The Microcosm Principle and Concurrency in Coalgebras

Ichiro Hasuo

Kyoto University, Japan PRESTO Promotion Program, Japan

Bart Jacobs

Radboud Univ. Nijmegen, NL Technical Univ. Eindhoven, NL

Ana Sokolova

Univ. Salzburg, Austria

1-slide review of coalgebra/coinduction

Theory of coalgebras

in **Sets**: bisimilarity in Kleisli: trace semantics

[Hasuo, Jacobs, Sokolova LMCS'07]

cory of state-based systems

categorically

stem

ehaviorreserving map

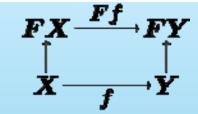
behavior

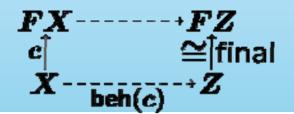
coalgebra

morphism of coalgebras

coinduction

(via final coalgebra)





Concurrency.

C | D running C and D in parallel

is **everywhere**

- computer networks
- multi-core processors
- modular, component-based design of complex systems of complex systems

is hard to get right

- so easy to get into *deadlocks*
- exponentially growing complexity
- cf. Edward Lee. Making Concurrency Mainstream.
 - Invited talk at CONCUR 2006.

aids compositional verification

Compositionality

Behavior of C || D

is determined by

behavior of C and behavior of D

Conventional presentation

$$\mathcal{C}_1 \sim \mathcal{C}_2$$
 and $\mathcal{D}_1 \sim \mathcal{D}_2 \implies \mathcal{C}_1 \parallel \mathcal{D}_1 \sim \mathcal{C}_2 \parallel \mathcal{D}_2$

behavioral equivalence

- o bisimilarity
- trace equivalence

o ...

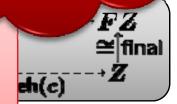
"bisimilarity is a congruence"

Compositionality in coalg

operation on NFAs

 $||: Coalg_F \times Coalg_F \rightarrow Coalg_F$

composing coalgebras/systems



"co raic compositionality"

$$\mathsf{beh}\binom{FX}{c^\uparrow_{\boldsymbol{I}}} \left| \begin{array}{c} FY \\ d^\uparrow_{\boldsymbol{I}} \end{array} \right) \quad = \quad \mathsf{beh}\binom{FX}{c^\uparrow_{\boldsymbol{I}}} \left\| \begin{array}{c} \mathsf{beh}\binom{FY}{d^\uparrow_{\boldsymbol{I}}} \\ Y \end{array} \right)$$

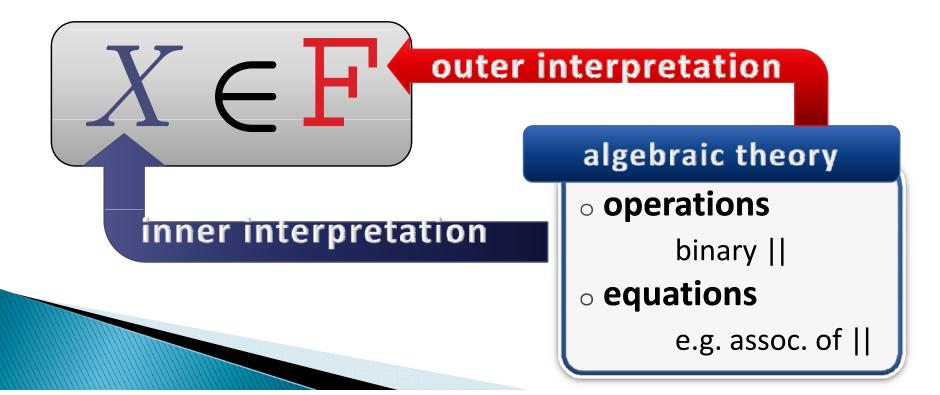
regular languages

 $: Z \times Z \rightarrow Z$

composing behavior

Nested algebraic structures: the microcosm principle

$$egin{pmatrix} \operatorname{Coalg}_{F} & imes \operatorname{Coalg}_{F} & \longrightarrow & \operatorname{Coalg}_{F} \\ Z & imes & Z & \stackrel{\parallel}{\longrightarrow} & Z \end{pmatrix} & egin{pmatrix} \operatorname{With} \\ \left(egin{pmatrix} FZ \\ \cong \mid \operatorname{final} \end{matrix} \right) \in \operatorname{Coalg}_{F} \end{aligned}$$



Microcosm in macrocosm

We name this principle the microcosm principle, after the theory, common in pre-modern correlative cosmologies, that every feature of the microcosm (e.g. the human soul) corresponds to some feature of the macrocosm.

