
Categorical Geometry of Interaction
 and Application to

Higher-Order Quantum Computation

Ichiro Hasuo
University of Tokyo (JP)

Naohiko Hoshino
RIMS, Kyoto University (JP)

GaLoP (Queen Mary) 2013/7/19

Supported by Aihara Innovative Mathematical
Modelling Project, FIRST Program, JSPS/CSTP

Based on: IH & N. Hoshino, Semantics of Higher-Order Quantum
Computation via Geometry of Interaction, Proc. LICS 2011.
(Extended ver. coming soon)

Friday, July 19, 13

http://www.sat.t.u-tokyo.ac.jp/first/
http://www.sat.t.u-tokyo.ac.jp/first/
http://www.sat.t.u-tokyo.ac.jp/first/
http://www.sat.t.u-tokyo.ac.jp/first/
http://www.jsps.go.jp/english/e-first/index.html
http://www.jsps.go.jp/english/e-first/index.html
http://www.jsps.go.jp/english/index.html
http://www.jsps.go.jp/english/index.html
http://www8.cao.go.jp/cstp/english/
http://www8.cao.go.jp/cstp/english/

Hasuo (Tokyo)

Highlights
Categorical GoI [Abramsky, Haghverdi, Scott]

Categorical axiomatization of
“when we can run a GoI business”

not like “category of games”

Friday, July 19, 13

Hasuo (Tokyo)

Highlights
Categorical GoI [Abramsky, Haghverdi, Scott]

Categorical axiomatization of
“when we can run a GoI business”

not like “category of games”

Combined with coalgebras [Rutten, Jacobs, ...]

Nice operational flavor!

Friday, July 19, 13

Hasuo (Tokyo)

Highlights
Categorical GoI [Abramsky, Haghverdi, Scott]

Categorical axiomatization of
“when we can run a GoI business”

not like “category of games”

Combined with coalgebras [Rutten, Jacobs, ...]

Nice operational flavor!

Application: quantum λ-calculus
[Selinger, Valiron, van Tonder, ...]

“The categorical GoI workflow”
Friday, July 19, 13

Functional QPL:
Some Contexts

Part 1

Friday, July 19, 13

Hasuo (Tokyo)

Quantum
Programming Language

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming
language

int i,j;
int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}

[Null-Lobur] [beachhandball.es]

Friday, July 19, 13

Hasuo (Tokyo)

Quantum
Programming Language

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming
language

int i,j;
int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}

Quantum
programming
language

[Null-Lobur] [beachhandball.es]

[Selinger-Valiron]

Friday, July 19, 13

Hasuo (Tokyo)

Quantum
Programming Language

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming
language

int i,j;
int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}

Quantum
programming
language

[Null-Lobur] [beachhandball.es]

[Selinger-Valiron]

For discovery of algorithms
For reasoning, verification

Friday, July 19, 13

Hasuo (Tokyo)

Functional Quantum
Programming Language

Friday, July 19, 13

Hasuo (Tokyo)

Functional Quantum
Programming Language
A real man’s programming style

Friday, July 19, 13

Hasuo (Tokyo)

Functional Quantum
Programming Language
A real man’s programming style

Heavily used in the financial sector

...

ICFP’11 Sponsers (Tokyo, Sep 2011)

Friday, July 19, 13

Hasuo (Tokyo)

Functional Quantum
Programming Language
A real man’s programming style

Heavily used in the financial sector

...

Mathematically nice and clean

Aids semantical study

Transfer from classical to
quantum

ICFP’11 Sponsers (Tokyo, Sep 2011)

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Syntax

Linear λ-calculus
+ quantum primitives [van Tonder, Selinger, Valiron, ...]

Linearity for no-cloning

“Input can be used only once”

Not allowed/typable:

Duplicable (classical) data: by the !-modality

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Syntax

Linear λ-calculus
+ quantum primitives [van Tonder, Selinger, Valiron, ...]

Linearity for no-cloning

“Input can be used only once”

Not allowed/typable:

Duplicable (classical) data: by the !-modality

Preparation/Unitary
transformation/Measurement

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Syntax

Linear λ-calculus
+ quantum primitives [van Tonder, Selinger, Valiron, ...]

Linearity for no-cloning

“Input can be used only once”

Not allowed/typable: �x. hmeasx, measxi

Preparation/Unitary
transformation/Measurement

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Syntax

Linear λ-calculus
+ quantum primitives [van Tonder, Selinger, Valiron, ...]

Linearity for no-cloning

“Input can be used only once”

Not allowed/typable: �x. hmeasx, measxi

Preparation/Unitary
transformation/Measurement

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Syntax

Linear λ-calculus
+ quantum primitives [van Tonder, Selinger, Valiron, ...]

Linearity for no-cloning

“Input can be used only once”

Not allowed/typable:

Duplicable (classical) data: by the !-modality

�x. hmeasx, measxi

` tt : !!! bit

Preparation/Unitary
transformation/Measurement

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Syntax

Linear λ-calculus
+ quantum primitives [van Tonder, Selinger, Valiron, ...]

Linearity for no-cloning

“Input can be used only once”

Not allowed/typable:

Duplicable (classical) data: by the !-modality

�x. hmeasx, measxi

` tt : !!! bit

“arbitrary many copies”

Preparation/Unitary
transformation/Measurement

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Denotational semantics

Linear category: [Benton & Wadler, Bierman]
(axioms for) a categorical model of linear λ-calculus
Defn.
A linear category (C,⌦, I,(, !) is a sym. monoidal

closed cat. with a linear exponential comonad !.

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Denotational semantics

Linear category: [Benton & Wadler, Bierman]
(axioms for) a categorical model of linear λ-calculus

For functional QPL? Is Hilb (or alike) a linear cat.?

Defn.
A linear category (C,⌦, I,(, !) is a sym. monoidal

closed cat. with a linear exponential comonad !.

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Hilb (or alike) is not a linear category

Challenge: coexistence of quantum and classical data

Only partial results

[Selinger & Valiron, ’08]:
for strictly linear fragmant (w/o !)

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Hilb (or alike) is not a linear category

Challenge: coexistence of quantum and classical data

Only partial results

[Selinger & Valiron, ’08]:
for strictly linear fragmant (w/o !)

 ! (for duplicable data) monoidal closed str. (C,⌦, I,()

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Hilb (or alike) is not a linear category

Challenge: coexistence of quantum and classical data

Only partial results

[Selinger & Valiron, ’08]:
for strictly linear fragmant (w/o !)

 ! (for duplicable data) monoidal closed str. (C,⌦, I,()

➥ duality V ⇠= V ?

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Hilb (or alike) is not a linear category

Challenge: coexistence of quantum and classical data

Only partial results

[Selinger & Valiron, ’08]:
for strictly linear fragmant (w/o !)

 ! (for duplicable data) monoidal closed str. (C,⌦, I,()

➥ duality V ⇠= V ?

➥ finite dim.

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Hilb (or alike) is not a linear category

Challenge: coexistence of quantum and classical data

Only partial results

[Selinger & Valiron, ’08]:
for strictly linear fragmant (w/o !)

 ! (for duplicable data)

➥ infinite dim.

 monoidal closed str. (C,⌦, I,()

➥ duality V ⇠= V ?

➥ finite dim.

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Hilb (or alike) is not a linear category

Challenge: coexistence of quantum and classical data

 ! (for duplicable data)

➥ infinite dim.

 monoidal closed str. (C,⌦, I,()

➥ duality V ⇠= V ?

