Categorical Geometry of Interaction and Application to Higher-Order Quantum Computation

Based on: IH & N. Hoshino, Semantics of Higher-Order Quantum Computation via Geometry of Interaction, Proc. LICS 2011. (Extended ver. coming soon)

Ichiro Hasuo

University of Tokyo (JP)

Supported by Aihara Innovative Mathematical Modelling Project, FIRST Program, JSPS/CSTP

Naohiko Hoshino RIMS, Kyoto University (JP)

GaLoP (Queen Mary) 2013/7/19

Highlights

- * Categorical GOI [Abramsky, Haghverdi, Scott]
 - * Categorical axiomatization of
 - "when we can run a GoI business"
 - * not like "category of games"

Highlights

- * Categorical GOI [Abramsky, Haghverdi, Scott]
 - * Categorical axiomatization of
 - "when we can run a GoI business"
 - * not like "category of games"
- * Combined with coalgebras [Rutten, Jacobs, ...]
 - * Nice operational flavor!

Highlights

- * Categorical GOI [Abramsky, Haghverdi, Scott]
 - * Categorical axiomatization of
 - "when we can run a GoI business"
 - * not like "category of games"
- * Combined with coalgebras [Rutten, Jacobs, ...]
 - * Nice operational flavor!
- * Application: quantum λ-calculus [Selinger, Valiron, van Tonder, ...]
 - * "The categorical GoI workflow"

Hasuo (Tokyo)

Functional QPL: Some Contexts

Quantum Programming Language

Classical

Quantum

Programming language int i,j; int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}</pre>

Hasuo (Tokyo)

Quantum Programming Language

Classical

Quantum

Quantum circuit

(3)

(2)

Programming language int i,j; int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}</pre>

Quantum programming language

$$\begin{split} \mathbf{telep} &= \quad let \ \langle x,y \rangle = \mathbf{EPR} \, * \, in \\ \quad let \ f = \mathbf{BellMeasure} \, x \, in \\ \quad let \ g = \mathbf{U} \, y \\ \quad in \ \langle f,g \rangle. \end{split}$$

[Selinger-Valiron]

Hasuo (Tokyo)

Classical

Quantum

(2)

Programming language int i,j; int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}</pre>

Quantum programming language

$$\begin{split} \mathbf{telep} &= \quad let \ \langle x, y \rangle = \mathbf{EPR} \, * \, in \\ \quad let \ f = \mathbf{BellMeasure} \, x \, in \\ \quad let \ g = \mathbf{U} \, y \\ \quad in \ \langle f, g \rangle. \end{split}$$

[Selinger-Valiron]

Hasuo (Tokyo)

* For discovery of algorithms

* For reasoning, verification

Programming Language

Programming Language

* A real man's programming style

Programming Language

- * A real man's programming style
- * Heavily used in the financial sector

ICFP'11 Sponsers (Tokyo, Sep 2011)

Programming Language

- * A real man's programming style
- * Heavily used in the financial sector

* Mathematically nice and clean

- Aids semantical study
- Transfer from classical to quantum

*

Syntax

* Linear λ -calculus

+ quantum primitives [van Tonder, Selinger, Valiron, ...]

* Linearity for no-cloning

* Not allowed/typable:

* Duplicable (classical) data: by the **!-modality**

Syntax

Linear λ-calculus

Preparation/Unitary transformation/Measurement

+ quantum primitives [van Tonder, Selinger, Valiron, ...]

* Linearity for no-cloning

* Not allowed/typable:

* Duplicable (classical) data: by the **!-modality**

Syntax

Linear λ-calculus

Preparation/Unitary transformation/Measurement

+ quantum primitives [van Tonder, Selinger, Valiron, ...]

- * Linearity for no-cloning
 - * "Input can be used only once"
 - * Not allowed/typable: $\lambda x. \langle \text{meas } x, \text{ meas } x \rangle$

Syntax

Linear λ-calculus

Preparation/Unitary transformation/Measurement

+ quantum primitives [van Tonder, Selinger, Valiron, ...]

- * Linearity for no-cloning
 - * "Input can be used only once"
 - * Not allowed/typable:

 $\lambda x. \langle \operatorname{meas} x, \operatorname{meas} x \rangle$

Syntax

* Linear λ-calculus

Preparation/Unitary transformation/Measurement

+ quantum primitives [van Tonder, Selinger, Valiron, ...]

* Linearity for no-cloning

* Not allowed/typable: $\lambda x.$ (meas x, meas x
angle)

* Duplicable (classical) data: by the !-modality

Syntax

* Linear λ-calculus

Preparation/Unitary transformation/Measurement

+ quantum primitives [van Tonder, Selinger, Valiron, ...]

- * Linearity for no-cloning
 - * "Input can be used only once"
 - * Not allowed/typable: $\lambda x.$ (meas x, meas x
 angle)

* Duplicable (classical) data: by the !-modality

⊢tt:!bit

"arbitrary many copies"

Linear category: [Benton & Wadler, Bierman]
 (axioms for) a categorical model of linear λ-calculus

Defn.

A linear category $(\mathbb{C}, \otimes, \mathbf{I}, -\circ, !)$ is a sym. monoidal closed cat. with a linear exponential comonad !.

Linear category: [Benton & Wadler, Bierman]
 (axioms for) a categorical model of linear λ-calculus

Defn. A linear category $(\mathbb{C}, \otimes, \mathbf{I}, -\infty, !)$ is a sym. monoidal closed cat. with a linear exponential comonad !.

