Talk based on:

I. Hasuo & N. Hoshino,

Semantics of Higher–Order Quantum Computation via Geometry of Interaction, In Proc. Logic in Computer Science (LICS), June 2011.

Quantum Geometry of Interaction

Ichiro HasuoNaohiko HoshinoUniversity of Tokyo (JP)RIMS, Kyoto University (JP)

What's Done

- * The Categorical GoI workflow
 - GoI = "Geometry of Interaction"
 - * General, standard construction of denotational models
- * Applied to quantum computation
 - Quantum λ-calculus =
 linear λ-cal. + quantum constructs
 - * with insights from theory of coalgebra
 - Outcome: first adequate denotational semantics for a full quantum language (with ! and recursion)

- * The categorical GoI workflow [Abramsky, Haghverdi, Scott, Jacobs, Longley, Lenisa, Hoshino, ...]
 - GoI + realizability
 - ***** Generic still concrete and dynamic
 - ★ Coalgebraic view → let's do something fancy
- * Elements of quantum computation
 - * Not much, really!
- * The calculus $q\lambda_{\ell}$ Based on [Selinger-Valiron'09]
- * The denotational model

Quantum \\-calculus

Classical

Quantum

Quantum \\-calculus

Classical

Quantum

Quantum \\-calculus

Classical

Quantum

Quantum λ:
 prototype of quantum functional language

Sunday, September 11, 2011

4

Prototype of Quantum Functional Languages

- * Why (high-level) language?
 - structured programming
 - Discovery of new algorithms
 - Program verification

Prototype of Quantum Functional Languages

- * Why (high-level) language?
 - structured programming
 - Discovery of new algorithms
 - * Program verification

- ★ Why functional language?
 → Mathematically nice and clean
 - Aids (denotational) semantics
 - Transfer from classical to quantum

Prototype of Quantum Functional Languages

★ Why denotational semantics?
 → For quantum communication as well as for quantum computation

Prototype of Quantum Functional Languages

- ★ Why denotational semantics?
 → For quantum communication as well as for quantum computation
 - * "Absolute security" via e.g. quantum key distr.

Prototype of Quantum Functional Languages

- ★ Why denotational semantics?
 → For quantum communication as well as for quantum computation
 - * "Absolute security" via e.g. quantum key distr.
 - * Being tested for real-world usege

Prototype of Quantum Functional Languages

- ★ Why denotational semantics?
 → For quantum communication as well as for quantum computation
 - * "Absolute security" via e.g. quantum key distr.
 - * Being tested for real-world usege
 - Comm. protocols are notoriously error-prone; quantum primitives make it worse

Prototype of Quantum Functional Languages

***** Linear λ -calculus

- * "No cloning" by linearity:
- * Classical data (duplicable) via !

+ Quantum primitives

- * State preparation
- * Unitary transformation
- * Measurement

Sunday, September 11, 2011

"Quantum Data, Classical Control"

Quantum data

Illustration by N. Hoshino

Classical control

"Quantum Data, Classical Control"

Illustration by N. Hoshino

Quantum data

Classical control

"Quantum Data, Classical Control"

Illustration by N. Hoshino

Quantum data

1

 $-rac{1}{\sqrt{2}}$

Classical control

Denotational Semantics

for Quantum λ

* In Hilb ?

- * Not that easy. Classical data?
- Selinger&Valiron'08] Den. sem. for the !-free fragment
- Selinger&Valiron'09] Operational semantics (nice!)
- # [Current Work]
 - The first model for the full fragment (with ! and recursion)

* Categorical GoI:

useful for "Quantum Data, Classical Control"

I. Hasuo & N. Hoshino, Semantics of Higher-Order

Quantum Computation via Geometry of Interaction

- I. Hasuo & N. Hoshino, Semantics of Higher-Order Quantum Computation via Geometry of Interaction
 - "[T]he amount of material ... goes far beyond the 10page limit ... Now, I understand that selfcontainedness is an impossible objective in cases like this, but ..." —*Reviewer 3*

- I. Hasuo & N. Hoshino, Semantics of Higher-Order Quantum Computation via Geometry of Interaction
 - "[T]he amount of material ... goes far beyond the 10page limit ... Now, I understand that selfcontainedness is an impossible objective in cases like this, but ..." —*Reviewer 3*

"This is clearly a 30-page paper (or more) than has been compressed into 10 pages." —*Reviewer 4*

- I. Hasuo & N. Hoshino, Semantics of Higher-Order Quantum Computation via Geometry of Interaction
 - "[T]he amount of material ... goes far beyond the 10page limit ... Now, I understand that selfcontainedness is an impossible objective in cases like this, but ..." —*Reviewer 3*

"This is clearly a 30-page paper (or more) than has been compressed into 10 pages." —*Reviewer 4*

*Now their pain is yours!!

Categorical GoI (Geometry of Interaction)

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

Disclaimer (and sincere apologies):

I'm no linear logician!

GoI:

Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88

- Disclaimer (and sincere apologies):
 - I'm no linear logician!

- In this talk:
 - Its categorical formulation [Abramsky,Haghverdi&Scott'02]
 - * "The GoI Animation"

* Function application $\llbracket MN rbracket$

* by "parallel composition + hiding"

Categorical GoI

- * Axiomatics of GoI in the categorical language
- * Abstraction & genericity, which we exploit

Our main reference (recommended!):

- [AHS02] S. Abramsky, E. Haghverdi, and
 P. Scott, "Geometry of interaction and linear combinatory algebras," MSCS 2002
- Especially its technical report version (Oxford CL), since it's more detailed

Traced monoidal category ${\ensuremath{\mathbb C}}$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Sunday, September 11, 2011

Traced monoidal category $\ensuremath{\mathbb{C}}$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Sunday, September 11, 2011

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

- Applicative str. + combinators
- Model of untyped calculus

Sunday, September 11, 2011

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

- Applicative str. + combinators
- Model of untyped calculus

Model of typed calculus

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

- Applicative str. + combinators
- Model of untyped calculus

Model of typed calculus

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

- Applicative str. + combinators
- Model of untyped calculus

Model of typed calculus

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x=x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y= !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (*combinators*) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y= !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (*combinators*) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x=x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y= !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

What we want (outcome)

Model of
 untyped linear λ

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x=x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y= !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome)

- Model of
 untyped linear λ
- ***** a ∈ A ≈
 - closed linear λ-term

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

B xyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y= !(xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome)

- Model of
 untyped linear λ
- ***** a ∈ A ≈
 - closed linear λ -term

Sunday, September 11, 2011

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an *applicative structure*)

 $\cdot \; : \; A^2 \longrightarrow A$

• a unary operator

 $! : A \longrightarrow A$

• (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

Bxyz = x(yz)	Composition, Cut
Cxyz = (xz)y	Exchange
$\mathbf{I}x = x$	Identity
K x ! y=x	Weakening
W x ! y = x ! y ! y	Contraction
D ! x = x	Dereliction
$\delta ! x= ! ! x$	Comultiplication
F ! x ! y = ! (xy)	Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and ! binds stronger than \cdot does.

