomial functors
The Coauthor

* Naohiko Hoshino
* DSc (Kyoto, 2011)
* Supervisor: Masahito “Hassei” Hasegawa
* Currently at RIMS, Kyoto U.
* http://www.kurims.kyoto-u.ac.jp/~naophiko/
Thm. ([Jacobs,CMCS10])
Given a “branching monad” B on Sets, the
monoidal category

$$(\mathcal{K}\ell(B), +, 0)$$

is a traced symmetric monoidal category.

Cor.
$$((\mathcal{K}\ell(B), +, 0), \mathbb{N} \cdot _ \cdot \mathbb{N})$$
is a GoI situation.
Thm. ([Jacobs,CMCS10])
Given a "branching monad" B on Sets, the monoidal category

$$(\mathcal{K}\ell(B), +, 0)$$

is a traced symmetric monoidal category.

Cor.
$$((\mathcal{K}\ell(B), +, 0), \mathbb{N} \cdot _, \mathbb{N})$$

is a GoI situation.
Thm. ([Jacobs,CMCS10])
Given a “branching monad” B on Sets, the monoidal category

$$(\mathcal{Kl}(B), +, 0)$$

is a traced symmetric monoidal category.

Cor.

$$((\mathcal{Kl}(B), +, 0), N \cdot _, N)$$ is a GoI situation.

Proof. We need

$$\begin{align*}
X + Z \xrightarrow{f} Y + Z & \quad \text{in } \mathcal{Kl}(T) \\
X \xrightarrow{\text{tr}(f)} Y & \quad \text{in } \mathcal{Kl}(T)
\end{align*}$$

- $X + Z \xrightarrow{f} Y + Z \xrightarrow{\kappa} Y + (X + Z)$ is a $Y + (_)$-coalgebra

- $Y + N \cdot Y$ is an initial algebra in Sets $N \cdot Y$

- Therefore in $\mathcal{Kl}(T)$:

$$\begin{align*}
Y + (X + Z) \xrightarrow{\kappa \circ f} Y + N \cdot Y \\
X + Z \xrightarrow{\text{tr}(c)} N \cdot Y \\
\kappa_1 \xrightarrow{\text{final}} Y
\end{align*}$$

Hasuo (Tokyo)
From Coalgebraic Trace to Monoidal Trace

Thm. ([Jacobs,CMCS10])

Given a “branching monad” \(B \) on \(\text{Sets} \), the monoidal category

\[(\mathcal{K}_l(B), + , 0)\]

is a traced symmetric monoidal category.

Cor.

\(((\mathcal{K}_l(B), + , 0), \mathbb{N} \cdot _- , \mathbb{N}) \) is a GoI situation.

Proof. We need

\[
\begin{align*}
X + Z \xrightarrow{f} Y + Z \quad \text{in } \mathcal{K}_l(T) \\
X \xrightarrow{\text{tr}(f)} Y \quad \text{in } \mathcal{K}_l(T)
\end{align*}
\]

- \(X + Z \xrightarrow{f} Y + Z \xrightarrow{\kappa} Y + (X + Z) \)
 is a \(Y + (_-) \)-coalgebra

- \(Y + \mathbb{N} \cdot Y \)
 is an initial algebra in \(\text{Sets} \)

- \(\mathbb{N} \cdot Y \)
 is final

Therefore in \(\mathcal{K}_l(T) \):

\[
\begin{align*}
Y + (X + Z) \xrightarrow{f} Y + \mathbb{N} \cdot Y \\
\kappa \circ f \uparrow \quad \uparrow \text{final} \\
X + Z \xrightarrow{\kappa_1} \mathbb{N} \cdot Y \\
\kappa_1 \quad \uparrow \text{tr}(c) \quad \downarrow \nabla \\
X \quad Y
\end{align*}
\]
The Categorical GoI Workflow

Traced monoidal category C
+ other constructs \leadsto "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category
The Categorical GoI Workflow