John Baez & James Dolan

Higher-Dimensional Algebra III:

n-Categories and the Algebra of Opetopes

Adv. Math. 1998

The microcosm principle: you may have seen it

monoid in a monoidal category

monoidal cat. C		monoid $M\in\mathbb{C}$
$\otimes: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$	mult.	$M\otimes M\stackrel{m}{ o} M$
$I \in \mathbb{C}$	unit	$I \stackrel{e}{ o} M$
$I \otimes X \cong X \cong X \otimes I$	unit law	$M \longrightarrow M \otimes M \longrightarrow M$ \check{M}
$(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$	assoc. law	$M \otimes M \otimes M \longrightarrow M \otimes M$ $M \overset{\circ}{\otimes} M \longrightarrow \mathring{M}$

inner depends on outer

Formalizing the microcosm principle

What do we mean by "microcosm principle"?

i.e. mathematical definition of such nested models?

Answer

inner model as lax natural trans.

algebraic theory
as Lawvere theory

outer model as prod.-pres. functor

Outline

for arbitrary algebraic theory

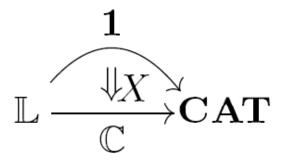
concurrency/ compositional

generic compositionality theorem

microcosm for concurrency (|| and ||)

parallel composition via **sync** nat. trans.

2-categorical formulation



Parallel composition of coalgebras via

 $\mathsf{sync}_{X,Y} \colon FX \otimes FY \to F(X \otimes Y)$

Paralle

bifunctor $Coalg_F \times Coalg_F \rightarrow Coalg_F$

usually denoted by (tensor)

$$\mathsf{blab}\!\left(\!\!\begin{array}{c} FEXX \\ c\hat{c}\hat{c}\!\!\upharpoonright & \\ XX \end{array}\!\!\right) \left\|\!\!\begin{array}{c} FYY \\ d\hat{l}\!\!\upharpoonright \\ YY \end{array}\!\!\right) = \left\|\!\!\begin{array}{c} \mathsf{blab}\!\!\mid \left(\!\!\begin{array}{c} FYX \\ c\hat{c}\!\!\upharpoonright \\ XX \end{array}\!\!\right) \left\|\!\!\begin{array}{c} \mathsf{blab}\!\!\mid \left(\!\!\begin{array}{c} FYY \\ d\hat{l}\!\!\upharpoonright \\ YY \end{array}\!\!\right) \right\|$$

Theorem

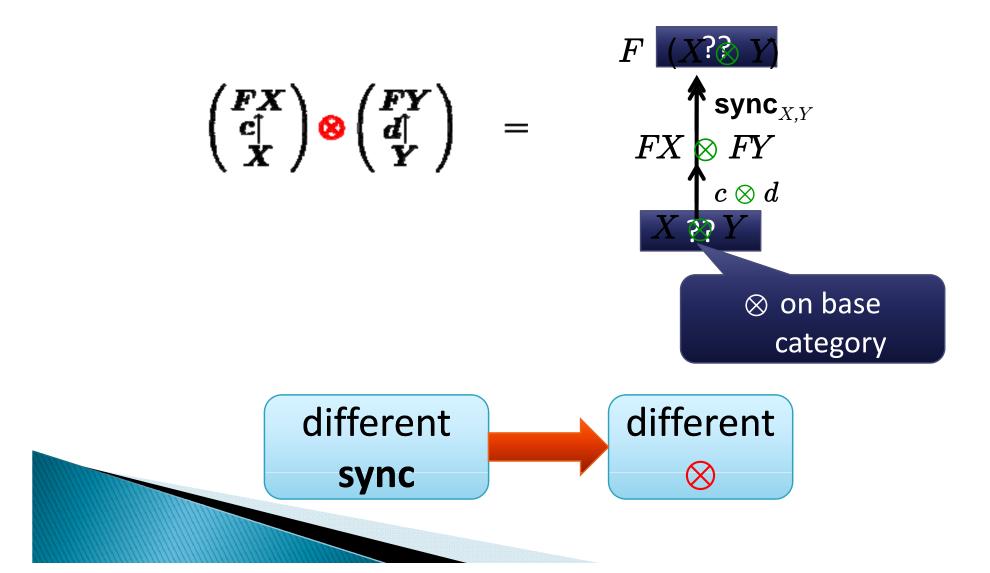
- \otimes
- : $Coalg_F \times Coalg_F \rightarrow Coalg_F$

