Ichiro Hasuo Tracing Anonymity with Coalgebras

The ultimate aim

Better mathematical understanding of computer systems

Computer systems

- pervasive, important
- fail easily
- ..
- we don't quite understand them!

Coalgebras

Our mathematical presentation of systems

Good balance:

mathematical simplicity

(potential) applicability

In this thesis:

- more applications are found
- further mathematical theory is developed

Coalgebras

	coalgebraically
system	coalgebra $egin{array}{c} m{F}m{X} \ X \end{array}$
behavior- preserving map	morphism of coalgebras $FX {\overset{Ff}{\longrightarrow}} FY \\ X {\overset{C}{\longrightarrow}} $
behavior	by final coalgebra $FX \xrightarrow{f} FZ$ $\downarrow c \uparrow \qquad \uparrow \text{final}$ $X \xrightarrow{beh(c)} Z$

Overview

Coalgebraic theory of traces and simulations (Ch. 2-3)

- via coalgebras in a Kleisli category
- apply to both
 - non-determinism
 - probability
- case study: probabilistic anonymity (Ch. 4)

Concurrency in coalgebras (Ch. 5)

the microcosm principle appears

In Sets: bisimilarity

Bisimilarity vs. trace semantics

Coalgebraic trace semantics

Behavior by final coalgebra

$$egin{array}{c} FX & \longrightarrow FZ \\ c \uparrow & \uparrow \text{final} \\ X & \longrightarrow Z \\ \mathbf{beh}(c) & \end{array}$$

captures...

"Kleisli category"

a category wherebranching is implicit

 $\circ X \rightarrow Y$: "branching function" from X to Y

 \circ T: parameter for **branching-type**

in Sets

bisimilarity (standard)

trace semantics

(Ch. 2)

Generic Trace Semantics via Coinduction

IH, Bart Jacobs & Ana Sokolova Logical Method in Comp. Sci. 3(4:11), 2007

Different "branching-types"

trace semantics:

$$\left\{\begin{array}{c} a \to b \\ a \to c \end{array}\right\}$$

$$T$$
 = ${\cal D}$

T: parameter for

"bran trace semantics:

$$\begin{cases} a \to b : 1/3 \\ a \to c : 2/3 \end{cases}$$

non-deterministic branching

probabilistic branching

Coalgebraic simulations (Ch. 3)

morphism of coalgebras

in Sets functional bisimulation (standard)

 $\mathbf{Kl}(T)$

observation

lax morphism

= forward simulation

genericity again: both for

- $T = \mathcal{P}$ (non-determinism)
- $T = \mathcal{D}$ (probability)

theorem (soundness)

Generic Forward and Backward Simulations

∃ fwd/bwd simulation → trace inclusion

ΙH

Proc. CONCUR 2006

LNCS 4137

Summ genericity: both for $T = \mathcal{P}$ (non-determinism)

• $T = \mathcal{D}$ (probability)

in $\mathbf{Kl}(T)$ in Sets coalgebra system system Ch. 3 morphism of coalgebra $FF \longrightarrow FV$ forward simulation (lax) functional bisimilarity backward similation (oplax) Ch. 2 by final coalgebra bisimilarity trace semantics final

> theory of bisimilarity

theory of traces and simulations

Case study: probabilistic anonymity (Ch. 4)

Simulation-based proof method for non-deterministic anonymity

[KawabeMST06]

 $T = \mathcal{P}$

generic, coalgebraic theory of traces and simulations

[Ch. 2-3]

Probabilistic Anonymity via Coalgebraic Simulations

IH & Yoshinobu Kawabe Proc. ESOP 2007 LNCS 4421

 $T = \mathcal{D}$

Simulation-based proof method for probabilistic anonymity

Concurrency and the microcosm principle (Ch. 5)

science of

generic compositionality theorem

concurrency, compositionality, behavior, ...

formalization of microcosm principle in 2-categories

mathematics

The Microcosm Principle and Concurrency in Coalgebra

IH, Bart Jacobs & Ana Sokolova
To appear in Proc. FoSSaCS 2008
LNCS

Summary

Coalgebraic theory of traces and simulations (Ch. 2-3)

- via coalgebras in a Kleisli category
- apply to both
 - non-determinism
 - probability
- case study: probabilistic anonymity (Ch. 4)

Concurrency in coalgebras (Ch. 5)

the microcosm principle appears