Probabilistic Anonymity via Coalgebraic Simulations

Ichiro Hasuo

Radboud Universiteit Nijmegen, the Netherlands (From 2007.5, also at: RIMS, Kyoto Univ., Japan)

Japanese "France Telecom"

Joint work with Yoshinobu Kawabe

Radboud University Nijmegen

Online privacy Online anonymity

is attracting growing

- Threats
 - ISPs in EU are forced to keep logs of your web access
 - Your passport stores your fingerprint on a RFID chip
- Public concerns
- Research interest
 - See Anonymity Bibliography http://freehaven.net/anonbib/
 - The field is quite young
 - Compared to "traditional" security notions such as secrecy, authentication

Overview:

Probabilistic anonymity via coalgebraic simulations

Simulation-based proof method for **non-deterministic = possibilistic** anonymity [KawabeMST06]

Generic, *coalgebraic* theory of traces and simulations [IH,Jacobs,Sokolova]

non-det. → prob. is just a change of a parameter

Simulation-based proof method for *probabilistic* anonymity

For you to take home

- Probability in *anonymity*
 - Subtlety in definition of "probabilistic anonymity"
- Power of *categorical methods* in computer science
 - Specifically, theory of *coalgebras*
 - Abstraction and genericity
 - Category theory in action!

References

- Coalgebraic theory of traces and simulations
 - Ichiro Hasuo, Bart Jacobs and Ana Sokolova
 Generic Trace Theory
 CMCS'06, ENTCS 164
 - Ichiro Hasuo
 Generic Forward and Backward Simulations
 CONCUR 2006, LNCS 4137
- Simulation-based proof method of anonymity
 - Y. Kawabe, K. Mano, H. Sakurada and Y. Tsukada **Theorem-proving anonymity of infinite state systems** *Information Processing Letters*, to appear
 - Y. Kawabe, K. Mano, H. Sakurada and Y. Tsukada Backward simulations for anonymity *WITS'06*
 - Ichiro Hasuo and Yoshinobu Kawabe
 Probabilistic Anonymity via Coalgebraic Simulations
 ESOP'07, to appear

Y. Kawabe

A. Sokolova

Nina Hagen

Part I: Non-deterministic version of ∃ simulation → anonymity

Non-deterministic "trace" anonymity [Schneider&Sidiropoulos,ESORICS'96]

Anonymous donation as an example

Non-deterministic (∃ simulation → anonymity) [Kawabe,Mano,Sakurada,Tsukada 2006]

An automaton which models an anonymizing protocol

<u>Theorem</u>

 $\exists \text{ forward/backward simulation from an}(\mathcal{X}) \text{ to } \mathcal{X} \\ \clubsuit \mathcal{X} \text{ is anonymous} \\ \end{cases}$

- Theory of traces and simulations
 - Forward simulation *R* is such that:

Backward simulation *R* is such that:

- Soundness theorem:
 - ∃ fwd/bwd simulation → trace inclusion
- [Lynch&Vaandrager, Inf.&Comp. 1995]

Proof.

 \mathcal{X} is anonymous

- $\leftarrow tr(\mathcal{X}) = tr(an(\mathcal{X}))$
- $tr(\mathcal{X}) \supseteq tr(an(\mathcal{X}))$
- \leftarrow \exists simulation from an(\mathcal{X}) to \mathcal{X}

(anonymity is trace-based)

(\subseteq is trivial)

(soundness theorem!)

Part II: Probabilistic anonymity and (∃ simulation → anonymity)

- Are these protocols "anonymous"?
- These are all anonymous in a *possibilistic* sense.
 - ➔ definition of "probabilistic anonymity"?