- 11
 - the base category C has a tensor
 - $\otimes : \mathbf{C} \times \mathbf{C} \to \mathbf{C}$
 - and F: C → C comes with natural transformation
 - $sync_{X,Y}: FX \otimes FY \rightarrow F(X \otimes Y)$
- then we have
 - \otimes : Coalg_F x Coalg_F \rightarrow Coalg_F

F with sync lifting

 $\otimes : C \times C \rightarrow C$

Parallel composition via sync



 \otimes : Coalg_F x Coalg_F \rightarrow Coalg_F

Examples of

 $\mathsf{sync}: FX \otimes FY \to F(X \otimes Y)$

F with sync lifting

 $x : Sets \times Sets \rightarrow Sets$

CSP-style (Hoare)

$$a.P \parallel a.Q \xrightarrow{a} P \parallel Q$$

$$egin{pmatrix} \mathcal{P}_{ ext{fin.}}(\Sigma imes X) imes \mathcal{P}_{ ext{fin.}}(\Sigma imes Y) & \stackrel{ ext{sync}_{X,Y}}{\longrightarrow} & \mathcal{P}_{ ext{fin.}}ig(\Sigma imes (X imes Y)ig) \ (S,T) & \longmapsto & ig\{ \left(a,(x,y)
ight) \mid (a,x) \in S \land (a,y) \in T ig\} \end{pmatrix}$$

• CCS-style (Milner) $a.P \parallel \overline{a}.Q \xrightarrow{\tau} P \parallel Q$ Assuming $\Sigma = \{a, a', \dots\} + \{\overline{a}, \overline{a'}, \dots\} + \{\tau\}$

$$egin{aligned} \mathcal{P}_{ ext{fin.}}(\Sigma imes X) imes \mathcal{P}_{ ext{fin.}}(\Sigma imes Y) & \stackrel{ ext{sync}_{oldsymbol{X},Y}}{\longrightarrow} & \mathcal{P}_{ ext{fin.}}ig(\Sigma imes (X imes Y)ig) \ & \longmapsto & ig\{ (au, (x,y)) \mid (a,x) \in S \ \land \ (\overline{a},y) \in T \, ig\} \end{aligned}$$

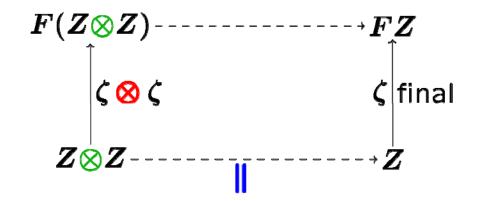
$$C = Sets, F = P_{fin}(\Sigma \times \underline{\ })$$

F-coalgebra = LTS

Inner composition

$$\mathsf{beh} \begin{pmatrix} FX & FY \\ c {\upharpoonright} & \otimes d {\upharpoonright} \\ X & Y \end{pmatrix} \quad = \quad \mathsf{beh} \begin{pmatrix} FX \\ c {\upharpoonright} \\ X \end{pmatrix} \, \bigg\| \, \, \mathsf{beh} \begin{pmatrix} FY \\ d {\upharpoonright} \\ Y \end{pmatrix}$$

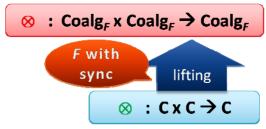
"composition of states/behavior" arises by coinduction