➥ finite dim.

Friday, July 19, 13

Hasuo (Tokyo)

Functional QPL:
Semantics

Hilb (or alike) is not a linear category

Challenge: coexistence of quantum and classical data

Only partial results

[Selinger & Valiron, ’08]:
for strictly linear fragmant (w/o !)

 ! (for duplicable data)

➥ infinite dim.

 monoidal closed str. (C,⌦, I,()

➥ duality V ⇠= V ?

➥ finite dim.

Friday, July 19, 13

Hasuo (Tokyo)

Classical control

Quantum data

“Quantum Data,
Classical Control”

Illustration by N. Hoshino

Friday, July 19, 13

Hasuo (Tokyo)

Classical control

Quantum data

“Quantum Data,
Classical Control”

Illustration by N. Hoshino

1
p
2

Friday, July 19, 13

Hasuo (Tokyo)

Classical control

Quantum data

“Quantum Data,
Classical Control”

Illustration by N. Hoshino

1
p
2

+
1
p
2

Friday, July 19, 13

Hasuo (Tokyo)

What We Do
GoI (Geometry of Interaction) [Girard ’89]

An “implementation” of classical control

tr(f) =

fXY t

a

n2N
fZY � (fZZ)

n � fXZ

!

Friday, July 19, 13

Hasuo (Tokyo)

What We Do
GoI (Geometry of Interaction) [Girard ’89]

An “implementation” of classical control

tr(f) =

fXY t

a

n2N
fZY � (fZZ)

n � fXZ

!

Friday, July 19, 13

Hasuo (Tokyo)

What We Do
GoI (Geometry of Interaction) [Girard ’89]

An “implementation” of classical control

Categorical GoI [Abramsky, Haghverdi, Scott ’02]
Its categorical axiomatics

tr(f) =

fXY t

a

n2N
fZY � (fZZ)

n � fXZ

!

M N

Friday, July 19, 13

Hasuo (Tokyo)

What We Do
GoI (Geometry of Interaction) [Girard ’89]

An “implementation” of classical control

Categorical GoI [Abramsky, Haghverdi, Scott ’02]
Its categorical axiomatics

We add a quantum layer to GoI

➜ “Quantum data, classical control”

Used: theory of coalgebra
[Hasuo, Jacobs, Sokolova ’07] [Jacobs ’10]

tr(f) =

fXY t

a

n2N
fZY � (fZZ)

n � fXZ

!

M N

M N

quantum
state

Friday, July 19, 13

The Categorical GoI
Workflow

Part 2

Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics
for linear λ-term M

JMK

Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics
for linear λ-term M

In this talk:

Its categorical formulation
[Abramsky, Haghverdi, Scott ’02]

“The GoI Animation”

JMK

Friday, July 19, 13

Hasuo (Tokyo)

The GoI Animation
JMK = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓
Friday, July 19, 13

Hasuo (Tokyo)

The GoI Animation
JMK = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

✖

Friday, July 19, 13

Hasuo (Tokyo)

The GoI Animation
JMK = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓
Friday, July 19, 13

Hasuo (Tokyo)

The GoI Animation
JMK = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

token

Friday, July 19, 13

Hasuo (Tokyo)

The GoI Animation
JMK = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓
Friday, July 19, 13

Hasuo (Tokyo)

The GoI Animation
JMK = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓
Friday, July 19, 13

Hasuo (Tokyo)

The GoI Animation
JMK = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓
Friday, July 19, 13

Hasuo (Tokyo)

The GoI Animation
Function application

by “parallel composition + hiding”

JMNK

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...JMNK
=

Friday, July 19, 13

[| M|] [| N|]

... ...

...

......

JMNK
=

Friday, July 19, 13

[| M|] [| N|]

...

...

...

...

...

...

JMNK
=

Friday, July 19, 13

[| M|] [| N|]

...

...

...

...

...

...

JMNK
=

Friday, July 19, 13

[| M|] [| N|]

...

...

...

...

JMNK
=

Friday, July 19, 13

[| M|] [| N|]

...

...

...

...

[| MN|]

JMNK
=

Friday, July 19, 13

[| M|] [| N|]

...

...

...

...

[| MN|]

JMNK
=

“parallel composition + hiding”
(cf. AJM games)

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)➜

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

M = �x. x + 1 N = 2
M = �x. 1 N = 2
M = �f. f1 N = �x. (x + 1)

[| MN|]

Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics
for linear λ-term M

JMK

Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics
for linear λ-term M

Similar to game semantics [AJM/HO]

JMK

Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics
for linear λ-term M

Similar to game semantics [AJM/HO]

Linearity: simplicity; no-cloning

JMK

Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics
for linear λ-term M

Similar to game semantics [AJM/HO]

Linearity: simplicity; no-cloning

Girard translation

JMK

A ! B

as !A (B

Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics
for linear λ-term M

Similar to game semantics [AJM/HO]

Linearity: simplicity; no-cloning

Girard translation

“Geometry”:
invariant under β-reductions

JMK

A ! B

as !A (B

=
Friday, July 19, 13

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

Provides denotational semantics
for linear λ-term M

Similar to game semantics [AJM/HO]

Linearity: simplicity; no-cloning

Girard translation

“Geometry”:
invariant under β-reductions

JMK

A ! B

as !A (B

=

C*-algebra presentation
Token machine presentation

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI
Axiomatics of GoI in the categorical language

Our main reference:

[AHS02] S. Abramsky, E. Haghverdi, and
P. Scott, “Geometry of interaction and linear
combinatory algebras,” MSCS 2002

Especially its technical report version
(Oxford CL), since it’s a bit more detailed

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category
Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr7�!f
A

B

C

C

A

B

tr(f)

Realizability

Linear category
Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr7�!f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr7�!f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr7�!f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

PER, ω-set, assembly, ...

“Programming in untyped λ”

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr7�!f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

PER, ω-set, assembly, ...

“Programming in untyped λ”

Friday, July 19, 13

Hasuo (Tokyo)

Linear Combinatory Algebra
(LCA)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 �⇥ A

• a unary operator
! : A �⇥ A

• (combinators) distinguished elements B,C, I,K,W,D, �, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

� !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds
stronger than · does.

Friday, July 19, 13

Hasuo (Tokyo)

Linear Combinatory Algebra
(LCA)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 �⇥ A

• a unary operator
! : A �⇥ A

• (combinators) distinguished elements B,C, I,K,W,D, �, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

� !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds
stronger than · does.

What
we want (outcome)

Friday, July 19, 13

Hasuo (Tokyo)

Linear Combinatory Algebra
(LCA)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 �⇥ A

• a unary operator
! : A �⇥ A

• (combinators) distinguished elements B,C, I,K,W,D, �, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

� !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds
stronger than · does.

Model of
untyped linear λ

What
we want (outcome)

Friday, July 19, 13

Hasuo (Tokyo)

Linear Combinatory Algebra
(LCA)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 �⇥ A

• a unary operator
! : A �⇥ A

• (combinators) distinguished elements B,C, I,K,W,D, �, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

� !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds
stronger than · does.

Model of
untyped linear λ

a ∈ A ≈
closed linear λ-term

What
we want (outcome)

Friday, July 19, 13

Hasuo (Tokyo)

Linear Combinatory Algebra
(LCA)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 �⇥ A

• a unary operator
! : A �⇥ A

• (combinators) distinguished elements B,C, I,K,W,D, �, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

� !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds
stronger than · does.