* For functional QPL? Is Hilb (or alike) a linear cat.?

* Hilb (or alike) is not a linear category

* Challenge: coexistence of quantum and classical data

Hasuo (Tokyo)

- Only partial results
 - Selinger & Valiron, '08]:

Hilb (or alike) is **not** a linear category *

monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, -\infty)$! (for duplicable data)

Hasuo (Tokyo)

Challenge: coexistence of quantum and classical data

- Only partial results
 - Selinger & Valiron, '08]:

Hilb (or alike) is **not** a linear category *

monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, -\infty)$! (for duplicable data)

Hasuo (Tokyo)

duality $V\cong V^{\perp}$

* Challenge: coexistence of quantum and classical data

- Only partial results
 - Selinger & Valiron, '08]:

Hilb (or alike) is **not** a linear category *

monoidal closed str. $(\mathbb{C}, \otimes, \mathbf{I}, -\infty)$! (for duplicable data)

Hasuo (Tokyo)

finite dim.

Challenge: coexistence of quantum and classical data

- Only partial results
 - Selinger & Valiron, '08]:

* Hilb (or alike) is **not** a linear category

monoidal closed str. $(\mathbb{C},\otimes,\mathbf{I},\multimap)$

finite dim.

! (for duplicable data)

infinite dim.

Hasuo (Tokyo)

Challenge: coexistence of quantum and classical data

Only partial results

duality $V\cong V^{\perp}$

Selinger & Valiron, '08]:

* Hilb (or alike) is **not** a linear category

monoidal closed str. $(\mathbb{C},\otimes,\mathbf{I},\multimap)$

finite dim.

duality $V\cong V^{\perp}$

! (for duplicable data)

infinite dim.

Challenge: coexistence of quantum and classical data

Hasuo (Tokyo)

* Hilb (or alike) is **not** a linear category

monoidal closed str. $(\mathbb{C},\otimes,\mathbf{I},\multimap)$

finite dim.

! (for duplicable data)

infinite dim.

Hasuo (Tokyo)

Challenge: coexistence of quantum and classical data

Only partial results

duality $V\cong V^{\perp}$

Selinger & Valiron, '08]:

"Quantum Data, Classical Control"

Quantum data

Illustration by N. Hoshino

Classical control

Hasuo (Tokyo)

"Quantum Data, Classical Control"

Illustration by N. Hoshino

Quantum data

Classical control

Hasuo (Tokyo)

"Quantum Data, Classical Control"

Illustration by N. Hoshino

Quantum data

1

 $-\frac{1}{\sqrt{2}}$

Classical control

Hasuo (Tokyo)

* GoI (Geometry of Interaction) [Girard '89]

tr(f) = $f_{XY} \sqcup \left(igcup_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
ight)$

An "implementation" of classical control

* GoI (Geometry of Interaction) [Girard '89]

tr(f) = $f_{XY} \sqcup \left(igcup_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
ight)$

An "implementation" of classical control

- * GoI (Geometry of Interaction) [Girard '89] An "implementation" of classical control
- $\mathsf{tr}(f) = \ f_{XY} \sqcup \left(\coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
 ight)$

Categorical Gol [Abramsky, Haghverdi, Scott '02] Its categorical axiomatics

* GoI (Geometry of Interaction) [Girard '89] An "implementation" of classical control

Categorical Gol [Abramsky, Haghverdi, Scott '02] Its categorical axiomatics

tr(f) =

- * We add a **quantum layer** to GoI
 - ★ → "Quantum data, classical control"
 - Used: theory of coalgebra [Hasuo, Jacobs, Sokolova '07] [Jacobs '10]

The Categorical GoI Workflow

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

* Provides denotational semantics $\llbracket M rbracket$ for linear λ -term M

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

* Provides denotational semantics $\llbracket M
rbracket$ for linear λ -term M

Hasuo (Tokyo)

- ***** In this talk:
 - * Its categorical formulation [Abramsky, Haghverdi, Scott '02]
 - * "The GoI Animation"

* Function application $\llbracket MN rbracket$

* by "parallel composition + hiding"

Friday, July 19, 13

Friday, July 19, 13

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

Geometry of Interaction

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $[\![M]\!]$ for linear λ -term M

Geometry of Interaction

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $[\![M]\!]$ for linear λ -term M
 - Similar to game semantics [AJM/HO]

Geometry of Interaction

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $[\![M]\!]$ for linear λ -term M
 - * Similar to game semantics [AJM/HO]
 - * Linearity: simplicity; no-cloning
GoI:

Geometry of Interaction

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $\llbracket M
 rbracket$ for linear λ -term M
 - * Similar to game semantics [AJM/HO]
 - Linearity: simplicity; no-cloning
 - * Girard translation < 🖌

$$A \rightarrow B$$

as $!A \multimap B$

GoI:

Geometry of Interaction

- * J.-Y. Girard, at Logic Colloquium '88
- * Provides denotational semantics $\llbracket M
 rbracket$ for linear λ -term M
 - * Similar to game semantics [AJM/HO]
 - Linearity: simplicity; no-cloning
 - * Girard translation $A \to B$ as $!A \multimap B$

Tokyo

- * "Geometry":
 - invariant under β -reductions -

GoI:

Geometry of * C*-algebra presentation * Token machine presentation

Tokyo

- * J.-Y. Girard, at Logic Conoquian oo
- * Provides denotational semantics $\llbracket M
 rbracket$ for linear λ -term M
 - * Similar to game semantics [AJM/HO]
 - Linearity: simplicity; no-cloning
 - * Girard translation $A \to B$ as $!A \multimap B$
- * "Geometry":
 - invariant under β -reductions -