- Branching monad B
- Coalgebraic trace semantics
- Traced monoidal category \mathcal{C}
 + other constructs \Rightarrow "GoI situation" [AHS02]
- Categorical GoI [AHS02]
- Linear combinatory algebra
- Realizability
- Linear category
The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category \mathbb{C}
+ other constructs \mapsto "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Model of fancy language
The Categorical GoI Workflow

- Branching monad B
 - Coalgebraic trace semantics

- Traced monoidal category \mathbb{C}
 + Other constructs \Rightarrow "GoI situation" [AHS02]

- Categorical GoI [AHS02]

- Linear combinatory algebra

- Realizability

- Linear category

Fancy LCA
Model of fancy language

Hasuo (Tokyo)
The Categorical GoI Workflow

- Linear category
- Realizability
- Linear combinatory algebra
- Categorical GoI [AHS02]
- Traced monoidal category \(\mathcal{C} \)
 + other constructs \(\rightarrow \) “GoI situation” [AHS02]
- Branching monad B
- Coalgebraic trace semantics

Fancy
- TSMC
- LCA
- Model of fancy language
The Categorical GoI Workflow

Branching monad B ➜ Coalgebraic trace semantics

Traced monoidal category \mathcal{C}
+ other constructs ➔ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy monad

Fancy TSMC

Fancy LCA

Model of fancy language

Tuesday, October 9, 12
What is Fancy, Nowadays?

Hasuo (Tokyo)
What is Fancy, Nowadays?

*Biology?
What is Fancy, Nowadays?

* Biology?
* Hybrid systems?
 * Both discrete and continuous data, typically in **cyber-physical systems (CPS)**
 * ➾ Our approach via **non-standard analysis**
 [Suenaga, IH, ICALP’11] [IH, Suenaga, CAV’12]
 [Suenaga, Sekine, IH, POPL’13]
What is Fancy, Nowadays?

* Biology?
* Hybrid systems?
 * Both discrete and continuous data, typically in *cyber-physical systems* (CPS)
 * Our approach via *non-standard analysis*
 [Suenaga, IH, ICALP’11] [IH, Suenaga, CAV’12]
 [Suenaga, Sekine, IH, POPL’13]
* Quantum?
* Yes this worked!
Future Directions

- GoI 2: Non-converging algs (untyped I-calc / PCF)
 - uses more topological info on operatn algs

- GoI 3: uses additives & additive proof nets —

- GoI 4 (last month): von Neumann algebras: $\mathcal{E}_X(f, z) \equiv f \
 \text{arb \ (not \ coming \ from \ proof)}$

- Quantum GoI?
Part 3

Future Directions

- GoI 2: Non-converging algms (untyped J-calc / PCF)
 - Uses more topological info on operatr algms

- GoI 3: uses additives & additive proof nets

- GoI 4 (last month): von Neumann algebras: $\mathbb{E}(f, x)$ $f_1 f$
 - $a b$ (not necessarily coming from proof)

- Quantum GoI?
The Categorical GoI Workflow

Branching monad \mathbf{B}

Coalgebraic trace semantics

Traced monoidal category \mathcal{C}
+ other constructs \rightarrow “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category
The Categorical GoI Workflow

- Branching monad B
- Coalgebraic trace semantics
- Traced monoidal category \mathbb{C}
 + other constructs \Rightarrow "GoI situation" [AHS02]
- Categorical GoI [AHS02]
- Linear combinatory algebra
- Realizability
- Linear category

Quantum branching monad
Quantum TSMC
Quantum LCA
Model of quantum language
The Quantum Branching Monad

\[QY = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \right\} \]
The Quantum Branching

\[QY = \left\{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \right\} \]

\[QO_{m,n} := \left\{ \text{quantum operations, from dim. } m \text{ to dim. } n \right\} \]
The Quantum Branching

\[
\mathbb{Q}_Y = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} \mathbb{Q} \right\}
\]

quantum operations, from dim. \(m \) to dim. \(n \)

the trace condition

\[
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1 ,
\]

\[\forall m \in \mathbb{N}, \forall \rho \in D_m.\]
The Quantum Branching

\[QY = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \right\} \]

\[QO_{m,n} := \left\{ \text{quantum operations, from dim. } m \text{ to dim. } n \right\} \]

the trace condition

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

* Compare with

\[\mathcal{P}Y = \left\{ c : Y \to 2 \right\} \]

\[\mathcal{D}Y = \left\{ c : Y \to [0,1] \mid \sum_{y \in Y} c(y) \leq 1 \right\} \]