More on probabilistic anonymity

• Intuition:

<u>"Observation of \vec{o} does not carry any info. on who is donating"</u>

- A priori distribution of suspicion need not be uniform
- However, after any observation, any agent must be exactly as suspicious as before

More on probabilistic anonymity

More on probabilistic anonymity

an(\mathcal{X}), in a probabilistic setting

• Idea: distribute probability according to a-priori suspicion

Intermezzo:

Coalgebraic theory of traces and simulations

Theory of coalgebras

<u>Categorical theory</u> of "state-based systems"

Everything as objects and arrows

- Focus on "essence" $FX \longrightarrow FY \longrightarrow FZ$
- Abstraction, genericity

- Base categories
 - Sets → theory of *bisimilarity* [Rutten,TCS'00]
 - $Kl(T) \rightarrow$ theory of *traces* and *simulations*

[IH,Jacobs,Sokolova,CMCS'06][IH,CONCUR'06]

General soundness theorem : \exists simulation \rightarrow trace incl.

By changing parameters, the framework covers

- different branching-types by different T
 - non-determinism
 - probabilistic branching
- different transition-types by different
 - LTS: $x \mapsto (a,x')$
 - Context-free grammar: $x \mapsto \langle$ "-

We exploit this!

- Anything we can do in a non-det. setting,
 - we can also do in a probabilistic setting

$$\begin{array}{l} \mathsf{X} \longmapsto \langle \text{``¬'', X} \rangle \\ \mathsf{X} \longmapsto \langle \mathsf{X}, \text{``^', X} \rangle \end{array}$$

• T is a **monad**, for branching-type. Examples:

P, powerset monad
for non-determinism

 $\mathcal{D}X = \{$ probability subdistributions on $X\}$

• \mathcal{D} , subdistribution monad $= \{d: X \to [0,1] \mid \sum_{x \in X} d(x) \le 1\}$ • for (generative) probabilistic branching

• T = P, $F = 1 + \Sigma \times -$ LTS with explicit termination

•
$$T = \mathcal{D}$$
,

, $F = 1 + \Sigma \times -$ Generative probabilistic system

•
$$T = P$$
, $F = (\Sigma + -)^*$
Context-free grammar

2. This induced f gives (finite) trace semantics

Also completeness result, as easily

General soundness theorem : \exists simulation \rightarrow trace incl.

Back to probabilistic anonymity

 \leftarrow \exists simulation from an(\mathcal{X}) to \mathcal{X} (soundness theorem!)

Probabilistic simulation via coalgebraic simulation

Proof.

 \mathcal{X} is anonymous

- \leftarrow tr(\mathcal{X}) = tr(an(\mathcal{X}))
- $\leftarrow \operatorname{tr}(\mathcal{X}) \supseteq \operatorname{tr}(\operatorname{an}(\mathcal{X}))$

(anonymity is trace-based)

(\subseteq is by constr. of an(\mathcal{X}))

 \leftarrow \exists simulation from an(\mathcal{X}) to \mathcal{X} (soundness theorem!)

<u>Theorem</u>

 $\exists \text{ forward/backward simulation from an}(\mathcal{X}) \text{ to } \mathcal{X}$ Probabilistic $\rightarrow \mathcal{X} \text{ is anonymous}$

Probabilistically

- Should be useful in *theorem-proving* anonymity
 - This is the case in a non-deterministic setting
 - Verification of the FOO voting protocol [Kawabe,Mano,Sakurada,Tsukada'06]
 - Probabilistic verification example is yet to be found
 - Currently our running example is dining cryptographers [Chaum'88]

Conclusion

non-deterministic (∃ simulation → anonymity) [KawabeMST06]

Generic, **coalgebraic** theory of traces and simulations [IH,Jacobs,Sokolova]

- $T = \mathcal{P} \rightarrow \text{non-determinism}$
- $T = \mathcal{D} \rightarrow \text{probability}$

probabilistic (∃ simulation → anonymity)

[Current work]

Conclusion and future work

- Future work
 - Bigger verification example?
 - Systems with **both non-determinism and probability**?
 - As in [Segala&Lynch'95]
 - Important also for anonymity applications [Palamidessi,MFPS'05]
 - Suitable coalgebraic framework is missing
 - Weaker notion of anonymity?
 - Current "anonymity" notion is pretty strong
 - "Simulation-based" method also for weaker notions?

For you to take home:

- Probability in anonymity
- Category theory in action!

Thank you for your attention!

Ichiro Hasuo, U. Nijmegen, NL

http://www.cs.ru.nl/~ichiro