Categorical GoI

* Axiomatics of GoI in the categorical language

* Our main reference:

[AHS02] S. Abramsky, E. Haghverdi, and
 P. Scott, "Geometry of interaction and linear combinatory algebras," MSCS 2002

Especially its technical report version
 (Oxford CL), since it's a bit more detailed

Hasuo (Tokyo)

Traced monoidal category ${\ensuremath{\mathbb C}}$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Hasuo (Tokyo)

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Applicative str. + combinators

Hasuo (Tokyo)

* Model of untyped calculus

Linear combinatory algebra

Linear category

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Hasuo (Tokyo)

Categorical GoI [AHS02]

- Applicative str. + combinators
 Model of untyped calculus
- Linear combinatory algebra
 - Realizability

Linear category

Model of typed calculus

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Applicative str. + combinators

Model of untyped calculus

PER, ω-set, assembly, ...

"Programming in untyped λ''

Hasuo (Tokyo)

Linear category

Model of typed calculus

*

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

- Applicative str. + combinators
- Model of untyped calculus

Linear combinatory algebra

Realizability

Linear category

- PER, w-set, assembly, ...
- "Programming in untyped λ "

Hasuo (Tokyo)

Model of typed calculus

Hasuo (Tokyo)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
Wx ! y=x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome)

Hasuo (Tokyo)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (*combinators*) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (*combinators*) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

What we want (outcome)

Hasuo (Tokyo)

Model of
 untyped linear λ

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome)

- * Model of untyped linear λ
- ***** a ∈ A ≈
 - closed linear λ-term

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x = ! ! x$	Comultiplication
F ! x ! y = !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome) * Model of untyped linear λ $* a \in A$ ~ closed linear λ -term * No S or K (linear!) * Combinatory completeness: e.q. $\lambda xyz. zxy$ designates an elem. of A

What we use (ingredient)

Hasuo (Tokyo)

GoI situation

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \ : \ FF \lhd F \ : \ e'$	Comultiplication
$d~:~\mathrm{id}\lhd F~:~d'$	Dereliction
$c \; : \; F \otimes F \lhd F \; : \; c'$	Contraction
$w ~:~ K_I \lhd F ~:~ w'$	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} \lhd F$: d'	Dereliction
$e : F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} \lhd F$: d'	Dereliction
$e : F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Monoidal category (\mathbb{C}, \otimes, I) *

* String diagrams

 $\frac{A \xrightarrow{f} B \quad C \xrightarrow{g} D}{A \otimes C \xrightarrow{f \otimes g} B \otimes D}$

 $h \circ (f \otimes g)$

 \boldsymbol{h}

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} ee F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Traced monoidal category

* "feedback"

that is

String Diagram vs. "Pipe Diagram"

* I use two ways of depicting partial functions $\mathbb{N} \longrightarrow \mathbb{N}$

* Category Pfn of partial functions

* Arr. A partial function

$$\frac{X \to Y \text{ in } \mathbf{Pfn}}{X \rightharpoonup Y, \text{ partial function}}$$

* Category Pfn of partial functions

* Obj. A set X

* Arr. A partial function

$$\frac{X \to Y \text{ in } \mathbf{Pfn}}{X \rightharpoonup Y, \text{ partial function}}$$

* is traced symmetric monoidal

How?

*

$\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$

How?

How?

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\mathsf{tr}(f)} Y \quad \text{in Pfn}}$

How?

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in Pfn}}$

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in Pfn}}$

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

* Trace operator:

tr(f) = $f_{XY} \sqcup \left(\coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
ight)$

Tokyo)

*

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn}}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in Pfn}}$

* Trace operator:

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ oldsymbol{\perp} & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

How?

Execution formula (Girard)

Partiality is essential (infinite loop)

Tokyo)

tr(f) = $f_{XY} \sqcup \left(\coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
ight)$

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Traced sym. monoidal cat.

* Where one can "feedback"

* Why for GoI?

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

 Traced sym. monoidal cat.

Where one can "feedback"

Why for GoI?

Leading example: Pfn

N

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Defn. (Retraction) A *retraction* from X to Y,

 $f:X \lhd Y:g$,

"embedding"

"projection"

such that $g \circ f = \mathrm{id}_X$.

***** Functor
$$F$$

* For obtaining $!: A \rightarrow A$
Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} \lhd F$: d'	Dereliction
$e : F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

***** The reflexive object U

* Retr. $U \otimes U \xleftarrow{j} U$ \boldsymbol{k}

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} arphi F$: d'	Dereliction
$e : F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

***** The reflexive object U

* Retr. $U \otimes U \subset U$

 \boldsymbol{k}

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

Defn. (GoI situation [AHS02]) A *GoI situation* is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

* Example in Pfn: $\mathbb{N} \in \mathbf{Pfn}$, with $\mathbb{N} + \mathbb{N} \cong \mathbb{N}$, $\mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}$

GoI Situation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$e \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Categorical axiomatics of the "GoI animation"

(Pfn, $\mathbb{N} \cdot _$, \mathbb{N})

tr(f) tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Categorical axiomatics of the "GoI animation"

Example:

 $(Pfn, \mathbb{N} \cdot _, \mathbb{N})$

tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the collowing retractions (which are monoidal natural transformations).

For !, via

- $e : FF \triangleleft F : e'$
- $w \; : \; K_{I} \lhd F \; : \; w'$ We

Here K_I is the constant functor into the

• $U \in \mathbb{C}$ is an object (called *reflexive object*), the following retractions.