Model of
untyped linear λ

a ∈ A ≈
closed linear λ-term

No S or K (linear!)

Combinatory
completeness: e.g.

designates an elem. of A

�xyz. zxy

What
we want (outcome)

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
What we use (ingredient)

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
Monoidal category

String diagrams

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

(C,⌦, I)

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
Monoidal category

String diagrams

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

(C,⌦, I)

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
Monoidal category

String diagrams

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

(C,⌦, I)

A
f�! B B

g�! C

A
g�f�! C

A

B

C

g

f

gf

h

h � (f ⌦ g)

A

B

C
gf

D

A
f�! B C

g�! D

A ⌦ C
f⌦g�! B ⌦ D

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
Traced monoidal category

“feedback”

that is

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

A ⌦ C
f�! B ⌦ C

A
tr(f)�! B

tr7�!f
A

B

C

C

A

B

tr(f)

Friday, July 19, 13

Hasuo (Tokyo)
Pipe diagram

I use two ways of depicting partial
functions

String Diagram vs.
“Pipe Diagram”

N * N

String diagram

JMK

N

N

Friday, July 19, 13

Hasuo (Tokyo)
Pipe diagram

I use two ways of depicting partial
functions

String Diagram vs.
“Pipe Diagram”

N * N

String diagram

JMK

N

N

In the monoidal category
(Pfn,+, 0)

Friday, July 19, 13

Hasuo (Tokyo)

Traced Sym. Monoidal Category

Category Pfn of partial functions

Obj. A set X

Arr. A partial function

X ! Y in Pfn
X � Y, partial function

f
X

Y

(Pfn,+, 0)

Friday, July 19, 13

Hasuo (Tokyo)

Traced Sym. Monoidal Category

Category Pfn of partial functions

Obj. A set X

Arr. A partial function

is traced symmetric monoidal

X ! Y in Pfn
X � Y, partial function

f
X

Y

(Pfn,+, 0)

Friday, July 19, 13

Hasuo (Tokyo)

Traced Sym. Monoidal Category

 How?

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn

Friday, July 19, 13

Hasuo (Tokyo)

Traced Sym. Monoidal Category

 How?

f

X

Y

Z

Z

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn

Friday, July 19, 13

Hasuo (Tokyo)

Traced Sym. Monoidal Category

 How?

f

X

Y

Z

Z

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn

Friday, July 19, 13

Hasuo (Tokyo)

Traced Sym. Monoidal Category

 How?

f

X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn

Friday, July 19, 13

Hasuo (Tokyo)

Traced Sym. Monoidal Category

 How?

Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn

Friday, July 19, 13

Hasuo (Tokyo)

Traced Sym. Monoidal Category

 How?

Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY t

a

n2N
fZY � (fZZ)

n � fXZ

!

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn

Friday, July 19, 13

Hasuo (Tokyo)

Traced Sym. Monoidal Category

 How?

Trace operator:

f
X

Y

Z

Z

fXY (x) :=

(
f(x) if f(x) 2 Y

? o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY t

a

n2N
fZY � (fZZ)

n � fXZ

!

Execution formula (Girard)

Partiality is essential (infinite loop)

(Pfn,+, 0)
X + Z

f�! Y + Z in Pfn

X
tr(f)�! Y in Pfn

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

[| MN|]

Friday, July 19, 13

[| M|] [| N|]

...

... ...

...

...

...

JMNK
=

[| MN|]

 in string diagramJMK JNK

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Leading example: Pfn

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

tr7�!f
A

B

C

C

A

B

tr(f)

M N M

N

M

N

= = tr[]

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation

Functor F

For obtaining ! : A → A

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Defn. (Retraction)

A retraction from X to Y ,

f : X C Y : g ,

is a pair of arrows

Xid 99

f
((
Y

g
hh

such that g � f = idX .

“embedding”

“projection”

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
The reflexive object U

 Retr.

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

U ⌦ U

j
))U

k

hh

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
The reflexive object U

 Retr.

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

U ⌦ U

j
))U

k

hh

 , with

 = id

j k

j

k

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
The reflexive object U

Why for GoI?

Example in Pfn:

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

 , j k M N

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
The reflexive object U

Why for GoI?

Example in Pfn:

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

 , j k M N

Friday, July 19, 13

Hasuo (Tokyo)

GoI situation
The reflexive object U

Why for GoI?

Example in Pfn:

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

 , j k M N

N ⇥ Pfn, with

N + N �= N,
N · N �= N

Friday, July 19, 13

Hasuo (Tokyo)

Categorical axiomatics of
the “GoI animation”

Example:

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

M N

(Pfn, N · , N)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical axiomatics of
the “GoI animation”

Example:

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

M N

tr7�!f
A

B

C

C

A

B

tr(f)

(Pfn, N · , N)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical axiomatics of
the “GoI animation”

Example:

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical axiomatics of
the “GoI animation”

Example:

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

 , j k

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical axiomatics of
the “GoI animation”

Example:

GoI Situation: Summary
Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

 , j k

M N

tr7�!f
A

B

C

C

A

B

tr(f)

For ! , via

F7�!f fff
...

(Pfn, N · , N)

· · · · · ·

· · ·
Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)

g f=

g · f
:= tr

�
(U � f) ⇥ k ⇥ g ⇥ j

�

=
f

g

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

2 C(U,U)

! f := u � Ff � v

=

U

v

u

Ff
FU

FU

U

=

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]

Friday, July 19, 13

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
Nice dynamic interpretation of
(linear) computation!!

Friday, July 19, 13

Hasuo (Tokyo)

Summary:
Categorical GoI

Thm. ([AHS02])
Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Defn. (GoI situation [AHS02])
A GoI situation is a triple (C, F, U) where

• C = (C,⌦, I) is a traced symmetric monoidal category
(TSMC);

• F : C ! C is a traced symmetric monoidal functor,
equipped with the following retractions (which are monoidal
natural transformations).

e : FF C F : e0 Comultiplication

d : id C F : d0 Dereliction

c : F ⌦ F C F : c0 Contraction

w : KI C F : w0 Weakening

Here KI is the constant functor into the monoidal unit I;

• U 2 C is an object (called reflexive object), equipped with
the following retractions.

j : U ⌦ U C U : k

I C U

u : FU C U : v

Friday, July 19, 13

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Strategy: find a TSMC!