(LCA) What we want (outcome) * Model of untyped linear λ $* a \in A$ \approx closed linear λ -term * No S or K (linear!) * Combinatory completeness: e.q. $\lambda xyz. zxy$ designates elem. of A

What we use (ingredient)

GoI situation

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

GoI situation

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

	$e : FF \lhd F$:	e'	Comultiplication
	$d \; : \; \mathrm{id} \lhd F$:	d'	Dereliction
с	$: \ F \otimes F \lhd F$:	c'	Contraction
	$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

GoI situation

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

	$e : FF \lhd F$:	e'	Comultiplication
	$d \ : \ \mathrm{id} \lhd F$:	d'	Dereliction
c	$: \ F \otimes F \lhd F$:	c'	Contraction
	$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d~:~\mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

 * Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

	$e : FF \lhd F$:	e'	Comultiplication
	$d \; : \; \mathrm{id} \lhd F$:	d'	Dereliction
c :	$F\otimes F \lhd F$:	c'	Contraction
1	$w : K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Monoidal category (\mathbb{C},\otimes,I)

* String diagrams

 $\frac{A \xrightarrow{f} B \xrightarrow{g} B \xrightarrow{g} C}{A \xrightarrow{g \circ f} C}$

 $\frac{A \xrightarrow{f} B \quad C \xrightarrow{g} D}{A \otimes C \xrightarrow{f \otimes g} B \otimes D}$

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

	$e : FF \lhd F$:	e'	Comultiplication
	$d \; : \; \mathrm{id} \lhd F$:	d'	Dereliction
c :	$F\otimes F \lhd F$:	c'	Contraction
1	$w : K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Monoidal category (\mathbb{C}, \otimes, I) *

* String diagrams

 $h \circ (f \otimes g)$

Sunday, September 11, 2011

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

	$e : FF \lhd F$		e'	Comultiplication
	d : id $\triangleleft F$			Dereliction
\boldsymbol{c}	$: \ F \otimes F \lhd F$:	C'	Contraction
	$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Traced monoidal category

* "feedback"

that is

String Diagram vs. "Pipe Diagram"

★ In this talk, I use two ways of depicting partial functions N → N

* Category Pfn of partial functions

* Arr. A partial function

$$\frac{X \to Y \text{ in } \mathbf{Pfn}}{X \rightharpoonup Y, \text{ partial function}}$$

* Category Pfn of partial functions

* Obj. A set X

* Arr. A partial function

 $\frac{X \to Y \text{ in } Pfn}{X \rightharpoonup Y, \text{ partial function}}$

* is traced symmetric monoidal

***** Given $X + Z \xrightarrow{f} Y + Z$ in Pfn

Hasuo (Tokyo)

*

* Given $X + Z \xrightarrow{f} Y + Z$ in Pfn

* Given $X + Z \xrightarrow{f} Y + Z$ in Pfn

* Given $X + Z \xrightarrow{f} Y + Z$ in Pfn

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

* Given $X + Z \xrightarrow{f} Y + Z$ in Pfn

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

Sunday, September 11, 2011

26

* Given $X + Z \xrightarrow{f} Y + Z$ in Pfn

 $f_{XY}(x) := egin{cases} f(x) & ext{if } f(x) \in Y \ ot & ext{o.w.} \end{cases}$ Similar for f_{XZ}, f_{ZY}, f_{ZZ}

* Trace operator:

tr(f) = $f_{XY} \sqcup \left(igsqcup_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
ight)$

Tokyo)

* Given $X + Z \xrightarrow{f} Y + Z$ in Pfn

Execution formula

Partiality is essential (infinite loop)

tr(f) = $f_{XY} \sqcup \left(\coprod_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ}
ight)$

Tokyo)

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d~:~\mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: <i>c</i> ′	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Traced sym. monoidal cat.

* Where one can "feedback"

* Why for GoI?

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d~:~\mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w~:~K_{I} \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Traced sym. monoidal cat.

Where one can "feedback"

Why for GoI?

N

Sunday, September 11, 2011

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Defn. (Retraction) A *retraction* from X to Y,

 $f:X \lhd Y:g$,

"embedding"

"projection"

such that $g \circ f = \mathrm{id}_X$.

***** Functor
$$F$$

* For obtaining $!: A \rightarrow A$

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

***** Functor F

* For obtaining $!: A \rightarrow A$

* Pictorially:

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$:	e'	Comultiplication
$d\ :\ \mathrm{id} \lhd F$:	d'	Dereliction
$c \; : \; F \otimes F \lhd F$:	c'	Contraction
$w \; : \; K_I \lhd F$:	w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

***** Functor F

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e~:~FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* The reflexive object U

* Retr. $U \otimes U \xrightarrow{j} U$ \boldsymbol{k}

* Retr. U_{\leftarrow}^{u}

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

multiplication
ereliction
ontraction
eakening
)

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

***** The reflexive object U

* Retr. $U \otimes U \subset \bigcup U$

Ĵ/ with

 \boldsymbol{k}

* Retr.

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d~:~\mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w~:~K_{I} \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

***** The reflexive object U

* Retr. $U \otimes U \subset \bigcup U$

1)

 \boldsymbol{k}

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d \ : \ \mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

***** The reflexive object U

* Retr. $U \otimes U \longrightarrow U$

U

1)

 \boldsymbol{k}

U

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

Defn. (GoI situation [AHS02]) A *GoI situation* is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

Defn. (GoI situation [AHS02]) A *GoI situation* is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

* The reflexive object U

* Example in Pfn: $\mathbb{N} \in \mathbf{Pfn}$, with $\mathbb{N} + \mathbb{N} \cong \mathbb{N}$, $\mathbb{N} \cdot \mathbb{N} \cong \mathbb{N}$

GoI Situation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e : FF \lhd F$: e'	Comultiplication
$d \; : \; \mathrm{id} \lhd F$: d'	Dereliction
$c : F \otimes F \lhd F$: <i>c</i> ′	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

Categorical axiomatics of the "GoI animation"

(Pfn, $\mathbb{N} \cdot _, \mathbb{N}$)

tr(f) tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e \; : \; FF \lhd F$: e'	Comultiplication
$d~:~\mathrm{id} \lhd F$: d'	Dereliction
$c \; : \; F \otimes F \lhd F$: c'	Contraction
$w \; : \; K_I \lhd F$: w'	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

* Categorical axiomatics of the "GoI animation"

(Pfn, $\mathbb{N} \cdot _$, \mathbb{N})

tuation: Summary

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the collowing retractions (which are monoidal natural transformations).

For !, via

- $w ~:~ K_I \lhd F ~:~ w'$ We

Here K_I is the constant functor into the functor into

• $U \in \mathbb{C}$ is an object (called *reflexive object*) the following retractions.