Categorical axiomatics of the "GoI animation"

Example:

 $(Pfn, \mathbb{N} \cdot _, \mathbb{N})$

tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the collowing retractions (which are monoidal natural transformations).

De

- $e \ : \ FF \lhd F \ : \ e' \ d \ : \ \mathrm{id} \lhd F \ : \ d'$

Here K_I is the constant functor into the functor into

• $U \in \mathbb{C}$ is an object (called *reflexive object*) the following retractions.

For ! , via

Example:

 $(\mathbf{Pfn}, \mathbb{N} \cdot _, \mathbb{N})$

* Categorical axiomatics of

the "GoI animation"

Hasuo (Tokyo)

Friday, July 19, 13

tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the rellowing retractions (which are monoidal natural transformations).

De

- $e \ : \ FF \lhd F \ : \ e' \ d \ : \ \mathrm{id} \lhd F \ : \ d'$

Here K_I is the constant functor into the

• $U \in \mathbb{C}$ is an object (called *reflexive object*) the following retractions.

For ! , via

 $\stackrel{F}{\longmapsto} \stackrel{f}{\stackrel{f}{=}}$

* Example:

 $(\mathbf{Pfn}, \mathbb{N} \cdot , \mathbb{N})$

Hasuo (Tokyo)

* Categorical axiomatics of

the "GoI animation"

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Hasuo (Tokyo)

 $egin{array}{c} egin{array}{c} egin{array}$

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Friday, July 19, 13

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Friday, July 19, 13

***** Combinator Bxyz = x(yz)

Figure 7: Composition Combinator B

from [AHS02]

छाडि = दी

Hasuo (Tokyo)

***** Combinator Bxyz = x(yz)

***** Combinator Bxyz = x(yz)

Figure 7: Composition Combinator B

from [AHS02]

***** Combinator Bxyz = x(yz)

Hasuo (Tokyo)

Friday, July 19, 13

Summary: Categorical GoI

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \ : \ FF \lhd F \ : \ e'$	Comultiplication
$d~:~\mathrm{id} \lhd F~:~d'$	Dereliction
$c \; : \; F \otimes F \lhd F \; : \; c'$	Contraction
$w \; : \; K_I \lhd F \; : \; w'$	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

 Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

Hasuo (Tokyo)

carries a canonical LCA structure.

Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

* Strategy: find a TSMC!

* "Wave-style" examples

★ ⊗ is Cartesian product(-like)

* in which case,

trace \approx fixed point operator [Hasegawa/Hyland]

* An example:
$$ig((\omega ext{-}\operatorname{Cpo}, imes,1),\ (_)^{\mathbb{N}},\ A^{\mathbb{N}}ig)$$

(... less of a dynamic flavor)

Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

- * "Particle-style" examples
 - * Obj. $X \in C$ is set-like; \otimes is coproduct-like
 - * The GoI animation is valid
 - * Examples:
 - Partial functions

$$(Pfn, +, 0), \mathbb{N} \cdot _, \mathbb{N}$$

- ***** Binary relations ((Rel, +, 0
- $((\operatorname{Rel},+,0),\,\mathbb{N}\cdot_,\,\mathbb{N})$
 - * "Discrete stochastic relations" $((DSRel, +, 0), \mathbb{N} \cdot _, \mathbb{N})$

Why Categorical Generalization?: Examples Other Than Pfn [AHSO2]

Why Categories of sets and (functions with different branching/partiality) Examples

Why Categories of sets and (functions with different branching/partiality) Examples

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- * Pfn (partial functions)
 - * Pipes can be stuck
 - Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

- * Pfn (partial functions)
 - * Pipes can be stuck
- * Rel (relations)
 - * Pipes can branch
- * DSRel
 - Pipes can branch probabilistically

Why Categories of sets and (functions with different branching/partiality) Examples of the sets and Examples of sets and Interview of sets and Examples of sets and The sets a

Why Catego Kl(B) for different branching monads B Example

The Coauthor

* Naohiko Hoshino

* DSc (Kyoto, 2011)

 Supervisor: Masahito "Hassei" Hasegawa

* Currently at RIMS, Kyoto U.

http://www.kurims.kyoto-u.ac.jp/ ~naophiko/

Intermission

(If time allows)

Coalgebraic Trace Semantics

Trace Semantics of

Systems

$\mathsf{tr}(x) = \{a, ab, abb, \dots\} = ab^*$

* Non-deterministic branching: sign. functor is $\mathcal{P}(1 + \Sigma \times _)$

Branching structure matters. Can I choose later?

Trace semantics

Branching structure does not matter. Anyway we'll get the same sets of food.

Bisimilarity

Branching structure matters. Can I choose later?

Trace semantics

Branching structure does not matter. Anyway we'll get the same sets of food.

Thm. Let F be an endofunctor, and B be a monad, both on **Sets**. Assume:

- 1. We have a distributive law $\lambda : FB \Rightarrow BF$.
- 2. The functor F preserves ω -colimits, yield-FAing an initial algebra $\cong \downarrow \alpha$.

3. The Kleisli category $\mathcal{K}\ell(B)$ is \mathbf{Cpo}_{\perp} enriched and composition in $\mathcal{K}\ell(B)$ is leftstrict.

Then:

1. F lifts to \overline{F} : $\mathcal{K}\ell(B) \to \mathcal{K}\ell(B)$, with $JF = \overline{F}J$.

2. $\overline{F}A$ $\pm \eta \circ \alpha$ is an initial algebra in $\mathcal{K}\ell(B)$.