“Wave-style” examples

⊗ is Cartesian product(-like)

in which case,

trace ≈ fixed point operator [Hasegawa/Hyland]

An example:

(... less of a dynamic flavor)

�
(�-Cpo,⇥, 1), ()

N, AN �

M N

Friday, July 19, 13

Hasuo (Tokyo)

“Particle-style” examples

Obj. X∈C is set-like; ⊗ is coproduct-like

The GoI animation is valid

Examples:

Partial functions

Binary relations

“Discrete stochastic
relations”

M N

�
(Pfn,+, 0), N · , N

�

�
(Rel,+, 0), N · , N

�

�
(DSRel,+, 0), N · , N

�

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Friday, July 19, 13

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn (partial functions)

Rel (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Friday, July 19, 13

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn (partial functions)

Rel (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and
(functions with different branching/partiality)

Friday, July 19, 13

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn (partial functions)

Rel (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Friday, July 19, 13

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Pfn (partial functions)

Pipes can be stuck

Rel (relations)

Pipes can branch

DSRel

Pipes can branch
probabilistically

Friday, July 19, 13

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

✖

Pfn (partial functions)

Pipes can be stuck

Rel (relations)

Pipes can branch

DSRel

Pipes can branch
probabilistically

➜

Friday, July 19, 13

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Pfn (partial functions)

Pipes can be stuck

Rel (relations)

Pipes can branch

DSRel

Pipes can branch
probabilistically

Friday, July 19, 13

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Pfn (partial functions)

Pipes can be stuck

Rel (relations)

Pipes can branch

DSRel

Pipes can branch
probabilistically

➜

✖

Friday, July 19, 13

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Pfn (partial functions)

Pipes can be stuck

Rel (relations)

Pipes can branch

DSRel

Pipes can branch
probabilistically

Friday, July 19, 13

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Pfn (partial functions)

Pipes can be stuck

Rel (relations)

Pipes can branch

DSRel

Pipes can branch
probabilistically

➜
✖ 1

3

2

3

11
1

Friday, July 19, 13

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Pfn (partial functions)

Pipes can be stuck

Rel (relations)

Pipes can branch

DSRel

Pipes can branch
probabilistically

Friday, July 19, 13

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn

Pfn (partial functions)

Rel (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Friday, July 19, 13

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn

Pfn (partial functions)

Rel (relations)

DSRel

X � Y in Pfn
X � Y, partial function

X � LY in Sets

where LY = {⇥} + Y

X ⇤ Y in Rel
R ⇥ X � Y, relation

X ⇤ PY in Sets

where P is the powerset monad

X ⇥ Y in DSRel
X ⇥ DY in Sets

where DY = {d : Y ⇥ [0, 1] |
X

y

d(y) � 1}

Categories of sets and
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Kl(B) for different branching
monads B

Friday, July 19, 13

Hasuo (Tokyo)

The Coauthor
Naohiko Hoshino

DSc (Kyoto, 2011)
Supervisor:
Masahito “Hassei” Hasegawa

Currently at RIMS,
Kyoto U.
http://www.kurims.kyoto-u.ac.jp/
~naophiko/

Friday, July 19, 13

http://www.kurims.kyoto-u.ac.jp/~naophiko/
http://www.kurims.kyoto-u.ac.jp/~naophiko/
http://www.kurims.kyoto-u.ac.jp/~naophiko/
http://www.kurims.kyoto-u.ac.jp/~naophiko/

Coalgebraic
Trace Semantics

Intermission
(If time allows)

Friday, July 19, 13

Hasuo (Tokyo)

Trace Semantics of
Systems

Non-deterministic branching:
sign. functor is

��������x a �� ��������y

��

b
��

�

tr(x) = {a, ab, abb, . . . } = ab�

P(1 + ⌃ ⇥)

Friday, July 19, 13

Hasuo (Tokyo)

Bisimilarity
vs. Trace Sem.

a a

b c

a

b c

Friday, July 19, 13

Hasuo (Tokyo)

Bisimilarity
vs. Trace Sem.

a a

b c

a

b c=

≠

Friday, July 19, 13

Hasuo (Tokyo)

Bisimilarity
vs. Trace Sem.

a a

b c

a

b c=

≠

Friday, July 19, 13

Hasuo (Tokyo)

Bisimilarity
vs. Trace Sem.

a a

b c

a

b c=

≠

Bisimilarity
Branching structure matters.
Can I choose later?

Trace semantics
Branching structure does not matter.
Anyway we’ll get the same sets of food.

Friday, July 19, 13

Hasuo (Tokyo)

Bisimilarity
vs. Trace Sem.

a a

b c

a

b c=

≠

Bisimilarity
Branching structure matters.
Can I choose later?

Trace semantics
Branching structure does not matter.
Anyway we’ll get the same sets of food.

Also by final coalgebra?
FX

Fbeh(c)
�������� FZ

X
c

��

beh(c)
��������� Y

final
��

Friday, July 19, 13

Hasuo (Tokyo)

Coinduction in a
Kleisli Category

[IH, Jacobs, Sokolova, ’07]

X � p�! Y in K`(B)

X �! BY in Sets

Thm. Let F be an endofunctor, and B be a

monad, both on Sets. Assume:

1. We have a distributive law � : FB) BF .

2. The functor F preserves !-colimits, yield-

ing an initial algebra

FA
↵⇠

= ✏✏

A
.

3. The Kleisli category K`(B) is Cpo?-

enriched and composition in K`(B) is left-

strict.

Then:

1. F lifts to F : K`(B) ! K`(B), with

JF = FJ .

2.

FA
_⌘ � ↵
✏✏

A

is an initial algebra in K`(B).

3. In K`(B) we have initial algebra-final coal-

gebra coincidence and

FA

A

_
(⌘ � ↵)

�1
OO

is a

final coalgebra.

Friday, July 19, 13

Hasuo (Tokyo)

Coinduction in a
Kleisli Category

[IH, Jacobs, Sokolova, ’07]

X � p�! Y in K`(B)

X �! BY in Sets

Initial algebra lifts from Sets to Kl(B)

diagram chasing [Johnstone]

Thm. Let F be an endofunctor, and B be a

monad, both on Sets. Assume:

1. We have a distributive law � : FB) BF .

2. The functor F preserves !-colimits, yield-

ing an initial algebra

FA
↵⇠

= ✏✏

A
.

3. The Kleisli category K`(B) is Cpo?-

enriched and composition in K`(B) is left-

strict.

Then:

1. F lifts to F : K`(B) ! K`(B), with

JF = FJ .

2.

FA
_⌘ � ↵
✏✏

A

is an initial algebra in K`(B).

3. In K`(B) we have initial algebra-final coal-

gebra coincidence and

FA

A

_
(⌘ � ↵)

�1
OO

is a

final coalgebra.

Friday, July 19, 13

Hasuo (Tokyo)

Coinduction in a
Kleisli Category

[IH, Jacobs, Sokolova, ’07]

X � p�! Y in K`(B)

X �! BY in Sets

Initial algebra lifts from Sets to Kl(B)

diagram chasing [Johnstone]

In Kl(B) we have IA-FC coincidence

typical of “domain-theoretic” categories

“Algebraically compact” [Freyd]

Thm. Let F be an endofunctor, and B be a

monad, both on Sets. Assume:

1. We have a distributive law � : FB) BF .

2. The functor F preserves !-colimits, yield-

ing an initial algebra

FA
↵⇠

= ✏✏

A
.

3. The Kleisli category K`(B) is Cpo?-

enriched and composition in K`(B) is left-

strict.

Then:

1. F lifts to F : K`(B) ! K`(B), with

JF = FJ .

2.

FA
_⌘ � ↵
✏✏

A

is an initial algebra in K`(B).

3. In K`(B) we have initial algebra-final coal-

gebra coincidence and

FA

A

_
(⌘ � ↵)

�1
OO

is a

final coalgebra.

Friday, July 19, 13

Hasuo (Tokyo)

E.g.

Separation between B and F

Coinduction in a
Kleisli Category

1 + ⌃ ⇥ X
1 + ⌃ ⇥ tr(c)�___ //___ 1 + ⌃ ⇥ ⌃⇤

X

_c
OO

tr(c)
�_____ //_____ ⌃⇤

_final
OO

in K`(P)

B = P, F = 1 + ⌃ ⇥ ()

Friday, July 19, 13

Hasuo (Tokyo)

E.g.