Categorical axiomatics of the "GoI animation"

Example:

 $(Pfn, \mathbb{N} \cdot _, \mathbb{N})$

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the blowing retractions (which are monoidal natural transformations).

De

- $e : FF \triangleleft F : e'$ d : id $\triangleleft F$: d'
- $c : F \otimes F \lhd F : c'$ Co $w \; : \; K_I \lhd F \; : \; w'$ We

Here K_I is the constant functor into the theorem into the second sec

• $U \in \mathbb{C}$ is an object (called *reflexive object*) the following retractions.

> $j : U \otimes U \triangleleft U : k$ $I \lhd U$ $u : FU \triangleleft U : v$

For !, via

$$\stackrel{F}{\longmapsto} \stackrel{f}{\stackrel{}_{\mathbb{H}}} \cdot$$

(Pfn,
$$\mathbb{N} \cdot _$$
, \mathbb{N}

* Categorical axiomatics of

the "GoI animation"

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

- Applicative str. + combinators
- Model of untyped calculus

Model of typed calculus

The Categorical GoI Workflow

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

- Applicative str. + combinators
- Model of untyped calculus

Model of typed calculus

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

Hasuo (Tokyo)

 $egin{array}{c} egin{array}{c} egin{array}$

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

 $*g \cdot f$ $:= \mathsf{tr}((U \otimes f) \circ k \circ g \circ j)$

Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

- * Applicative str. ·
- * ! operator
- * Combinators B, C, I, ...

***** Combinator Bxyz = x(yz)

Figure 7: Composition Combinator B

from [AHS02]

3

 $\boxed{3} = \boxed{3}$

***** Combinator Bxyz = x(yz)

***** Combinator Bxyz = x(yz)

Figure 7: Composition Combinator B

from [AHS02]

***** Combinator Bxyz = x(yz)

Sunday, September 11, 2011

Summary: Categorical GoI

Defn. (GoI situation [AHS02]) A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

$e~:~FF \lhd F~:~e'$	Comultiplication
$d~:~\mathrm{id} \lhd F~:~d'$	Dereliction
$c \; : \; F \otimes F \lhd F \; : \; c'$	Contraction
$w~:~K_{I} \lhd F~:~w'$	Weakening

Here K_I is the constant functor into the monoidal unit I;

• $U \in \mathbb{C}$ is an object (called *reflexive object*), equipped with the following retractions.

 Thm. ([AHS02]) Given a GoI situation (\mathbb{C}, F, U) , the homset

 $\mathbb{C}(U,U)$

carries a canonical LCA structure.

* Strategy: find a TSMC!

"Wave-style" examples

★ ⊗ is Cartesian product(-like)

* in which case,

trace \approx fixed point operator [Hasegawa/Hyland]

* An example:
$$ig((\omega ext{-}\operatorname{Cpo}, imes,1),\ (_)^{\mathbb{N}},\ A^{\mathbb{N}}ig)$$

(... less of a dynamic flavor)

- * "Particle-style" examples
 - * Obj. X \in C is set-like; \otimes is coproduct-like
 - * The GoI animation is valid

Probabilistic functions

- * Examples:
 - * Partial functions $((Pfn, +, 0), \mathbb{N} \cdot _, \mathbb{N})$
 - * Non-det. functions (i.e. relations)
 - $((\mathbf{Rel},+,\mathbf{0}),\,\mathbb{N}\cdot_,\,\mathbb{N})$

((DSRel, +, 0), $\mathbb{N} \cdot _, \mathbb{N})$

("discrete stochastic relations")

Why Categories of sets and (functions with different branching/partiality) Examples other to an III

Why Categories of sets and (functions with different branching/partiality) Examples of the sets and Examples of sets and Interview of sets and Examples of sets and The sets a

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel

Sunday, September 11, 2011

Pipe can branch probabilistically

- Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe can branch probabilistically

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel

Sunday, September 11, 2011

Pipe can branch probabilistically

- * Pfn (partial functions)
 - * Pipe can be stuck
 - Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe can branch probabilistically

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel

Sunday, September 11, 2011

Pipe can branch probabilistically

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe can branch probabilistically

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel

Sunday, September 11, 2011

Pipe can branch probabilistically

The Coauthor

* Naohiko Hoshino

* Kyoto U. (JP), 2011

 Supervisor: Masahito "Hassei" Hasegawa

* Assist. Prof., RIMS, Kyoto U. (2011-)

A Coalgebraic View

Theory of coalgebra = Categorical theory of state-based dynamic systems (LTS, automaton, Markov chain, ...)

- * In my thesis (2008):
 - * Coalgebras in a Kleisli category Kl(B)

 $\frac{X \to Y \text{ in } \mathcal{K}\ell(B)}{X \to BY \text{ in Sets}}$

Generic theory of "trace semantics"

Why Categories of sets and (functions with different branching/partiality) Examples of the sets and Examples of sets and Interview of sets and Examples of sets and The sets a

Why Category Kl(B) for different branching monads B

Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10]) Given a "branching monad" \boldsymbol{B} on **Sets**, the monoidal category

$(\mathcal{K}\ell(B),+,0)$

is

• a *unique decomposition category* [Haghverdi,PhD00], hence is

• a traced symmetric monoidal category.

Cor. $((\mathcal{K}\ell(B), +, 0), \mathbb{N}\cdot_{-}, \mathbb{N})$ is a GoI situation.

Branching Monad: Source of Particle-Style GoI Situations

Branching Monad: Source of Particle-Style GoI Situations

Traced monoidal category C + other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Hasuo (Tokyo)

Model of fancy

language

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy LCA

Model of fancy language Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy TSMC

Fancy LCA

Model of fancy language Hasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Fancy monad

Fancy TSMC

Fancy LCA

Model of fancy language Hasuo (Tokyo)

Sunday, September 11, 2011

Sunday, September 11, 2011

* Hybrid systems?

- Both discrete and continuous data, typically in cyber-physical systems (CPS)
- ★ → Our approach via non-standard analysis [Suenaga&Hasuo,ICALP11]

* Hybrid systems?

- Both discrete and continuous data, typically in cyber-physical systems (CPS)
- ★ → Our approach via non-standard analysis [Suenaga&Hasuo,ICALP11]

* Quantum?

* Yes this worked!

Branching monad B

The Categorical GoI Workflow

Coalgebraic trace semantics

- Traced monoidal category C
- + other constructs -> "GoI situation" [AHSO2]
 - Categorical GoI [AHS02]

Realizability: from Untyped to Typed

- * Dates back to Kleene
- Cf. the Brouwer-Heyting-Kolmogorov (BHK) interpretation
 - * A p'f of $A \wedge B$ is a pair: (p'f of A, p'f of B)
 - ★ A p'f of A→B is a function carrying (p'f of A) to (p'f of B)

- * Our technical view on realizability: a construction
 - * from a combinatory algebra,
 - * of a categorical model of a typed calculus
- * Here: construct a linear category from an LCA

References:

- * [AL05] S. Abramsky and M. Lenisa, "Linear realizability and full completeness for typed lambda-calculi," APAA 2005.
- [Hos07] N. Hoshino, "Linear realizability," CSL 2007.