3. In $\mathcal{K}\ell(B)$ we have initial algebra-final coal-

gebra coincidence and $egin{array}{c} \overline{F}A \ \uparrow(\eta\circ\alpha)^{-1} & ext{is a} \ A \end{array}$

final coalgebra.

Coinduction in a Kleisli Category [IH, Jacobs, Sokolova, '07] $X \longrightarrow Y$ in $\mathcal{K}\ell(B)$

 $X \longrightarrow BY$ in Sets

* Initial algebra lifts from Sets to Kl(B)

* diagram chasing [Johnstone]

Thm mona	a. Let F be an endofunctor, and B be an ad, both on Sets . Assume:
1.	We have a distributive law $\lambda : FB \Rightarrow BF$.
2.	The functor F preserves ω -colimits, yield- FA ing an initial algebra $\cong \downarrow \alpha$. A
3.	The Kleisli category $\mathcal{K}\ell(B)$ is $\operatorname{Cpo}_{\perp}$ - enriched and composition in $\mathcal{K}\ell(B)$ is left- strict.
Then	
1.	F lifts to \overline{F} : $\mathcal{K}\ell(B) \to \mathcal{K}\ell(B)$, with $JF = \overline{F}J$.
2.	$egin{aligned} \overline{F}A \ & \downarrow \eta \circ lpha \end{aligned} {is an initial algebra in $\mathcal{K}\ell(B)$.} A \end{aligned}$
3.	In $\mathcal{K}\ell(B)$ we have initial algebra-final coal-
	gebra coincidence and $\overline{F}A$ $\uparrow(\eta \circ \alpha)^{-1}$ is a
	final coalgebra.

Coinduction in a Kleisli Category [IH, Jacobs, Sokolova, '07] $X \longrightarrow Y$ in $\mathcal{K}\ell(B)$ $X \longrightarrow BY$ in Sets

* Initial algebra lifts from Sets to Kl(B)

* diagram chasing [Johnstone]

Thm. Let F be an endofunctor, and B be a monad, both on Sets. Assume: 1. We have a distributive law $\lambda : FB \Rightarrow BF$. 2. The functor F preserves ω -colimits, yield-FA ing an initial algebra $\cong \downarrow \alpha$. 3. The Kleisli category $\mathcal{K}\ell(B)$ is Cpo₁enriched and composition in $\mathcal{K}\ell(B)$ is leftstrict. Then: 1. F lifts to \overline{F} : $\mathcal{K}\ell(B) \to \mathcal{K}\ell(B)$, with $JF = \overline{F}J.$ $\overline{F}A$ 2. $\pm \eta \circ \alpha$ is an initial algebra in $\mathcal{K}\ell(B)$. 3. In $\mathcal{K}\ell(B)$ we have initial algebra-final coal-FA gebra coincidence and $\uparrow(\eta \circ \alpha)^{-1}$ is a final coalgebra.

* In Kl(B) we have IA-FC coincidence

* typical of "domain-theoretic" categories

* "Algebraically compact" [Freyd]

Coinduction in a Kleisli Category

* Separation between B and F

* E.g. $B = \mathcal{P}, F = 1 + \Sigma \times (_)$

* Separation between B and F

Hasuo (Tokyo)

* Separation between B and F

Examples

- * A branching monad B:
 - * Lift monad $\mathcal{L} = 1 + (_)$, powerset monad \mathcal{P} ,
 - subdistribution monad ${\cal D}$
 - * Precisely those in

Hasuo (Tokyo)

* A functor F: polynomial functors

Thm. ([Jacobs,CMCS10]) Given a "branching monad" **B** on Sets, the monoidal category

 $(\mathcal{K}\ell(B),+,0)$

is a traced symmetric monoidal category.

Cor. $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_{-}, \mathbb{N})$ is a GoI situation.

Thm. ([Jacobs,CMCS10]) Given a "branching monad" **B** on Sets, the monoidal category

 $(\mathcal{K}\ell(B),+,0)$

is a traced symmetric monoidal category.

Cor. $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_{-}, \mathbb{N})$ is a GoI situation.

Thm. ([Jacobs,CMCS10]) Given a "branching monad" **B** on **Sets**, the monoidal category

 $(\mathcal{K}\ell(B),+,0)$

is a traced symmetric monoidal category.

Cor.

 $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_{-}, \mathbb{N})$ is a GoI situation.

Proof. We need

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in } \mathcal{K}\ell(T)}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in } \mathcal{K}\ell(T)}$

• $X + Z \xrightarrow{f} Y + Z \xrightarrow{\kappa} Y + (X + Z)$ is a $Y + (_)$ -coalgebra

• $Y + \mathbb{N} \cdot Y$ • $\cong \downarrow \alpha$ is an initial algebra in Sets $\mathbb{N} \cdot Y$

• Therefore in $\mathcal{K}\ell(T)$:

$$egin{aligned} Y + (X+Z) & --- & Y + \mathbb{N} \cdot Y \\ \kappa \circ f \uparrow & \uparrow \text{final} \\ X + Z & -- & +-- & \rightarrow \mathbb{N} \cdot Y \\ \kappa_1 \uparrow & \mathsf{tr}(c) & \downarrow \nabla \\ X & Y \end{aligned}$$
Hasuo (Tokyo)

Thm. ([Jacobs,CMCS10]) Given a "branching monad" **B** on **Sets**, the monoidal category

 $(\mathcal{K}\ell(B),+,0)$

is a traced symmetric monoidal category.