Separation between B and F

Coinduction in a
Kleisli Category

1 + ⌃ ⇥ X
1 + ⌃ ⇥ tr(c)�___ //___ 1 + ⌃ ⇥ ⌃⇤

X

_c
OO

tr(c)
�_____ //_____ ⌃⇤

_final
OO

in K`(P)

B = P, F = 1 + ⌃ ⇥ ()

P(1 + ⌃ ⇥ X)

X

c
OO

in Sets

Friday, July 19, 13

Hasuo (Tokyo)

E.g.

Separation between B and F

Coinduction in a
Kleisli Category

1 + ⌃ ⇥ X
1 + ⌃ ⇥ tr(c)�___ //___ 1 + ⌃ ⇥ ⌃⇤

X

_c
OO

tr(c)
�_____ //_____ ⌃⇤

_final
OO

in K`(P)

B = P, F = 1 + ⌃ ⇥ ()

P(1 + ⌃ ⇥ X)

X

c
OO

in Sets

induced by
1 + ⌃ ⇥ ⌃⇤

initial
✏✏

⌃⇤

in Sets

Friday, July 19, 13

Hasuo (Tokyo)

E.g.

Separation between B and F

Coinduction in a
Kleisli Category

1 + ⌃ ⇥ X
1 + ⌃ ⇥ tr(c)�___ //___ 1 + ⌃ ⇥ ⌃⇤

X

_c
OO

tr(c)
�_____ //_____ ⌃⇤

_final
OO

in K`(P)

B = P, F = 1 + ⌃ ⇥ ()

P(1 + ⌃ ⇥ X)

X

c
OO

in Sets

induced by
1 + ⌃ ⇥ ⌃⇤

initial
✏✏

⌃⇤

in Sets

X
tr(c)

//P(⌃⇤)

Friday, July 19, 13

Hasuo (Tokyo)

E.g.

Separation between B and F

Coinduction in a
Kleisli Category

1 + ⌃ ⇥ X
1 + ⌃ ⇥ tr(c)�___ //___ 1 + ⌃ ⇥ ⌃⇤

X

_c
OO

tr(c)
�_____ //_____ ⌃⇤

_final
OO

in K`(P)

B = P, F = 1 + ⌃ ⇥ ()

P(1 + ⌃ ⇥ X)

X

c
OO

in Sets

induced by
1 + ⌃ ⇥ ⌃⇤

initial
✏✏

⌃⇤

in Sets

X
tr(c)

//P(⌃⇤)
��������x a �� ��������y

��

b
��

�

tr(x) = {a, ab, abb, . . . } = ab�

Friday, July 19, 13

Hasuo (Tokyo)

E.g.

Separation between B and F

Coinduction in a
Kleisli Category

1 + ⌃ ⇥ X
1 + ⌃ ⇥ tr(c)�___ //___ 1 + ⌃ ⇥ ⌃⇤

X

_c
OO

tr(c)
�_____ //_____ ⌃⇤

_final
OO

in K`(P)

B = P, F = 1 + ⌃ ⇥ ()

P(1 + ⌃ ⇥ X)

X

c
OO

in Sets

induced by
1 + ⌃ ⇥ ⌃⇤

initial
✏✏

⌃⇤

in Sets

X
tr(c)

//P(⌃⇤)
��������x a �� ��������y

��

b
��

�

tr(x) = {a, ab, abb, . . . } = ab�

Friday, July 19, 13

Hasuo (Tokyo)

Examples
A branching monad B:

Lift monad L = 1 + (_), powerset monad P,
subdistribution monad D

Precisely those in

A functor F: polynomial functors

Friday, July 19, 13

Hasuo (Tokyo)

From Coalgebraic Trace
to Monoidal Trace

Thm. ([Jacobs,CMCS10])

Given a “branching monad” B on Sets, the

monoidal category

(K`(B),+, 0)

is a traced symmetric monoidal category.

Cor.�
(K`(B),+, 0), N· , N

�
is a GoI situation.

Friday, July 19, 13

Hasuo (Tokyo)

From Coalgebraic Trace
to Monoidal Trace

Thm. ([Jacobs,CMCS10])

Given a “branching monad” B on Sets, the

monoidal category

(K`(B),+, 0)

is a traced symmetric monoidal category.

Cor.�
(K`(B),+, 0), N· , N

�
is a GoI situation.

Friday, July 19, 13

Hasuo (Tokyo)

From Coalgebraic Trace
to Monoidal Trace

Thm. ([Jacobs,CMCS10])

Given a “branching monad” B on Sets, the

monoidal category

(K`(B),+, 0)

is a traced symmetric monoidal category.

Cor.�
(K`(B),+, 0), N· , N

�
is a GoI situation.

Proof. We need

X + Z
f

�p�! Y + Z in K`(T)

X
tr(f)
�p�! Y in K`(T)

• X+Z
f

�p�! Y +Z

�p�! Y +(X+Z)
is a Y + ()-coalgebra

•
Y + N · Y

↵⇠= ✏✏

N · Y
is an initial algebra in Sets

• Therefore in K`(T):

Y + (X + Z) //____ Y + N · Y

X + Z

_ � f
OO

tr(c)
�___ //____ N · Y

_
final

OO

_r✏✏
X

_1
OO

Y

Friday, July 19, 13

Hasuo (Tokyo)

From Coalgebraic Trace
to Monoidal Trace

Thm. ([Jacobs,CMCS10])

Given a “branching monad” B on Sets, the

monoidal category

(K`(B),+, 0)

is a traced symmetric monoidal category.

Cor.�
(K`(B),+, 0), N· , N

�
is a GoI situation.

Proof. We need

X + Z
f

�p�! Y + Z in K`(T)

X
tr(f)
�p�! Y in K`(T)

• X+Z
f

�p�! Y +Z

�p�! Y +(X+Z)
is a Y + ()-coalgebra

•
Y + N · Y

↵⇠= ✏✏

N · Y
is an initial algebra in Sets

• Therefore in K`(T):

Y + (X + Z) //____ Y + N · Y

X + Z

_ � f
OO

tr(c)
�___ //____ N · Y

_
final

OO

_r✏✏
X

_1
OO

Y

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category
Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Fancy
TSMC

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Fancy
TSMC

Fancy
monad

Friday, July 19, 13

Hasuo (Tokyo)

What is Fancy,
Nowadays?

Friday, July 19, 13

Hasuo (Tokyo)

What is Fancy,
Nowadays?

Biology?

Hybrid systems?

Both discrete and continuous data,
typically in cyber-physical systems (CPS)

➜ Our approach via non-standard analysis
[Suenaga, IH, ICALP’11] [IH, Suenaga, CAV’12]
[Suenaga, Sekine, IH, POPL’13]

Quantum?

Yes this worked!

Friday, July 19, 13

Realizability:
from Untyped to Typed

Part 3
(Optional)

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
Dates back to Kleene

Cf. the Brouwer-Heyting-Kolmogorov (BHK)
interpretation

A p’f of A∧B is a pair: (p’f of A, p’f of B)

A p’f of A→B is a function carrying
(p’f of A) to (p’f of B)

Proof = “realizer”

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
Our technical view on realizability: a construction

from a combinatory algebra,

of a categorical model of a typed calculus

Here: construct a linear category from an LCA

References:

[AL05] S. Abramsky and M. Lenisa, “Linear realizability and
full completeness for typed lambda-calculi,” APAA 2005.