Compositionality theorem

Assume \circ C has tensor \otimes \circ F has $\operatorname{sync}_{X,Y}: FX \otimes FY \to F(X \otimes Y)$ \circ there is a final coalgebra $Z \to FZ$

1. ⊗ by



2. | by

- by finality
- yields: $\mathcal{C}_1 \sim \mathcal{C}_2$ and $\mathcal{D}_1 \sim \mathcal{D}_2$ \Longrightarrow $\mathcal{C}_1 \parallel \mathcal{D}_1 \sim \mathcal{C}_2 \parallel \mathcal{D}_2$

Equational properties

 \otimes : Coalg_F x Coalg_F \rightarrow Coalg_F

F with sync lifting

⊗: CxC→C

When is

 \otimes : Coalg_F x Coalg_F \rightarrow Coalg_F

associative?

Answ community?

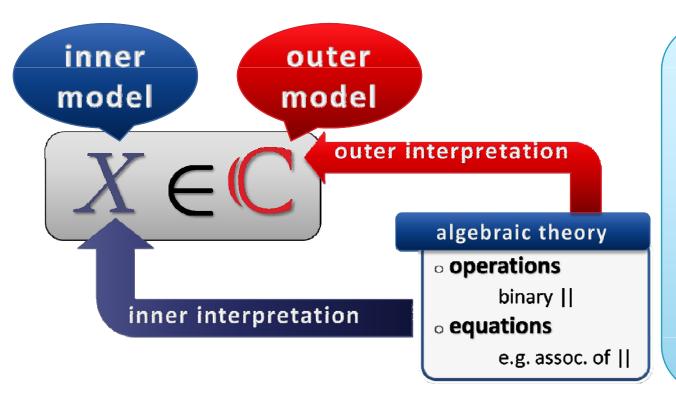
arbitrary algebraic theory?

for arbitrary algebraic theory

2-categorical formulation of the microcosm principle

Part 2

Microcosm principle (Baez & Dolan)



<u>examples</u>

- monoid in monoidal category
- o final coalg. in
 Coalg_F with ⊗
- reg. lang. vs.NFAs

What is precisely "microcosm principle"?

i.e. mathematical definition of such nested models?

Lawvere theory L

a category representing an algebraic theory

Definition

A Lawvere theory ${f N}$ is a small category s.t.

- L's objects are natural numbers
- L has finite products

Lawvere theory

other arrows:

projections

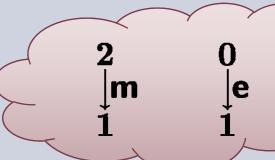
 $_{\circ}$ composed terms $_{\mathbf{q}} \underline{\mathbf{m}}(\mathbf{m}(\pi_1,\pi_2),\pi_3)$

as category L

operations

m (binary) e (nullary)

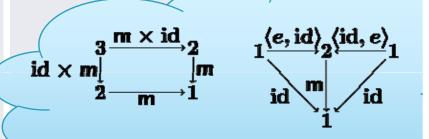
as arrows



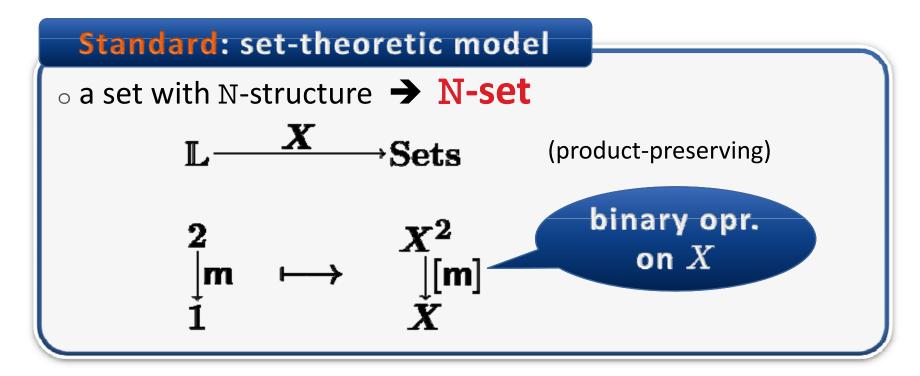
equations

assoc. of m unit law

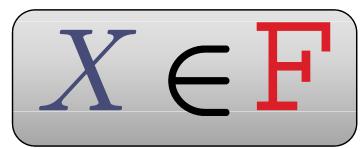
as commuting diagrams



Models for Lawvere theory ${\mathbb L}$



what about nested models?