Cor.

 $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_{-}, \mathbb{N})$ is a GoI situation.

Proof. We need

 $\frac{X + Z \xrightarrow{f} Y + Z \quad \text{in } \mathcal{K}\ell(T)}{X \xrightarrow{\operatorname{tr}(f)} Y \quad \text{in } \mathcal{K}\ell(T)}$

• $X + Z \xrightarrow{f} Y + Z \xrightarrow{\kappa} Y + (X + Z)$ is a $Y + (_)$ -coalgebra

• $Y + \mathbb{N} \cdot Y$ • $\cong \downarrow \alpha$ is an initial algebra in Sets $\mathbb{N} \cdot Y$

• Therefore in $\mathcal{K}\ell(T)$:

$$egin{aligned} Y + (X+Z) & --- & Y + \mathbb{N} \cdot Y \\ \kappa \circ f \uparrow & \uparrow \text{final} \\ X + Z & -- & +-- & \rightarrow \mathbb{N} \cdot Y \\ \kappa_1 \uparrow & \mathsf{tr}(c) & \downarrow \nabla \\ X & Y \end{aligned}$$
Hasuo (Tokyo)

Traced monoidal category C + other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category ${\mathbb C}$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy LCA

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy LCA

Fancy

TSMC

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy monad

Fancy TSMC

Fancy LCA

What is Fancy, Nowadays?

What is Fancy, Nowadays?

- * Biology?
- * Hybrid systems?
 - * Both discrete and continuous data, typically in cyber-physical systems (CPS)
 - Our approach via non-standard analysis [Suenaga, IH, ICALP'11] [IH, Suenaga, CAV'12] [Suenaga, Sekine, IH, POPL'13]

Hasuo (Tokyo)

* Quantum?

* Yes this worked!

Realizability: from Untyped to Typed

Realizability

- * Dates back to Kleene
- Cf. the Brouwer-Heyting-Kolmogorov (BHK) interpretation
 - * A p'f of $A \wedge B$ is a pair: (p'f of A, p'f of B)
 - ★ A p'f of A→B is a function carrying (p'f of A) to (p'f of B)

Realizability

- * Our technical view on realizability: a construction
 - * from a combinatory algebra,
 - * of a categorical model of a typed calculus
- * Here: construct a linear category from an LCA

References:

[AL05] S. Abramsky and M. Lenisa, "Linear realizability and full completeness for typed lambda-calculi," APAA 2005.

Hasuo (Tokyo)

[Hos07] N. Hoshino, "Linear realizability," CSL 2007.

Realizability

Hasuo (Tokyo)

* Either by w-sets (intuitive) or
 by PERs (tech. convenient)

Defn. Given an LCA A, an ω -set is a pair

$$ig(S, \quad r:S o \mathcal{P}_+(A)ig)$$

where

- S is a set;
- for each $x \in S$, the nonempty subset $r(x) \subseteq A$ is the set of *realizers*.
★ Either by w-sets (intuitive) or
 by PERs (tech. convenient)

Defn. Given an LCA A, an ω -set is a pair $(S, r: S \to \mathcal{P}_+(A))$

where

- **S** is a set;
- for each $x \in S$, the nonempty subset $r(x) \subseteq A$ is the set of *realizers*.

Could as well be a **partial combinatory algebra**. Its examples:

***** N with $n \cdot m = comp(n,m)$

Hasuo (Tokyo)

* { closed λ -terms }

* Either by w-sets (intuitive) or
 by PERs (tech. convenient)

Defn. Given an LCA A, an ω -set is a pair

$$ig(S, \quad r:S o \mathcal{P}_+(A)ig)$$

where

• \boldsymbol{S} is a set;

• for each $x \in S$, the nonempty subset $r(x) \subseteq A$ is the set of *realizers*.

Could as well be a **partial combinatory algebra**. Its examples:

- ***** N with $n \cdot m = comp(n,m)$
- * { closed λ -terms }

- $a \in r(x)$:
 - * "realizes" x, or
 - "witnesses existence of" x

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

 $egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$

is the *domain* of X.

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

$$egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$$

is the *domain* of X.

* PER = eq. rel. - refl.

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

 $egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$

is the *domain* of X.

* PER = eq. rel. - refl.

* An eq. rel. when restricted to |X|

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

 $egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$

is the *domain* of X.

* PER = eq. rel. - refl.

* An eq. rel. when restricted to |X|

* PER to
$$\omega$$
-set:

$$\left(\begin{array}{ccc} |X|/X, & |X|/X \stackrel{r}{\longrightarrow} \mathcal{P}_+(A) \end{array}
ight)$$

with $[a] \stackrel{r}{\longmapsto} \{b \mid (a,b) \in X\}$

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

 $egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$

is the *domain* of X.

* PER = eq. rel. - refl.

* An eq. rel. when restricted to |X|

* PER to
$$\omega$$
-set:

$$\left(\begin{array}{ccc} |X|/X, & |X|/X \stackrel{r}{\longrightarrow} \mathcal{P}_+(A) \end{array}
ight)$$

with $[a] \stackrel{r}{\longmapsto} \{b \mid (a,b) \in X\}$

* Also: ω -set to PER

PERA:

The Category of PERs

* Obj. A PER X on A

* Arr. The homset is

 $\operatorname{PER}_A(X,Y)$ $=\left\{ c\in A \ \Big| \ (x,x')\in X \Longrightarrow (cx,cx')\in Y
ight\}$ $\{(c,c') \mid \forall x \in |X|. \ (cx,c'x) \in Y\}$

PERA: The Category of PERs

* Obj. A PER X on A

* Arr. The homset is All the valid codes c (well-dfd?)