[Hos07] N. Hoshino, “Linear realizability,” CSL 2007.

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
Either by ω-sets (intuitive) or
by PERs (tech. convenient)

Defn.
Given an LCA A, an �-set is a pair

�
S, r : S ⇥ P+(A)

�

where

• S is a set;

• for each x ⇤ S, the nonempty subset

r(x) � A is the set of realizers.

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
Either by ω-sets (intuitive) or
by PERs (tech. convenient)

Defn.
Given an LCA A, an �-set is a pair

�
S, r : S ⇥ P+(A)

�

where

• S is a set;

• for each x ⇤ S, the nonempty subset

r(x) � A is the set of realizers.

Could as well be a partial
combinatory algebra. Its
examples:

N with n⋅m = comp(n,m)

{ closed λ-terms }

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
Either by ω-sets (intuitive) or
by PERs (tech. convenient)

Defn.
Given an LCA A, an �-set is a pair

�
S, r : S ⇥ P+(A)

�

where

• S is a set;

• for each x ⇤ S, the nonempty subset

r(x) � A is the set of realizers.

Could as well be a partial
combinatory algebra. Its
examples:

N with n⋅m = comp(n,m)

{ closed λ-terms }

a ∈ r(x) :

“realizes” x, or

“witnesses
existence of” x

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
Defn.
A partial equivalence relation (PER) X is a

transitive and symmetric relation on A.

|X| := {a | (a, a) � X}
= {a | ⇥b. (a, b) � X}
= {a | ⇥b. (b, a) � X}

is the domain of X.

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
PER = eq. rel. - refl.Defn.

A partial equivalence relation (PER) X is a

transitive and symmetric relation on A.

|X| := {a | (a, a) � X}
= {a | ⇥b. (a, b) � X}
= {a | ⇥b. (b, a) � X}

is the domain of X.

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
PER = eq. rel. - refl.

An eq. rel. when
restricted to |X|

Defn.
A partial equivalence relation (PER) X is a

transitive and symmetric relation on A.

|X| := {a | (a, a) � X}
= {a | ⇥b. (a, b) � X}
= {a | ⇥b. (b, a) � X}

is the domain of X.

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
PER = eq. rel. - refl.

An eq. rel. when
restricted to |X|

PER to ω-set:

Defn.
A partial equivalence relation (PER) X is a

transitive and symmetric relation on A.

|X| := {a | (a, a) � X}
= {a | ⇥b. (a, b) � X}
= {a | ⇥b. (b, a) � X}

is the domain of X.

⇣
|X|/X, |X|/X r�⇥ P+(A)

⌘

with [a]
r⌅�⇥ {b | (a, b) ⇤ X}

Friday, July 19, 13

Hasuo (Tokyo)

Realizability
PER = eq. rel. - refl.

An eq. rel. when
restricted to |X|

PER to ω-set:

Also: ω-set to PER

Defn.
A partial equivalence relation (PER) X is a

transitive and symmetric relation on A.

|X| := {a | (a, a) � X}
= {a | ⇥b. (a, b) � X}
= {a | ⇥b. (b, a) � X}

is the domain of X.

⇣
|X|/X, |X|/X r�⇥ P+(A)

⌘

with [a]
r⌅�⇥ {b | (a, b) ⇤ X}

Friday, July 19, 13

Hasuo (Tokyo)

PERA:
The Category of PERs

Obj. A PER X on A

Arr. The homset is

Thus:

Often put:

PERA(X,Y)

=
n

c 2 A

�

�

�

(x, x0) 2 X =) (cx, cx0) 2 Y

o

�
(c, c0)

�� ⇥x � |X|. (cx, c0x) � Y

Friday, July 19, 13

Hasuo (Tokyo)

PERA:
The Category of PERs

Obj. A PER X on A

Arr. The homset is

Thus:

Often put:

PERA(X,Y)

=
n

c 2 A

�

�

�

(x, x0) 2 X =) (cx, cx0) 2 Y

o

�
(c, c0)

�� ⇥x � |X|. (cx, c0x) � Y

All the valid codes c
(well-dfd?)

Friday, July 19, 13

Hasuo (Tokyo)

PERA:
The Category of PERs

Obj. A PER X on A

Arr. The homset is

Thus:

Often put:

PERA(X,Y)

=
n

c 2 A

�

�

�

(x, x0) 2 X =) (cx, cx0) 2 Y

o

�
(c, c0)

�� ⇥x � |X|. (cx, c0x) � Y

All the valid codes c
(well-dfd?)

Modulo
“the same function”

Friday, July 19, 13

Hasuo (Tokyo)

PERA:
The Category of PERs

Obj. A PER X on A

Arr. The homset is

Thus:

PERA(X,Y)

=
n

c 2 A

�

�

�

(x, x0) 2 X =) (cx, cx0) 2 Y

o

�
(c, c0)

�� ⇥x � |X|. (cx, c0x) � Y

All the valid codes c
(well-dfd?)

Modulo
“the same function”

[c] : X �! Y (with c 2 A)

Friday, July 19, 13

Hasuo (Tokyo)

PERA:
The Category of PERs

Obj. A PER X on A

Arr. The homset is

Thus:

Often put:

PERA(X,Y)

=
n

c 2 A

�

�

�

(x, x0) 2 X =) (cx, cx0) 2 Y

o

�
(c, c0)

�� ⇥x � |X|. (cx, c0x) � Y

All the valid codes c
(well-dfd?)

Modulo
“the same function”

[c] : X �! Y (with c 2 A)

PERA(X,Y) =
n

(c, c0)
�

�

�

(x, x0) 2 X =) (cx, c0x0) 2 Y

o

Friday, July 19, 13

Hasuo (Tokyo)

Type Constructors in
PERA

Linear category [Benton&Wadler,LICS’96][Bierman,TLCA’95]

Categorical model of linear logic/linear λ,
with

Monoidal closed with

Linear exponential comonad !

Thm. ([AL05])
If A is an a�ne LCA, then PERA is a linear category.
Furthermore, PERA has finite products and coproducts.

⇥, I,(

Friday, July 19, 13

Hasuo (Tokyo)

Type Constructors in
PERA

Linear category [Benton&Wadler,LICS’96][Bierman,TLCA’95]

Categorical model of linear logic/linear λ,
with

Monoidal closed with

Linear exponential comonad !

Thm. ([AL05])
If A is an a�ne LCA, then PERA is a linear category.
Furthermore, PERA has finite products and coproducts.

⇥, I,(

with full K: Kxy=x

Friday, July 19, 13

Hasuo (Tokyo)

Type Constructors in
PERA

Linear category [Benton&Wadler,LICS’96][Bierman,TLCA’95]

Categorical model of linear logic/linear λ,
with

Monoidal closed with

Linear exponential comonad !

Thm. ([AL05])
If A is an a�ne LCA, then PERA is a linear category.
Furthermore, PERA has finite products and coproducts.

⇥, I,(Not ⊗,
for distinction

with full K: Kxy=x

Friday, July 19, 13

Hasuo (Tokyo)

Type Constructors in
PERA

How to get operators

Like “programming in untyped λ”!

⇥,⇥,+, . . .

Friday, July 19, 13

Hasuo (Tokyo)

Type Constructors in
PERA

How to get operators

Like “programming in untyped λ”!