Outer model: L-category

outer model

o a category with N-structure → N-category

$$\mathbb{L}$$
 (product-preserving)

$$egin{array}{cccc} \mathbf{2} & & \mathbb{C}^2 \ |\mathbf{m} & \longmapsto & |[\mathbf{m}] = \mathbf{\otimes} \ \mathbf{\mathring{C}} \end{array}$$

NB. our focus is on **strict** alg. structures

Standard: set-theoretic model

 $_{\circ}$ a set with L-structure \rightarrow L-set

$$\mathbb{L}$$
 \longrightarrow \mathbf{Sets} product-preserving

$$egin{array}{cccc} 2 & & X^2 \ |\mathsf{m} & \longmapsto & \bigvee [\mathsf{m}] \ 1 & & X \end{array}$$

binary opr. on \boldsymbol{X}

Inner model: L-object

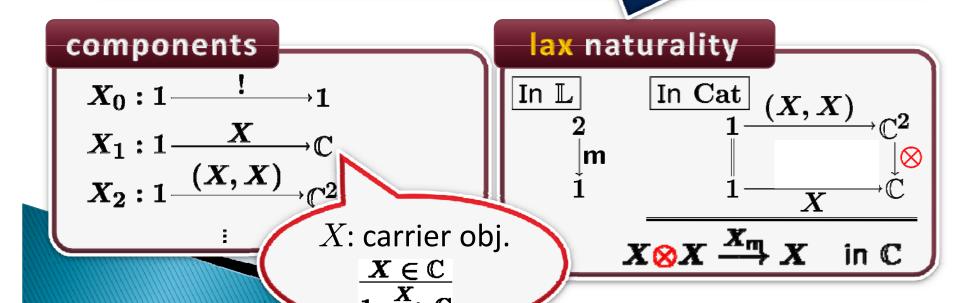
Definition

Given an h-category E.

an N-object X in it

is a lax natural transformation compatible with products.

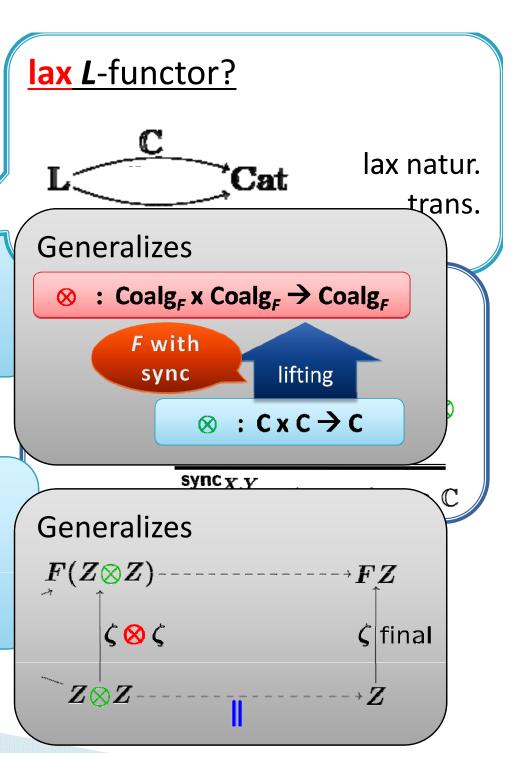
inner alg. str.
by
mediating 2-cells



lax L-functor

- = F with sync
 - ▶ E: N-category
 - ightharpoonup F: E
 ightharpoonup E, <u>lax N-functor</u>
 - \rightarrow Coalg_F is an N-category

- ▶ E: N-category
- $ightharpoonup Z \in E$, final object
- \rightarrow Z is an N-object