 $=\left\{ c\in A\,\Big|\,(x,x')\in X\Longrightarrow(cx,cx')\in Y
ight\}$

 $ig\{(c,c')\,ig|\,orall x\in |X|.\;(cx,c'x)\in Yig\}$

Hasuo (Tokyo)

 $\operatorname{PER}_A(X,Y)$

Friday, July 19, 13

Thm. ([AL05]) If A is an affine LCA, then PER_A is a linear category. Furthermore, PER_A has finite products and coproducts.

Linear category [Benton&Wadler,LICS'96][Bierman,TLCA'95]

Categorical model of linear logic/linear λ,
 with

Hasuo (Tokyo)

* Monoidal closed with $oxtimes, \mathbf{I}, -\!\!\!\circ$

* Linear exponential comonad !

Type Constructors in

with full K: Kxy=x

Thm. ([A L05])If A is an affine LCA, then PER_A is a linear category. Furthermore, PER_A has finite products and coproducts.

* Linear category [Benton&Wadler,LICS'96][Bierman,TLCA'95]

PERA

Categorical model of linear logic/linear λ,
 with

Hasuo (Tokyo)

* Monoidal closed with $oxtimes, \mathbf{I}, -\circ$

* Linear exponential comonad !

Friday, July 19, 13

Type Constructors in

PERA

with full K: Kxy=x

Thm. ([A L05])If A is an affine LCA, then PER_A is a linear category. Furthermore, PER_A has finite products and coproducts.

Linear category [Benton&Wadler,LICS'96][Bierman,TLCA'95]

Categorical model of linear logic/linear λ,
 with

* Monoidal closed with $oxtimes, \mathbf{I}, -\!\!\circ$ =

Not \otimes , for distinction

Hasuo (Tokyo)

* Linear exponential comonad !

Type Constructors in PERA

- * How to get operators $\boxtimes, \times, +, \dots$
 - * Like "programming in untyped λ'' !

Type Constructors in PERA

- * How to get operators $\boxtimes, \times, +, \dots$
 - * Like "programming in untyped λ'' !

* How to get operators $\boxtimes, \times, +, \dots$

* Like "programming in untyped λ'' !

$\underline{n} := \lambda f x. f(f \cdots (f x) \cdots)$	Church numeral
$\overline{K} := KI$	
$P := \lambda x y z . z x y$	Paring
$P_{I} := \lambda w.wK$	Left projection
$P_{I} := \lambda w.w\overline{K}$	Right projection

* How to get operators $\boxtimes, \times, +, \dots$

* Like "programming in untyped λ'' !

 $\underline{n} := \lambda f x. f(f \cdots (f x) \cdots)$ Church numeral $\overline{\mathsf{K}} := \mathsf{K}\mathsf{I}$ PrimeParing $\mathsf{P} := \lambda xyz.zxy$ Paring $\mathsf{P}_{\mathsf{I}} := \lambda w.w\mathsf{K}$ Left projection $\mathsf{P}_{\mathsf{I}} := \lambda w.w\overline{\mathsf{K}}$ Right projection

$$\mathsf{P}_{\mathsf{I}}(\mathsf{P} x y) = x$$

 $\mathsf{P}_{\mathsf{r}}(\mathsf{P} x y) = y$

* How to get operators $\boxtimes, \times, +, \dots$

* Like "programming in untyped λ'' !

 $\underline{n} := \lambda f x. f(f \cdots (f x) \cdots)$ Church numeral $\overline{\mathsf{K}} := \mathsf{K}\mathsf{I}$ P $\mathsf{P} := \lambda xyz.zxy$ Paring $\mathsf{P}_{\mathsf{I}} := \lambda w.w\mathsf{K}$ Left projection $\mathsf{P}_{\mathsf{I}} := \lambda w.w\overline{\mathsf{K}}$ Right projection

* Cf. Combinaroty completeness

 $\mathsf{P}_{\mathsf{I}}(\mathsf{P} x y) = x$ $\mathsf{P}_{\mathsf{r}}(\mathsf{P} x y) = y$

Type Constructors in
$$PER_A$$
 $X \in PER_A$
 $\overline{X \subseteq A \times A, sym., trans.}$

$$X oxtimes Y \; := \; \Big\{ \left(\mathsf{P} x y, \mathsf{P} x' y'
ight) \; \Big| \; (x,x') \in X \land (y,y') \in Y \Big\}$$

 $X imes Y := \left\{ \left(\mathsf{P}k_1(\mathsf{P}k_2u), \, \mathsf{P}k_1'(\mathsf{P}k_2'u') \,
ight) \,
ight\}$

$$(k_1u,k_1'u')\in X\wedge (k_2u,k_2'u')\in Y$$

musuo (Tokyo)

$$\left| X
ight| := \left\{ \left({\left| {x,!x'}
ight) }
ight| \left({x,x'}
ight) \in X
ight\}$$

 $X+Y \ := \ \Big\{ \left(\mathsf{PK}x,\mathsf{PK}x'
ight) \ \Big| \ (x,x') \in X \Big\}$

$$i \left\{ \left(\mathsf{PK}y,\mathsf{PK}y'
ight) \;\middle|\; (y,y') \in Y
ight\}$$