⇥,⇥,+, . . .

Friday, July 19, 13

Hasuo (Tokyo)

Type Constructors in
PERA

How to get operators

Like “programming in untyped λ”!

⇥,⇥,+, . . .

n := �fx.f(f · · · (fx) · · ·) Church numeral

K := KI

P := �xyz.zxy Paring

Pl := �w.wK Left projection

Pl := �w.wK Right projection

Friday, July 19, 13

Hasuo (Tokyo)

Type Constructors in
PERA

How to get operators

Like “programming in untyped λ”!

⇥,⇥,+, . . .

n := �fx.f(f · · · (fx) · · ·) Church numeral

K := KI

P := �xyz.zxy Paring

Pl := �w.wK Left projection

Pl := �w.wK Right projection

Pl(Pxy) = x

Pr(Pxy) = y

Friday, July 19, 13

Hasuo (Tokyo)

Type Constructors in
PERA

How to get operators

Like “programming in untyped λ”!

Cf. Combinaroty completeness

⇥,⇥,+, . . .

n := �fx.f(f · · · (fx) · · ·) Church numeral

K := KI

P := �xyz.zxy Paring

Pl := �w.wK Left projection

Pl := �w.wK Right projection

Pl(Pxy) = x

Pr(Pxy) = y

Friday, July 19, 13

Hasuo (Tokyo)

Type Constructors in
PERA

X 2 PERA

X ✓ A ⇥ A, sym., trans.

Friday, July 19, 13

Hasuo (Tokyo)

X ⇥ Y :=
n

(Pxy,Px0
y

0)
�

�

�

(x, x0) 2 X ^ (y, y0) 2 Y

o

X ⇥ Y :=
n

�

Pk1(Pk2u), Pk
0
1(Pk

0
2u

0)
�

�

�

�

(k1u, k
0
1u

0) 2 X ^ (k2u, k
0
2u

0) 2 Y

o

!X :=
n

(!x, !x0)
�

�

�

(x, x0) 2 X

o

X + Y :=
n

(PKx,PKx

0)
�

�

�

(x, x0) 2 X

o

[
n

(PKy,PKy

0)
�

�

�

(y, y0) 2 Y

o

X (Y :=
n

(c, c0)
�

�

�

(x, x0) 2 X =) (cx, c0x0) 2 Y

o

Type Constructors in
PERA

X 2 PERA

X ✓ A ⇥ A, sym., trans.

Friday, July 19, 13

Hasuo (Tokyo)

X ⇥ Y :=
n

(Pxy,Px0
y

0)
�

�

�

(x, x0) 2 X ^ (y, y0) 2 Y

o

X ⇥ Y :=
n

�

Pk1(Pk2u), Pk
0
1(Pk

0
2u

0)
�

�

�

�

(k1u, k
0
1u

0) 2 X ^ (k2u, k
0
2u

0) 2 Y

o

!X :=
n

(!x, !x0)
�

�

�

(x, x0) 2 X

o

X + Y :=
n

(PKx,PKx

0)
�

�

�

(x, x0) 2 X

o

[
n

(PKy,PKy

0)
�

�

�

(y, y0) 2 Y

o

X (Y :=
n

(c, c0)
�

�

�

(x, x0) 2 X =) (cx, c0x0) 2 Y

o

Type Constructors in
PERA

X 2 PERA

X ✓ A ⇥ A, sym., trans.multiplicative
and

Friday, July 19, 13

Hasuo (Tokyo)

X ⇥ Y :=
n

(Pxy,Px0
y

0)
�

�

�

(x, x0) 2 X ^ (y, y0) 2 Y

o

X ⇥ Y :=
n

�

Pk1(Pk2u), Pk
0
1(Pk

0
2u

0)
�

�

�

�

(k1u, k
0
1u

0) 2 X ^ (k2u, k
0
2u

0) 2 Y

o

!X :=
n

(!x, !x0)
�

�

�

(x, x0) 2 X

o

X + Y :=
n

(PKx,PKx

0)
�

�

�

(x, x0) 2 X

o

[
n

(PKy,PKy

0)
�

�

�

(y, y0) 2 Y

o

X (Y :=
n

(c, c0)
�

�

�

(x, x0) 2 X =) (cx, c0x0) 2 Y

o

Type Constructors in
PERA

X 2 PERA

X ✓ A ⇥ A, sym., trans.multiplicative
and

additive
and

Friday, July 19, 13

Hasuo (Tokyo)

X ⇥ Y :=
n

(Pxy,Px0
y

0)
�

�

�

(x, x0) 2 X ^ (y, y0) 2 Y

o

X ⇥ Y :=
n

�

Pk1(Pk2u), Pk
0
1(Pk

0
2u

0)
�

�

�

�

(k1u, k
0
1u

0) 2 X ^ (k2u, k
0
2u

0) 2 Y

o

!X :=
n

(!x, !x0)
�

�

�

(x, x0) 2 X

o

X + Y :=
n

(PKx,PKx

0)
�

�

�

(x, x0) 2 X

o

[
n

(PKy,PKy

0)
�

�

�

(y, y0) 2 Y

o

X (Y :=
n

(c, c0)
�

�

�

(x, x0) 2 X =) (cx, c0x0) 2 Y

o

Type Constructors in
PERA

X 2 PERA

X ✓ A ⇥ A, sym., trans.multiplicative
and

additive
and

CPS-style. k1, k2:
“access methods”

Friday, July 19, 13

Hasuo (Tokyo)

Summary:
Realizability

Affine LCA A
a · b, ! a, B,C, I, . . .

7�!
Linear category PERA

 (a,c ∈A)

Type constructors via “programming in untyped λ”

Symmetric monoidal closed

Finite product, coproduct

X
[c]

// Y

[a] � // [c · a]

⇥, I,(

Friday, July 19, 13

Hasuo (Tokyo)

Summary:
Realizability

Affine LCA A
a · b, ! a, B,C, I, . . .

7�!
Linear category PERA

 (a,c ∈A)

Type constructors via “programming in untyped λ”

Symmetric monoidal closed

Finite product, coproduct

X
[c]

// Y

[a] � // [c · a]

⇥, I,(Not ⊗,
for distinction

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr7�!f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

Coalgebraic trace semantics

Branching monad B

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr7�!f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators

Model of untyped calculus

Model of typed calculus

Coalgebraic trace semantics

Branching monad B

f
U

U

2 C(U,U)

g · f = g f

Friday, July 19, 13

Hasuo (Tokyo)

Summary:
Realizability

Affine LCA A
a · b, ! a, B,C, I, . . .

Linear category PERA

 (a,c ∈A)

Type constructors via “programming in untyped λ”

Symmetric monoidal closed

Finite product, coproduct

X
[c]

// Y

[a] � // [c · a]

⇥, I,(Not ⊗,
for distinction

Friday, July 19, 13

Hasuo (Tokyo)

Summary:
Realizability

Affine LCA A
a · b, ! a, B,C, I, . . .

Linear category PERA

 (a,c ∈A)

Type constructors via “programming in untyped λ”

Symmetric monoidal closed

Finite product, coproduct

X
[c]

// Y

[a] � // [c · a]

⇥, I,(Not ⊗,
for distinction

7�!

U

U

c

U

U

a

X

h i

// Y
h i

� // [c · a] =
" #

c a

Friday, July 19, 13

Hasuo (Tokyo)

Summary:
Realizability

Affine LCA A
a · b, ! a, B,C, I, . . .