* Either by w-sets (intuitive) or
 by PERs (tech. convenient)

Defn. Given an LCA A, an ω -set is a pair

$$ig(S, \quad r:S o \mathcal{P}_+(A)ig)$$

where

- S is a set;
- for each $x \in S$, the nonempty subset $r(x) \subseteq A$ is the set of *realizers*.

★ Either by w-sets (intuitive) or
 by PERs (tech. convenient)

Defn. Given an LCA A, an ω -set is a pair $(S, r: S \to \mathcal{P}_+(A))$

where

- **S** is a set;
- for each $x \in S$, the nonempty subset $r(x) \subseteq A$ is the set of *realizers*.

Could as well be a **partial combinatory algebra**. Its examples:

- ***** N with $n \cdot m = comp(n,m)$
- * { closed λ -terms }

* Either by w-sets (intuitive) or
 by PERs (tech. convenient)

Defn. Given an LCA A, an ω -set is a pair

$$ig(S, \quad r:S o \mathcal{P}_+(A)ig)$$

where

• **S** is a set;

• for each $x \in S$, the nonempty subset $r(x) \subseteq A$ is the set of *realizers*.

Could as well be a **partial combinatory algebra**. Its examples:

- ***** N with $n \cdot m = comp(n,m)$
- * { closed λ -terms }

- $a \in r(x)$:
 - * "realizes" x, or
 - "witnesses existence of" x

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

 $egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$

is the *domain* of X.

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

$$egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$$

is the *domain* of X.

* PER = eq. rel. - refl.

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

 $egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$

is the *domain* of X.

* PER = eq. rel. - refl.

* An eq. rel. when restricted to |X|

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

 $egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$

is the *domain* of X.

* PER = eq. rel. – refl.

* An eq. rel. when restricted to |X|

* PER to
$$\omega$$
-set:

$$\left(\begin{array}{ccc} |X|/X, & |X|/X \stackrel{r}{\longrightarrow} \mathcal{P}_+(A) \end{array}
ight)$$

with $[a] \stackrel{r}{\longmapsto} \{b \mid (a,b) \in X\}$

Defn.

A partial equivalence relation (PER) X is a transitive and symmetric relation on A.

 $egin{aligned} |X| &:= \{a \mid (a,a) \in X\} \ &= \{a \mid \exists b. \, (a,b) \in X\} \ &= \{a \mid \exists b. \, (b,a) \in X\} \end{aligned}$

is the *domain* of X.

* PER = eq. rel. - refl.

* An eq. rel. when restricted to |X|

* PER to
$$\omega$$
-set:

$$\left(\begin{array}{ccc} |X|/X, & |X|/X \stackrel{r}{\longrightarrow} \mathcal{P}_+(A) \end{array}
ight)$$

with $[a] \stackrel{r}{\longmapsto} \{b \mid (a,b) \in X\}$

* Also: ω -set to PER

PER_A:

The Category of PERs

* Obj. A PER X on A

* Arr. The homset is

 $\operatorname{PER}_A(X,Y)$ $=\left\{ c\in A \ \Big| \ (x,x')\in X \Longrightarrow (cx,cx')\in Y
ight\}$ $ig\{(c,c')\,ig|\, orall x\in |X|.\; (cx,c'x)\in Yig\}$

PERA: The Category of PERs

* Obj. A PER X on A

* Arr. The homset is All the valid codes c (well-dfd?)

 $=\left\{ c\in A \ \Big| \ (x,x')\in X \Longrightarrow (cx,cx')\in Y
ight\}$

 $ig\{(c,c')\,ig|\,orall x\in |X|.\;(cx,c'x)\in Yig\}$

 $\operatorname{PER}_A(X,Y)$

***** Thus: $[c]: X \longrightarrow Y$ (with $c \in A$)

Sunday, September 11, 2011

Type Constructors in PER_A

Thm. ([AL05]) If A is an affine LCA, then PER_A is a linear category. Furthermore, PER_A has finite products and coproducts.

* Linear category [Benton&Wadler,LICS'96][Bierman,TLCA'95]

Categorical model of linear logic/linear λ,
 with

* Monoidal closed with $oxtimes, \mathbf{I}, -\!\!\!\circ$

* Linear exponential comonad !

Type Constructors in

with full K: Kxy=x

Thm. ([A L05])If A is an affine LCA, then PER_A is a linear category. Furthermore, PER_A has finite products and coproducts.

Linear category [Benton&Wadler,LICS'96][Bierman,TLCA'95]

PERA

Categorical model of linear logic/linear λ,
 with

* Monoidal closed with $oxtimes, \mathbf{I}, -\circ$

* Linear exponential comonad !

Type Constructors in

PERA

with full K: Kxy=x

Thm. ([A L05])If A is an affine LCA, then \mathbf{PER}_A is a linear category. Furthermore, \mathbf{PER}_A has finite products and coproducts.

Linear category [Benton&Wadler,LICS'96][Bierman,TLCA'95]

Categorical model of linear logic/linear λ,
 with

* Monoidal closed with $oxtimes, \mathbf{I}, -\!\!\circ$ -

* Linear exponential comonad !

Sunday, September 11, 2011

Not \otimes ,

for distinction

Type Constructors in PERA

- * How to get operators $\boxtimes, \times, +, \dots$
 - * Like "programming in untyped λ'' !

Type Constructors in PERA

- * How to get operators $\boxtimes, \times, +, \dots$
 - * Like "programming in untyped λ'' !

Type Constructors in PER_A

* How to get operators $\boxtimes, \times, +, \dots$

* Like "programming in untyped λ'' !

$\underline{n} := \lambda f x. f(f \cdots (f x) \cdots)$	Church numeral
$\overline{K} := KI$	
$P := \lambda x y z . z x y$	Paring
$P_{I} := \lambda w.wK$	Left projection
$P_{I} := \lambda w.w\overline{K}$	Right projection

Type Constructors in PER_A

* How to get operators $\boxtimes, \times, +, \dots$

* Like "programming in untyped λ'' !

 $\underline{n} := \lambda f x. f(f \cdots (f x) \cdots)$ Church numeral $\overline{\mathsf{K}} := \mathsf{K}\mathsf{I}$ Prime $\mathsf{P} := \lambda xyz. zxy$ Paring $\mathsf{P}_{\mathsf{I}} := \lambda w. w \mathsf{K}$ Left projection $\mathsf{P}_{\mathsf{I}} := \lambda w. w \overline{\mathsf{K}}$ Right projection

$$\mathsf{P}_{\mathsf{I}}(\mathsf{P} x y) = x$$

 $\mathsf{P}_{\mathsf{r}}(\mathsf{P} x y) = y$

Type Constructors in PERA

* How to get operators $\boxtimes, \times, +, \dots$

* Like "programming in untyped λ'' !