Hasuo (Tokyo)
The Quantum Branching Monad

\[QY = \{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \} \]

\[QO_{m,n} := \{ \text{quantum operations, from dim. } m \text{ to dim. } n \} \]

\[\sum \sum \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

* Compare with

\[PY = \{ c : Y \rightarrow 2 \} \]

\[DY = \{ c : Y \rightarrow [0, 1] \mid \sum_{y \in Y} c(y) \leq 1 \} \]
The Quantum Branching

\[QY = \left\{ c : Y \rightarrow \prod_{m, n \in \mathbb{N}} QO_{m, n} \right\} \quad \text{the trace condition} \]

\[QO_{m, n} := \left\{ \text{quantum operations, from dim. } m \text{ to dim. } n \right\} \]

\[\sum\sum_{y \in Y \ n \in \mathbb{N}} \text{tr}\left[(c(y))_{m, n}(\rho) \right] \leq 1 , \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

Compare with

\[PY = \left\{ c : Y \rightarrow 2 \right\} \]

\[DY = \left\{ c : Y \rightarrow [0, 1] \left| \sum_{y \in Y} c(y) \leq 1 \right\} \right\]
The Quantum Branching Monad

\[\mathcal{Q}Y = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \right\} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1 \]

\[\forall m \in \mathbb{N}, \forall \rho \in D_m. \]

* Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \) determines a quantum operation

\[\left(f(x)y \right)_{m,n} : D_m \to D_n \]

* Subject to the trace condition
The Quantum Branching Monad

\[QY = \{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

\[X \xrightarrow{f} Y \text{ in } \mathcal{K}l(Q) \]

\[X \xrightarrow{f} QY \text{ in Sets} \]

* Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)

determines a quantum operation

\[\left(f(x)(y) \right)_{m,n} : D_m \to D_n \]

* Subject to the trace condition

Any opr. on quantum data:

- combination of
 - preparation
 - unitary transf.
 - measurement
The Quantum Branching Monad

\[\mathcal{Q}Y = \left\{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} \mathcal{Q}O_{m,n} \right\} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1 , \]

\[\forall m \in \mathbb{N}, \forall \rho \in D_m. \]

* Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \) determines a quantum operation \((f(x)(y))_{m,n} \)

* trace cond.:
The Quantum Branching Monad

\[QY = \left\{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \right\} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

* Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)

determines a quantum operation \((f(x)(y))_{m,n} \)

* trace cond.:
The Quantum Branching Monad

\[QY = \{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)
determines a quantum operation \((f(x)(y))_{m,n} \)

\[\begin{array}{c}
\text{entrance} \\
\text{exit} \\
\text{in dim.} \\
\text{out dim.}
\end{array} \]

\[X \xrightarrow{f} Y \text{ in } \mathcal{Kl}(Q) \]

\[X \xrightarrow{f} QY \text{ in Sets} \]

\(x \)
\(\rho \in D_m \)
\(\cdots \)
\(y \)
\(y' \)

\[\begin{array}{c}
\text{in dim.} \\
\text{out dim.}
\end{array} \]
The Quantum Branching Monad

\[
\mathcal{Q}_Y = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} \mathcal{Q}_{O_{m,n}} \mid \text{the trace condition} \right\}
\]

\[
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr} \left[(c(y))_{m,n}(\rho) \right] \leq 1 , \quad \forall m \in \mathbb{N}, \forall \rho \in D_m.
\]

* Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)
determines a quantum operation \((f(x)(y))_{m,n} \)

* trace cond.:

\[f : X \to Y \quad \text{in} \quad \mathcal{K}\ell(Q) \]
\[X \xrightarrow{f} \mathcal{Q}_Y \quad \text{in} \quad \text{Sets} \]

\(\rho \in D_m \)

\(x \)

...