Linear category PERA

 (a,c ∈A)

Type constructors via “programming in untyped λ”

Symmetric monoidal closed

Finite product, coproduct

X
[c]

// Y

[a] � // [c · a]

⇥, I,(Not ⊗,
for distinction

7�!

U

U

c

U

U

a

X

h i

// Y
h i

� // [c · a] =
" #

c a

Friday, July 19, 13

GoI

Part 4

Phil Scott.
Tutorial on Geometry of
Interaction, FMCS 2004.
Page 47/47

Friday, July 19, 13

GoI

Part 4

Phil Scott.
Tutorial on Geometry of
Interaction, FMCS 2004.
Page 47/47

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Friday, July 19, 13

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum
branching
monad

Friday, July 19, 13

Hasuo (Tokyo)

The Quantum Branching
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

Friday, July 19, 13

Hasuo (Tokyo)

The Quantum Branching
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

QOm,n :=

⇢
quantum operations,

from dim. m to dim. n

�

Friday, July 19, 13

Hasuo (Tokyo)

The Quantum Branching
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

QOm,n :=

⇢
quantum operations,

from dim. m to dim. n

�

Friday, July 19, 13

Hasuo (Tokyo)

Compare with

The Quantum Branching
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

PY =
n

c : Y � 2
o

DY =
n

c : Y ⇥ [0, 1]
�

�

�

X

y2Y

c(y) � 1
o

QOm,n :=

⇢
quantum operations,

from dim. m to dim. n

�

Friday, July 19, 13

Hasuo (Tokyo)

Compare with

The Quantum Branching
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

PY =
n

c : Y � 2
o

DY =
n

c : Y ⇥ [0, 1]
�

�

�

X

y2Y

c(y) � 1
o

QOm,n :=

⇢
quantum operations,

from dim. m to dim. n

�

Friday, July 19, 13

Hasuo (Tokyo)

Compare with

The Quantum Branching
Monad

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

PY =
n

c : Y � 2
o

DY =
n

c : Y ⇥ [0, 1]
�

�

�

X

y2Y

c(y) � 1
o

QOm,n :=

⇢
quantum operations,

from dim. m to dim. n

�

Friday, July 19, 13

Hasuo (Tokyo)

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

The Quantum
Branching Monad

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

Given
determines a quantum operation

Subject to the trace condition

x 2 X, y 2 Y, m 2 N, n 2 N

⇣
f(x)(y)

⌘

m,n
: Dm ! Dn

X
f! Y in K`(Q)

X
f! QY in Sets

Friday, July 19, 13

Hasuo (Tokyo)

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

The Quantum
Branching Monad

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

Given
determines a quantum operation

Subject to the trace condition

x 2 X, y 2 Y, m 2 N, n 2 N

⇣
f(x)(y)

⌘

m,n
: Dm ! Dn

Any opr. on
quantum data:

combination of

• preparation
• unitary transf.
• measurement

X
f! Y in K`(Q)

X
f! QY in Sets

Friday, July 19, 13

Hasuo (Tokyo)

The Quantum
Branching Monad

...

...

Given
determines a quantum
operation

trace cond.:

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.
X

f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Friday, July 19, 13

Hasuo (Tokyo)

The Quantum
Branching Monad

...

...

Given
determines a quantum
operation

trace cond.:

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

entrance exit
in

dim.
out
dim.

X
f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Friday, July 19, 13

Hasuo (Tokyo)

The Quantum
Branching Monad

...

...

Given
determines a quantum
operation

trace cond.:

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0

� 2 Dm

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

entrance exit
in

dim.
out
dim.

X
f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Friday, July 19, 13

Hasuo (Tokyo)

The Quantum
Branching Monad

...

...

Given
determines a quantum
operation

trace cond.:

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0

measure (and others)

� 2 Dm

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

entrance exit
in

dim.
out
dim.

X
f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Friday, July 19, 13

Hasuo (Tokyo)

The Quantum
Branching Monad

...

...

Given
determines a quantum
operation

trace cond.:

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0

measure (and others)

� 2 Dm

for each n

⇣
f(x)(y)

⌘

m,n
(�) 2 Dn

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

entrance exit
in

dim.
out
dim.

X
f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Friday, July 19, 13

Hasuo (Tokyo)

The Quantum
Branching Monad

...

...

Given
determines a quantum
operation

trace cond.:

x 2 X, y 2 Y, m 2 N, n 2 N

x

y y0X

y,n

Pr

 !
 1

Token led
to y

with dim. n

measure (and others)

� 2 Dm

for each n

⇣
f(x)(y)

⌘

m,n
(�) 2 Dn

QY =
n

c : Y �
Y

m,n2N
QOm,n

�

�

�

the trace condition

o

X

y2Y

X

n2N
tr
⇥�
c(y)

�
m,n

(�)
⇤
 1 ,

8m 2 N, 8� 2 Dm.

entrance exit
in

dim.
out
dim.

X
f! Y in K`(Q)

X
f! QY in Sets

⇣
f(x)(y)

⌘

m,n

Friday, July 19, 13

Hasuo (Tokyo)

Classical control

Quantum data

“Quantum Data,
Classical Control”

Illustration by N. Hoshino

Friday, July 19, 13

Hasuo (Tokyo)

Classical control

Quantum data

“Quantum Data,
Classical Control”

Illustration by N. Hoshino

1
p
2

Friday, July 19, 13

Hasuo (Tokyo)

Classical control

Quantum data

“Quantum Data,
Classical Control”

Illustration by N. Hoshino

1
p
2

+
1
p
2

Friday, July 19, 13

Hasuo (Tokyo)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

JMK =

Friday, July 19, 13

Hasuo (Tokyo)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

JMK =

Not just a token/
particle, but

quantum state!

Friday, July 19, 13

Hasuo (Tokyo)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

JMK =

Not just a token/
particle, but

quantum state!

Friday, July 19, 13

Hasuo (Tokyo)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

JMK =

“Quantum Data” Not just a token/
particle, but

quantum state!

Friday, July 19, 13

Hasuo (Tokyo)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

JMK =

“Quantum Data”

“Classical Control”

Not just a token/
particle, but

quantum state!

Friday, July 19, 13

Hasuo (Tokyo)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

JMK =

“Quantum Data”

“Classical Control”

Not just a token/
particle, but

quantum state!

“in which pipe”

(measurement ➜ case-distinction)
leads a token to different pipes

Friday, July 19, 13

Hasuo (Tokyo)

End of the Story?
No! All the technicalities are yet to come:

CPS interpretation (for partial measurement)

Result type: a final coalgebra in PERQ

Admissible PERs for recursion

...

On the next occasion :-)

Friday, July 19, 13

Hasuo (Tokyo)

Results
The monad Q qualifies as a “branching
monad”

The quantum GoI workflow leads to a
linear category PERQ

From which we construct an adequate
denotational model for a quantum λ-
calculus (a variant of Selinger & Valiron’s)

Friday, July 19, 13

Hasuo (Tokyo)

Conclusion: the Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum
branching
monad

Friday, July 19, 13

Hasuo (Tokyo)

Conclusion: the Categorical GoI Workflow

Traced monoidal category C
+ other constructs ➜ “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum
branching
monad

Thank you for your attention!Ichiro Hasuo (Dept. CS, U Tokyo)http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

Friday, July 19, 13