Generic compositionality theorem

Assume

- C is an L-category
- \circ $F: C \rightarrow C$ is a lax L-functor
- \circ there is a final coalgebra $Z \rightarrow FZ$
- **1.** Coalg $_F$ is an N-category
- **2.** $Z \rightarrow FZ$ is an N-object
- 3. the *behavior* functor

is a (strict) N-functor

subsumes

$$\mathbf{w}(\mathbf{x}) = \mathbf{w}(\mathbf{x}) \mathbf{w}(\mathbf{x})$$

Equational properties

associative

 \otimes : Coalg_F x Coalg_F \rightarrow Coalg_F

F with

"associative"

sync

$$FX \otimes (FY \otimes FZ) \xrightarrow{FX \otimes \mathsf{sync}} FX \otimes F(Y \otimes Z) \xrightarrow{\mathsf{sync}} F(X \otimes (Y \otimes Z))$$

$$\downarrow^{\mathsf{id}} (FX \otimes FY) \otimes FZ \xrightarrow{\mathsf{sync} \otimes FZ} F(X \otimes Y) \otimes FZ \xrightarrow{\mathsf{sync}} F((X \otimes Y) \otimes Z)$$

lifting

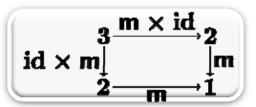
associative

 $\otimes : C \times C \rightarrow C$

Equational properties, generally

equations are built-in in L

as



how about "assoc" of sync?

$$FX \otimes (FY \otimes FZ) \xrightarrow{FX \otimes \mathsf{sync}} FX \otimes F(Y \otimes Z) \xrightarrow{\mathsf{sync}} F(X \otimes (Y \otimes Z))$$

$$(FX \otimes FY) \otimes FZ \xrightarrow{\mathsf{sync} \otimes FZ} F(X \otimes Y) \otimes FZ \xrightarrow{\mathsf{sync}} F((X \otimes Y) \otimes Z)$$

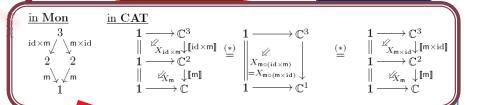
automaticvia "coherence condition"

$$egin{bmatrix} \mathbf{1} & \longrightarrow \mathbb{C}^l & \mathbf{1} & \longrightarrow \mathbb{C}^l \ \parallel & \swarrow_{X_{\mathsf{boa}}} & \parallel & \swarrow_{X_{\mathsf{a}}} & \downarrow_{\llbracket \mathsf{a} \rrbracket} \ \parallel & \swarrow_{X_{\mathsf{b}}} & \downarrow_{\llbracket \mathsf{b} \rrbracket} \ \mathbf{1} & \longrightarrow \mathbb{C}^n & \mathbf{1} & \longrightarrow \mathbb{C}^n \ \end{pmatrix}$$

L-structure on **Coalg**_E

F: lax Lfunctor

lifting



on C

Related work: bialgebras

- Related to the study of *bialgebraic structures*[Turi-Plotkin, Bartels, Klin, ...]
 - Algebraic structures on coalgebras
- In the current work:
 - Equations, not only operations, are also an integral part
 - Algebraic structures are nested, higherdimensional

Future work

- "Pseudo" algebraic structures
 - monoidal category (cf. strictly monoidal category)
 - equations hold up-to-isomorphism
 - L CAT, product-preserving pseudo-functor?
- Microcosm principle for full GSOS

bialgebra	microcosm
$\Sigma B \rightarrow B \Sigma$	current work
Σ (B x id) \rightarrow B T_{Σ} (for full GSOS)	??

Conclusion

for arbitrary algebraic theory

concurrency/ compositional

generic compositionality theorem

microcosm for concurrency (| and |)

parallel composition via **sync** nat. trans.

2-categorical formulation

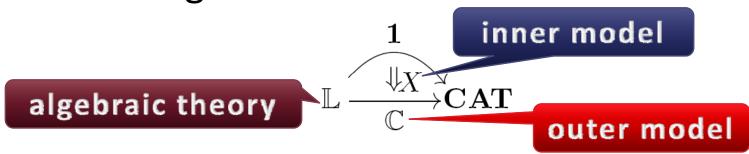
 $\mathbb{L} \xrightarrow{\mathbb{C}} \mathbf{CAT}$

Thanks for your attention!