 $X \multimap Y \; := \; \Big\{ (c,c') \, \Big| \, (x,x') \in X \Longrightarrow (cx,c'x') \in Y \Big\}$

Type Constructors in
Multiplicative
and
$$PERA \quad \frac{X \in PER_A}{X \subseteq A \times A, \text{ sym., trans.}}$$

$$X \boxtimes Y := \left\{ (Pxy, Px'y') \mid (x, x') \in X \land (y, y') \in Y \right\}$$

$$X \times Y := \left\{ (Pk_1(Pk_2u), Pk'_1(Pk'_2u')) \mid \\ (k_1u, k'_1u') \in X \land (k_2u, k'_2u') \in Y \right\}$$

$$!X := \left\{ (!x, !x') \mid (x, x') \in X \right\}$$

$$X + Y := \left\{ (PKx, PKx') \mid (x, x') \in X \right\}$$

$$\cup \left\{ (PKy, PKy') \mid (y, y') \in Y \right\}$$

$$X \multimap Y := \left\{ (c, c') \mid (x, x') \in X \Longrightarrow (cx, c'x') \in Y \right\}$$
(Tokyo)

$$\begin{array}{c} \text{Further and} \\ \text{For each of the second structure of the second struc$$

Summary: Realizability

Affine LCA A

 $a \cdot b$, !a, B, C, I, \dots

Linear category PER_A

* Type constructors via "programming in untyped λ''

- * Symmetric monoidal closed $oxtimes, \mathbf{I}, -\!\circ$
- Finite product, coproduct

Summary: Realizability Affine LCA A $a \cdot b$, !a, B, C, I, \dots Linear category PER_A * $[c] \qquad (a,c\in A)$

* Type constructors via "programming in untyped λ''

* Symmetric monoidal closed $oxtimes, \mathbf{I}, \multimap$ 🔫

Not \otimes , for distinction

suo (Tokyo)

Finite product, coproduct

 $[a] \longmapsto [c \cdot a]$

Friday, July 19, 13

Summary: Realizability

Affine LCA A

 $a \cdot b$, !a, B, C, I, \dots

Linear category PER_A

- * Type constructors via "programming in untyped λ''
 - * Symmetric monoidal closed $oxtimes, \mathbf{I}, \multimap$ 🛹

Not \otimes , for distinction

suo (Tokyo)

Finite product, coproduct

Friday, July 19, 13

Part 4 Phil Scott. Tutorial on Geometry of Interaction, FMCS 2004. Page 47/47

Future Directions . GoI2: Non-converging algos (untyped 2-calc (PCF) - Uses more topological info on operation algo -GoI3: Uses additives & additive prog nots -Von Neumann GOI 4 (last month): algebras: EX(f, z) fr f ab (not coming from proof) - Quantum GoI?

Future Directions Part 4 Phil Scott. Tutorial on Geometry of Interaction, FMCS 2004. Page 47/47

. GoI2: Non-converging algos (untyped 2-calc (PCF) - Uses more topological info on operation algo -GoI3: Uses additives & additive prog nots --Von Neumann GOI 4 (last month): algebras: EX(f, z) fr f ab (not toming from proof) Quantum GoI?

The Categorical GoI Workflow

Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category ${\mathbb C}$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Friday, July 19, 13

The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Quantum branching monad

Quantum TSMC

Quantum LCA

Model of quantum languagetasuo (Tokyo)

The Quantum Branching Monad

 $egin{aligned} \mathcal{Q}Y &= \left\{ c:Y
ightarrow \prod_{m,n \in \mathbb{N}} \mathrm{QO}_{m,n} \ \Big| \ ext{the trace condition}
ight\} \ &\sum_{y \in Y} \sum_{n \in \mathbb{N}} \mathrm{tr}ig[(c(y)ig)_{m,n}(
ho) ig] \leq 1 \ , \end{aligned}$

 $\forall m \in \mathbb{N}, \ \forall
ho \in D_m.$

 $X \stackrel{f}{\rightarrow} Y$ in $\mathcal{K}\ell(\mathcal{Q})$

 $X \xrightarrow{f} \mathcal{Q}Y$ in Sets

determines a quantum operation

$$\left(f(x)(y)\right)_{m,n}$$
 : $D_m \to D_n$

* Subject to the trace condition

Hasuo (Tokyo)

"Quantum Data, Classical Control"

Quantum data

Illustration by N. Hoshino

Classical control

Hasuo (Tokyo)

"Quantum Data, Classical Control"

Illustration by N. Hoshino

Quantum data

Classical control

Hasuo (Tokyo)

"Quantum Data, Classical Control"

Illustration by N. Hoshino

Quantum data

1

 $-\frac{1}{\sqrt{2}}$

Classical control

Hasuo (Tokyo)

Quantum Geometry of Interaction

Friday, July 19, 13

End of the Story?

- * No! All the technicalities are yet to come:
 - * CPS interpretation (for partial measurement)
 - * Result type: a final coalgebra in PER_Q
 - * Admissible PERs for recursion
 - * ...

* On the next occasion :-)

- The monad Q qualifies as a "branching monad"
- The quantum GoI workflow leads to a linear category PER_Q
- * From which we construct an adequate denotational model for a quantum λ-calculus (a variant of Selinger & Valiron's)

Conclusion: the Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Quantum branching monad

Quantum TSMC

Quantum LCA

Model of quantum languagetasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Thank you for your attention! Ichiro Hasuo (Dept. CS, U Tokyo) http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

> Quantum branching monad

Quantum TSMC

Quantum LCA

Model of quantum languagetasuo (Tokyo)