 $\underline{n} := \lambda f x. f(f \cdots (f x) \cdots)$ Church numeral $\overline{\mathsf{K}} := \mathsf{K}\mathsf{I}$ Prime $\mathsf{P} := \lambda xyz.zxy$ Paring $\mathsf{P}_{\mathsf{I}} := \lambda w.w\mathsf{K}$ Left projection $\mathsf{P}_{\mathsf{I}} := \lambda w.w\overline{\mathsf{K}}$ Right projection

* Cf. Combinaroty completeness

Type Constructors in $\frac{\text{PER}_A}{X \subseteq A \times A, \text{ sym., trans.}}$

Type Constructors in
$$PER_A$$
 $X \in PER_A$ $X \subseteq A \times A$, sym., trans.

$$X oxtimes Y \; := \; \Big\{ \left(\mathsf{P} x y, \mathsf{P} x' y'
ight) \; \Big| \; (x,x') \in X \land (y,y') \in Y \Big\}$$

 $X imes Y \ := \ \Big\{ \left(\mathsf{P}k_1(\mathsf{P}k_2u), \, \mathsf{P}k_1'(\mathsf{P}k_2'u') \,
ight) \Big|$

$$(k_1u,k_1'u')\in X\wedge (k_2u,k_2'u')\in Y$$

$$\left| X
ight| := \left\{ \left({\left| {x,!x'}
ight) }
ight| \left({x,x'}
ight) \in X
ight\}$$

 $X+Y \ := \ \Big\{ \left(\mathsf{PK}x,\mathsf{PK}x'
ight) \ \Big| \ (x,x') \in X \Big\}$

$$i \left\{ \left(\mathsf{PK}y,\mathsf{PK}y'
ight) \;\middle|\; (y,y') \in Y
ight\}$$

 $X \multimap Y \; := \; \Big\{ (c,c') \, \Big| \, (x,x') \in X \Longrightarrow (cx,c'x') \in Y \Big\}$

nusuo (Tokyo)

Type Constructors in
PERA
$$\begin{aligned} X \in PER_A \\ \overline{X \subseteq A \times A, \text{ sym., trans.}} \\ X \otimes Y &:= \left\{ (Pxy, Px'y') \mid (x, x') \in X \land (y, y') \in Y \right\} \\ X \times Y &:= \left\{ (Pk_1(Pk_2u), Pk'_1(Pk'_2u')) \mid \\ (k_1u, k'_1u') \in X \land (k_2u, k'_2u') \in Y \right\} \\ !X &:= \left\{ (!x, !x') \mid (x, x') \in X \right\} \\ X + Y &:= \left\{ (PKx, PKx') \mid (x, x') \in X \right\} \\ \cup \left\{ (PKy, PKy') \mid (y, y') \in Y \right\} \\ X \to Y &:= \left\{ (c, c') \mid (x, x') \in X \Longrightarrow (cx, c'x') \in Y \right\} \end{aligned}$$

$$\begin{array}{c} \textbf{Type Constructors in} \\ \textbf{PERA} \quad \begin{array}{l} \underbrace{X \in \text{PER}_A} \\ \hline X \in \text{PER}_A \\ \hline X \subseteq A \times A, \text{ sym., trans.} \end{array} \\ \hline X \boxtimes Y := \left\{ (Pxy, Px'y') \mid (x, x') \in X \land (y, y') \in Y \right\} \\ X \times Y := \left\{ (Pk_1(Pk_2u), Pk'_1(Pk'_2u')) \mid \\ (k_1u, k'_1u') \in X \land (k_2u, k'_2u') \in Y \right\} \\ ext{ and } \\ \hline X := \left\{ (!x, !x') \mid (x, x') \in X \right\} \\ \downarrow \left\{ (PKy, PKx') \mid (x, x') \in X \right\} \\ \cup \left\{ (PKy, PKy') \mid (y, y') \in Y \right\} \\ X \rightarrow Y := \left\{ (c, c') \mid (x, x') \in X \Longrightarrow (cx, c'x') \in Y \right\} \end{array}$$

$$\begin{array}{c} \textbf{Type Constructors in} \\ \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{M}$$

Summary: Realizability

Affine LCA A

 $a \cdot b$, !a, B, C, I, \dots

Linear category PER_A

- * Type constructors via "programming in untyped λ''
 - * Symmetric monoidal closed $oxtimes, \mathbf{I}, -\!\circ$
 - Finite product, coproduct

Summary: Realizability Affine LCA A $a \cdot b$, !a, B, C, I, \dots Linear category PER_A * $[c] \qquad (a,c\in A)$ $[a] \longmapsto [c \cdot a]$ * Type constructors via "programming in untyped λ''

- * Symmetric monoidal closed $oxtimes, \mathbf{I}, \multimap$ 🔫
- Finite product, coproduct

Sunday, September 11, 2011

suo (Tokyo)

Not \otimes ,

for distinction

Summary: Realizability

Affine LCA A

 $a \cdot b$, !a, B, C, I, \dots

Linear category PER_A

- * Type constructors via "programming in untyped λ''
 - * Symmetric monoidal closed $oxtimes, \mathbf{I}, \multimap$ 🛁
 - Finite product, coproduct

Sunday, September 11, 2011

suo (Tokyo)

Not ⊗,

for distinction

Time to Wake Up!!

It's time to save them

Part 3

Quantum Computation in 5 min.

What You Need to Know

- * Not much, really!
- * Our principal reference:
 - M.A. Nielsen and I.L. Chuang.
 Quantum Computation and Quantum Information. CUP, 2000
 - * Its Chap. 3 & Chap. 8
 - Hilbert space formulation
 - Quantum operation formalism
 (Kraus)
 - * No need for the Bloch sphere

HICHAEL A. NIELSEN

CAMBORNE

What You Need to Know

- * Not much, really!
- * Our principal reference:
 - M.A. Nielsen and I.L. Chuang.
 Quantum Computation and Quantum Information. CUP, 2000
 - * Its Chap. 3 & Chap. 8
 - * Hilbert space formulation
 - Quantum operation formalism
 (Kraus)
 - * No need for the Bloch sphere

Some Principles

A state of a 1-qubit system a normalized vector

$$|arphi
angle=lpha|0
angle+eta|1
angle\in\mathbb{C}^2$$

* with $\left\||\varphi\rangle\right\|^2 = |\alpha|^2 + |\beta|^2 = 1$

* Various notations for base: $\{|0\rangle, |1\rangle\}, \{|+\rangle, |-\rangle\}, \{|\uparrow\rangle, |\downarrow\rangle\}, \dots$

Some Principles

* Composed system: \otimes , not \times .