Ichiro Hasuo (Kyoto, Japan) http://www.cs.ru.nl/~ichiro

Conclusion

- Microcosm principle : same algebraic structure
 - on a category C and
 - on an object $X \in C$
- 2-categorical formulation:

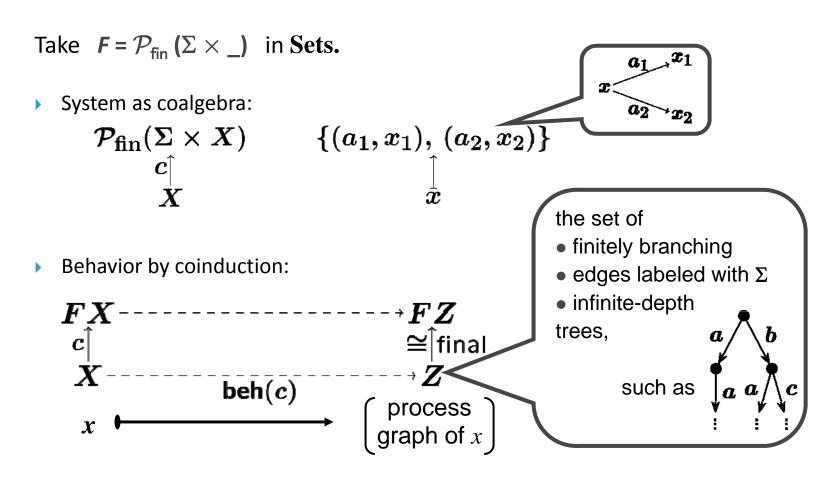


Concurrency in coalgebras as a CS example

Thank you for your attention!

Ichiro Hasuo, Kyoto U., Japan http://www.cs.ru.nl/~ichiro

Behavior by coinduction: example



- in **Sets:** *bisimilarity*
 - in certain Kleisli categories: trace equivalence

http://ocobs,Sokolova,CMCS'06]

Examples of

 $sync: FX \otimes FY \rightarrow F(X \otimes Y)$

Note:

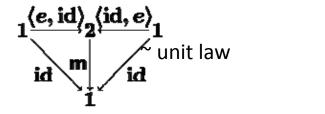
Asynchronous/interleaving compositions don't fit in this framework

- such as
- We have to use, instead of F, $\| Q \xrightarrow{a} P \| Q$ the *cofree comonad* on F

Lawvere theory

- Presentation of an algebraic theory as a category:
 - <u>objects</u>: 0, 1, 2, 3, ... "arities"
 - arrows: "terms (in a context)"

commuting diagrams are understood as "equations"



 $\mathbf{id} \times \| \mathbf{j} \xrightarrow{\sim \operatorname{assoc}}^{\mathbf{j}} \mathbf{j}^{\operatorname{law}}$

- arises from
 - (single-sorted) algebraic specification (Σ , E) as the *syntactic category*
 - FP-sketch

Outline

- In a coalgebraic study of concurrency,
- Nested algebraic structures
 - on a category C and
 - on an object X ∈ C
 arise naturally (microcosm principle)
- Our contributions:
 - Syntactic formalization of microcosm principle
 - 2-categorical formalization with Lawvere theories
 - Application to coalgebras:
 - generic compositionality theorem

Generic soundness result

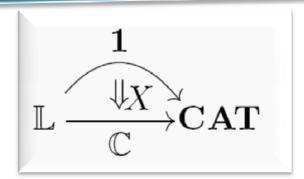
- A Lawvere theory *L* is for
 - operations, and
 - equations (e.g. associativity, commutativity)
- ▶ Coalg_F is an L-category
 - → Parallel composition ⊗ is automatically associative (for example)
 - Ultimately, this is due to the coherence condition on the lax L-functor F
- Possible application :

Study of *syntactic formats* that ensure associativity/commutativity (future work)

Microcosm principle for concurrency (|| and ||)

- "Parallel composition via sync nat. trans"
- compositionality theorem

The microcosm principle 2-categorically



Back to concurrency

- Part 1 for arbitrary algebraic theory
- Generic compositionality theorem