\(y \)

...

\(y' \)

measure (and others)
The Quantum Branching Monad

Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \),
determines a quantum operation \((f(x)(y))_{m,n} \).

trace cond.:

\[
\mathcal{Q} Y = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \right\}
\]

\[
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m.
\]

\(\rho \in D_m \)

measure (and others)

for each \(n \)
The Quantum Branching Monad

Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)

determines a quantum operation \((f(x)(y))_{m,n} \)

\[
\sum_{y,n} \Pr\left(\begin{array}{c}
\text{Token led} \\
\text{to } y \\
\text{with dim. } n
\end{array}\right) \leq 1
\]

\[
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1,
\]

\(\forall m \in \mathbb{N}, \forall \rho \in D_m \).

\[Q_Y = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} Q_0_{m,n} \mid \text{the trace condition} \right\}\]
"Quantum Data, Classical Control"

Quantum data

Illustration by N. Hoshino

Classical control

Hasuo (Tokyo)
"Quantum Data, Classical Control"

Illustration by N. Hoshino

Quantum data

\[\frac{1}{\sqrt{2}} \]

Classical control

Hasuo (Tokyo)
“Quantum Data, Classical Control”

Quantum data

\[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \]

Illustration by N. Hoshino

Classical control
Quantum Geometry of Interaction

\[[M] = M \]

Hasuo (Tokyo)

Tuesday, October 9, 12
Quantum
Geometry of Interaction

Not just a token/particle, but quantum state!

\[
\begin{bmatrix}
M
\end{bmatrix} = \ldots
\]

1 2 3 4 ... (countably many)
Quantum Geometry of Interaction

\[[M] = M \]

Not just a token/particle, but quantum state!
Quantum Geometry of Interaction

$\left[M \right] = M$

"Quantum Data"

Not just a token/particle, but quantum state!
Quantum Geometry of Interaction

Not just a token/particle, but quantum state!

"Quantum Data"

"Classical Control"

(countably many)
Quantum Geometry of Interaction

\[[M] = \]

“Quantum Data”

Not just a token/particle, but quantum state!

“Classical Control”

* “in which pipe”
* (measurement \(\rightarrow\) case-distinction) leads a token to different pipes

Tuesday, October 9, 12
End of the Story?

* No! All the technicalities are yet to come:
 * CPS-style interpretation (for partial measurement)
 * Result type: a final coalgebra in PER_Q
 * Admissible PERs for recursion
 * ...

* On the next occasion :-)
Results

* The monad \mathcal{Q} qualifies as a “branching monad”

* The quantum GoI workflow leads to a linear category $\text{PER}_\mathcal{Q}$

* From which we construct an adequate denotational model for a quantum λ-calculus (a variant of Selinger & Valiron’s)
Three “Traces”

Coalgebraic Trace Semantics

Traced monoidal category

Quantum λ-calculus

Categorical GoI
[Abramsky, Haghverdi, Scott]

Measurements by tracing out matrices

Hasuo (Tokyo)

\[
\begin{align*}
F \text{beh}(c) : FX & \to FZ \\
c & \uparrow \\
X & \to Y \\
\text{beh}(c) & \uparrow \text{final}
\end{align*}
\]

Kl(B)
Conclusions & Future Work

* Coalgebraic technologies in interaction-based denotational semantics
 * GoI, games (AJM/HO), token machines, ...
 * Dynamic/operational stuff: not only in concurrency theory!

* Simplifying our model; lang. w/ “quantum store”
 * Ongoing w/ N. Hoshino, T. Roussel, C. Faggian
Conclusions & Future Work

* Coalgebraic technologies in interaction-based denotational semantics

 * GoI, games (AJM/HO), token machines, ...

* Dynamic/operational stuff:

 not only in concurrency theory!

* Simplifying our model; lang. w/ “quantum store”

* Ongoing w/ N. Hoshino, T. Roussel, C. Faggian