* not
$$\mathbb{C}^2 \times \mathbb{C}^2 \times \mathbb{C}^2 \cong \mathbb{C}^6$$
, with base $\left\{ \begin{array}{c} |0_1\rangle & |0_2\rangle & |0_3\rangle \\ |1_1\rangle & |1_2\rangle & |1_3\rangle \end{array} \right\}$
* but $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^8$,
with base $\left\{ \begin{array}{c} |000\rangle & |001\rangle & |010\rangle & |011\rangle \\ |100\rangle & |101\rangle & |110\rangle & |111\rangle \end{array} \right\}$
Hasuo (Tokyo)

Some Principles

* Composed system: \otimes , not \times .

* Source of power of quantum comp./comm.

* N-qubit \rightarrow 2^N-dim (not 2N-dim)

* Entanglement; superposition

 $\frac{1}{2}$

1

Alta

* Preparation

* Unitary transformation

* Preparation

Creates/"prepares" a quantum state (typically |0>)

***** Unitary transformation

* Unitary matrix: $UU^{\dagger} = U^{\dagger}U = \mathcal{I}$

* Invertible. "Rotation"

* Also for N-dim systems (of course)

* Measurement

When one measures

lpha |0
angle + eta |1
angle

- $|0\rangle$ is observed, and
- the state becomes $|0\rangle$ *

with prob. $|\alpha|^2$

prob. $|\beta|^2$

with

- $|1\rangle$ is observed, and *
- the state becomes |1
 angle*

Entanglement

Sunday, September 11, 2011

Density Matrix, Quantum Operation

- Advanced, mathematically convenient formalisms
- ★ State vector → density matrix
 - * Use $|arphi
 angle\langle arphi|$ in place of |arphi
 angle
 - * Can also represent mixed states, e.g. $|00\rangle$ with prob. $\frac{1}{2}$ $|11\rangle$ with prob. $\frac{1}{2}$
- Quantum operation (QO) [Kraus]
 - {QOs} = {any combinations of preparation, Unitary transf., measurement}
 - But no classical control (like case-distinction)
 - Used in [Selinger, MSCS'04] and other

Density Matrix, Quantum Operation

Defn.

• An *m*-dimensional density matrix is an $m \times m$ matrix $\rho \in \mathbb{C}^{m \times m}$ which is positive and satisfies $tr(\rho) \in [0, 1]$.

- Notation: $D_m = \{m$ -dim. density matrices $\}$

- A quantum operation (QO) is a mapping $\mathcal{E} : D_m \to D_n$ subject to the following axioms.
 - 1. (Trace condition) $tr[\mathcal{E}(\rho)] \in [0, 1]$ for any $\rho \in D_m$.
 - 2. (Linearity) Let $(\rho_i)_{i \in I}$ be a family of *m*-dim. density matrices; and $(p_i)_{i \in I}$ be a probability subdistribution (meaning $\sum_i p_i \leq 1$). Then: $\mathcal{E}(\sum_{i \in I} p_i \rho_i) = \sum_{i \in I} p_i \mathcal{E}(\rho_i)$.
 - 3. (Complete positivity) An arbitrary "extension" of \mathcal{E} of the form $\mathcal{I}_k \otimes \mathcal{E} : M_k \otimes M_m \to M_k \otimes M_n$ carries a positive matrix to a positive one.

* For specialists: we allow trace < 1 * So that probabilities are implicitly carried by density

matrices

- Notation: $QO_{m,n} = \{QOs \text{ from } m\text{-dim. to } n\text{-dim. }\}$

Quantum Computation:

Summary

* A quantum state = a vector $|\phi\rangle$

* Composition by \otimes

Dimension grows exponentially

* Three primitives:

* Preparation

* Unitary transformation

* Measurement (+ st. reduction)

Quantum Computation:

Summary

Generalized to density matrix

* A quantum state = a vector $|\phi\rangle$

* Composition by \otimes

Dimension grows exponentially

* Three primitives:

* Preparation

* Unitary transformation

* Measurement (+ st. reduction)

Quantum Computation:

Summary

Generalized to density matrix

Unified to quantum

operation (QO)

* A quantum state = a vector $|\phi\rangle$

* Composition by \otimes

Dimension grows exponentially

* Three primitives:

* Preparation

* Unitary transformation

* Measurement (-> st. reduction)

The Language gla

- ***** Roughly: linear λ + quantum primitives
- "Quantum data, classical control"
 - * No superposed threads
- Based on [Selinger&Valiron'09]
 - With slight modifications
 - ★ Notably: quantum ⊗ vs. linear logic
 - The same in [Selinger&Valiron'09]
 - → clean type system, aids programming
 - But... problem with GoI-style semantics

The Language qll

The *types* of $q\lambda_{\ell}$ are:

A,B ::= n-qbit $| \, !A \mid A \multimap B \mid \top \mid A \boxtimes B \mid A + B$,

with conventions qbit := 1-qbit and $bit := \top + \top$.

The *terms* of $q\lambda_{\ell}$ are:

$$\begin{split} M, N, P &::= \\ x \mid \lambda x^A . M \mid MN \mid \langle M, N \rangle \mid * \mid \\ & \text{let} \langle x^A, y^B \rangle = M \text{ in } N \mid \text{let} * = M \text{ in } N \mid \\ & \text{inj}_{\ell}^B M \mid \text{inj}_r^A M \mid \\ & \text{match } P \text{ with } (x^A \mapsto M \mid y^B \mapsto N) \mid \\ & \text{letrec} \ f^A x = M \text{ in } N \mid \\ & \text{new} \mid 0 \rangle \mid \text{meas}_i^{n+1} \mid U \mid \text{cmp}_{m,n} \ , \\ & \text{ with conventions } \text{tt} := \text{inj}_{\ell}^{\top}(*) \text{ and } \text{ff} := \text{inj}_r^{\top}(*) \ . \end{split}$$

The Langua Different from quantum & (Unlike [Selinger-Valiron'09]); same as the one in PER

The *types* of $q\lambda_{\ell}$ are:

A,B ::= n-qbit $| \, !A \mid A \multimap B \mid \top \mid A \boxtimes B \mid A + B$,

with conventions qbit := 1-qbit and $bit := \top + \top$.

The *terms* of $q\lambda_{\ell}$ are:

$$\begin{split} M, N, P & ::= \\ x \mid \lambda x^A . M \mid MN \mid \langle M, N \rangle \mid * \mid \\ & \text{let} \langle x^A, y^B \rangle = M \text{ in } N \mid \text{let} * = M \text{ in } N \mid \\ & \text{inj}_{\ell}^B M \mid \text{inj}_r^A M \mid \\ & \text{match } P \text{ with} (x^A \mapsto M \mid y^B \mapsto N) \mid \\ & \text{letrec} f^A x = M \text{ in } N \mid \\ & \text{new} \mid 0 \rangle \mid \text{meas}_i^{n+1} \mid U \mid \text{cmp}_{m,n} \ , \\ & \text{with conventions } \texttt{tt} := \text{inj}_{\ell}^{\top}(*) \text{ and } \texttt{ff} := \text{inj}_r^{\top}(*) \ . \end{split}$$

The Langua Different from quantum ® (Unlike [Selinger-Valiron'09]); same as the one in PER

2-qbit \cong qbit \otimes qbit

A,B:=n-qbit $| \, !A \mid A \multimap B \mid \top \mid A \boxtimes B \mid A + B$,

with conventions qbit := 1-qbit and $bit := \top + \top$.

The *terms* of $q\lambda_{\ell}$ are:

$$\begin{split} M, N, P &::= \\ x \mid \lambda x^A . M \mid MN \mid \langle M, N \rangle \mid * \mid \\ & \text{let} \langle x^A, y^B \rangle = M \text{ in } N \mid \text{let} * = M \text{ in } N \mid \\ & \text{inj}_{\ell}^B M \mid \text{inj}_r^A M \mid \\ & \text{match } P \text{ with } (x^A \mapsto M \mid y^B \mapsto N) \mid \\ & \text{letrec } f^A x = M \text{ in } N \mid \\ & \text{new} \mid 0 \rangle \mid \text{meas}_i^{n+1} \mid U \mid \text{cmp}_{m,n} \ , \\ & \text{ with conventions } \text{tt} := \text{inj}_{\ell}^{\top}(*) \text{ and } \text{ff} := \text{inj}_r^{\top}(*) \ . \end{split}$$

The Langua Different from quantum ® (Unlike [Selinger-Valiron'09]); same as the one in PER

2-qbit \cong qbit \otimes qbit

A,B::=n-qbit $| \, ! \, A \mid A \multimap B \mid op | \, A oxtimes B \mid A+B \;,$

with conventions qbit := 1-qbit and $bit := \top + \top$.

The *terms* of $q\lambda_{\ell}$ are:

 $\begin{array}{l} M, N, P ::= \\ x \mid \lambda x^{A}.M \mid MN \mid \langle M, N \rangle \mid * \mid \\ let \langle x^{A}, y^{B} \rangle = M in N \mid let * = M in N \mid \\ inj_{\ell}^{B} M \mid inj_{r}^{A} M \mid \\ match P with (x^{A} \mapsto M \mid y^{B} \mapsto N) \mid \\ letrec f^{A} x = M in N \mid \\ new \mid 0 \rangle \mid meas_{i}^{n+1} \mid U \mid cmp_{m,n}, \\ with conventions tt := inj_{\ell}^{T}(*) and ff := inj_{r}^{T}(*) . \end{array}$

The Langua Different from quantum & (Unlike [Selinger-Valiron'09]); same as the one in PER

2-qbit \cong qbit \otimes qbit

A,B::=n-qbit $| \, !A \mid A \multimap B \mid \top \mid A \boxtimes B \mid A + B$,

with conventions qbit := 1-qbit and $bit := \top + \top$.

The *terms* of $q\lambda_{\ell}$ are:

 $\begin{array}{l} M, N, P ::= \\ x \mid \lambda x^{A}.M \mid MN \mid \langle M, N \rangle \mid * \mid \\ let \langle x^{A}, y^{B} \rangle = M \text{ in } N \mid let * = M \text{ in } N \mid \\ \text{inj}_{\ell}^{B} M \mid \text{inj}_{r}^{A} M \mid \\ \text{match } P \text{ with } (x^{A} \mapsto M \mid y^{B} \mapsto N) \mid \\ let \text{rec } f^{A}x = M \text{ in } N \mid \\ new \mid 0 \rangle \mid \text{meas}_{i}^{n+1} \mid U \mid \text{cmp}_{m,n} , \\ \text{with conventions } \text{tt} := \text{inj}_{\ell}^{T}(*) \text{ and } \text{ff} := \text{inj}_{r}^{T}(*) . \end{array}$

Sunday, September 11, 2011

 $\frac{A \lt: A'}{!\Delta, x: A \vdash x: A'} (Ax.1) \qquad \frac{!A_c \lt: A}{!\Delta \vdash c: A} (Ax.2)$ $\frac{\Delta \vdash M: \operatorname{!}^{n} A}{\Delta \vdash \operatorname{inj}_{\ell}^{B} M: \operatorname{!}^{n} (A+B)} (+.\operatorname{I}_{1})$ $\frac{\Delta \vdash N : \operatorname{!}^{n} B}{\Delta \vdash \operatorname{inj}_{r}^{A} N : \operatorname{!}^{n} (A + B)} (+.\mathrm{I}_{2})$ $!\Delta, \Gamma_2, x: !^n A \vdash M: C$ $!\Delta, \Gamma_1 \vdash P : !^n (A + B) \quad !\Delta, \Gamma_2, y : !^n B \vdash N : C \quad (+.E), (\dagger)$ \vdash match P with $(x^{!^n A} \mapsto M \mid y^{!^n B} \mapsto N) : C$ $rac{x:A,\Deltadash M:B}{\Deltadash\lambda x^A.M:A\multimap B} \ (\multimap. \mathrm{I_1})$ $rac{x:A,!\,\Deltadash M:B}{!\,\Deltadash\lambda x^A.M:!^n(A\multimap B)}\;(\multimap.\mathrm{I_2})$ $\frac{!\Delta,\Gamma_1 \vdash M: A \multimap B \quad !\Delta,\Gamma_2 \vdash N:A}{!\Delta,\Gamma_1,\Gamma_2 \vdash MN:B} (\multimap.E), (\dagger)$ $\frac{!\Delta, \Gamma_1 \vdash M_1 : !^n A_1 \quad !\Delta, \Gamma_2 \vdash M_2 : !^n A_2}{!\Delta, \Gamma_1, \Gamma_2 \vdash \langle M_1, M_2 \rangle : !^n (A_1 \boxtimes A_2)} \ (\boxtimes.I), (\dagger)$ $!\Delta, \Gamma_2, x_1 : !^n A_1, x_2 : !^n A_2 \vdash N : A$ $!\Delta, \Gamma_1 \vdash M : !^n(A_1 \boxtimes A_2)$ $!\Delta, \Gamma_1, \Gamma_2 \vdash \text{let} \langle x_1^{!^n A_1}, x_2^{!^n A_2} \rangle = M \text{ in } N : A$ (\boxtimes .E), (†) $\frac{!\Delta, \Gamma_1 \vdash M : \top !\Delta, \Gamma_2 \vdash N : A}{!\Delta, \Gamma_1, \Gamma_2 \vdash \mathsf{let} * = M \text{ in } N : A} (\top.\mathsf{E}), (\dagger)$ $!\Delta,\Gamma,f:!(A\multimap B)dash N:C$ $\frac{!\Delta, f: !(A \multimap B), x: A \vdash M: B}{!\Delta, \Gamma \vdash \texttt{letrec} \ f^{A \multimap B} x = M \texttt{ in } N: C} \ (\texttt{rec}), (\dagger)$

87

Operational Semantics

 $E[(\lambda x^A.M)V] \rightarrow_1 E[M[V/x]]$ $E[\operatorname{let}\langle x^A,y^B
angle=\langle V,W
angle$ in $M]
ightarrow_1 E[\,M[V/x,W/y]\,]$ $E[\operatorname{let} * = *\operatorname{in} M] \to_1 E[M]$ $E[\operatorname{match}(\operatorname{inj}_{\ell}^{B}V) \operatorname{with}(x^{\operatorname{!}^{n}A} \mapsto M \mid y^{\operatorname{!}^{n}B} \mapsto N)]$ $\rightarrow_1 E[M[V/x]]$ $E[ext{match}(ext{inj}_r^A V) ext{ with}(x^{!^n\,A}\mapsto M\mid y^{!^n\,B}\mapsto N)]$ $\rightarrow_1 E[N[V/y]]$ $E[\operatorname{letrec} f^{A \multimap B} x = M \operatorname{in} N]$ $\rightarrow_1 E[N[\lambda x^A.\texttt{letrec}\,f^{A\multimap B}x=M\,\texttt{in}\,M/f]]$ $E[\operatorname{meas}_{i}^{n+1}(\operatorname{new} \rho)] \rightarrow_{1} E[\langle \operatorname{tt}, \operatorname{new} \langle 0_{i} | \rho | 0_{i} \rangle \rangle]$ $E[\operatorname{meas}_{i}^{n+1}(\operatorname{new}
ho)] \rightarrow_{1} E[\langle \operatorname{ff}, \operatorname{new}\langle 1_{i}|
ho|1_{i}\rangle\rangle]$ $E[\operatorname{meas}_{1}^{1}(\operatorname{new} \rho)] \rightarrow_{\langle 0|\rho|0\rangle} E[\operatorname{tt}]$ $E[\operatorname{meas}_1^1(\operatorname{new}
ho)] o_{\langle 1|
ho|1 \rangle} E[\operatorname{ff}]$ $E[U(\operatorname{new} \rho)] \rightarrow_1 E[\operatorname{new} (U\rho)]$ $E[\operatorname{cmp}_{m,n}\langle\operatorname{new}
ho,\operatorname{new}\sigma
angle]
ightarrow_1 E[\operatorname{new}\left(
ho\otimes\sigma
ight)]$

Standard small-step one, CBV, but with probabilistic branching (measurement)
Hasuo (Tokyo)

The Language gla

- ***** Roughly: linear λ + quantum primitives
- "Quantum data, classical control"
 - * No superposed threads
- Based on [Selinger&Valiron'09]
 - With slight modifications
 - ★ Notably: quantum ⊗ vs. linear logic
 - The same in [Selinger&Valiron'09]
 - → clean type system, aids programming
 - But... problem with GoI-style semantics

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Branching monad B

Coalgebraic trace semantics

Traced monoidal category $\mathbb C$

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Quantum LCA

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Quantum TSMC

Quantum LCA

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Quantum branching monad

Quantum TSMC

Quantum LCA

2

3

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe is
 probabilistically
 branched

2

3

- Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe is
 probabilistically
 branched

2

3

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe is
 probabilistically
 branched

2

3

- * Pfn (partial functions)
 - * Pipe can be stuck
 - Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe is
 probabilistically
 branched

2

3

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe is
 probabilistically
 branched

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe is
 probabilistically
 branched

2

3

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe is
 probabilistically
 branched

Different Branching in

The Kl(L), non-termination

2

3

- * Pfn (partial functions)
 - * Pipe can be stuck
- * Rel (relations)
 - * Pipe can branch
- * DSRel
 - Pipe is
 probabilistically
 branched

Different Branching in

- The $Kl(\mathcal{L})$, non-termination
- * Pfn (partial functions) \downarrow \downarrow
 - * Pipe can be stuck
- * Rel (relations) $Kl(\mathcal{P})$, non-determinism
 - * Pipe can branch
- * DSRel
 - Pipe is
 probabilistically
 branched

Quantum Geometry of Interaction

The Quantum Branching Monad $\mathcal{Q}Y = \left\{ c: Y \rightarrow \prod \mathbf{QO}_{m,n} \mid \text{the trace condition} \right\}$ $m,n\in\mathbb{N}$

$$egin{aligned} \mathcal{Q}Y &= \left\{ c:Y
ightarrow \prod_{m,n \in \mathbb{N}} \mathrm{QO}_{m,n} \ \Big| \ ext{the trace condition}
ight\} \ &\sum_{y \in Y} \sum_{n \in \mathbb{N}} \mathrm{tr}[(c(y))_{m,n}(
ho)] \leq 1 \ , \end{aligned}$$

 $\forall m \in \mathbb{N}, \ \forall
ho \in D_m.$

$$rac{f}{X o \mathcal{Q}Y} ext{ in } \mathcal{K}\ell(\mathcal{Q}) \ \overline{X o \mathcal{Q}Y} ext{ in Sets}$$

* Given $x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N}$

0

determines a quantum operation

$$\left(f(x)(y)\right)_{m,n}$$
 : $D_m \to D$

* Subject to the trace condition

Any opr. on quantum data: n combination of

- preparation
- unitary transf.
- measurement

ressargronys

Y

Sunday, September 11, 2011

$$\begin{array}{c|c} \rightarrow \prod_{m,n\in\mathbb{N}} \mathbf{QO}_{m,n} & \text{the trace condition} \\ & \sum_{y\in Y} \sum_{n\in\mathbb{N}} \mathrm{tr}[(c(y))_{m,n}(\rho)] \leq 1 \\ & \forall m \in \mathbb{N}, \ \forall \rho \in D_m \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

 $\sum \sum \mathsf{tr}ig[ig(c(y)ig)_{m,n}(
ho)ig] \leq 1 \;,$ $y \in Y n \in \mathbb{N}$ $\forall m \in \mathbb{N}, \ \forall \rho \in D_m.$ $ho\in D_m$

Hasuo (Tokyo)

Quantum Geometry of Interaction

Indeed...

- The monad Q qualifies as a "branching monad"
- * The quantum GoI workflow leads
 - to a linear category PER_Q
- From which we construct an adequate denotational model

Hasuo (Tokyo)

End of the Story?

- * No! All the technicalities are yet to come:
 - * CPS-style interpretation (for partial measurement)
 - * Result type: a final coalgebra in PER_Q
 - * Admissible PERs for recursion

* On the next occasion :-)

* ...

Hasuo (Tokyo)

Conclusion: the Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C
+ other constructs → "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Quantum branching monad

Quantum TSMC

Quantum LCA

Model of quantum languagetasuo (Tokyo)

Branching monad B

Coalgebraic trace semantics

Traced monoidal category C

+ other constructs -> "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Thank you for your attention! Ichiro Hasuo (Dept. CS, U Tokyo) http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

> Quantum branching monad

Quantum TSMC

Quantum LCA

Model of quantum languagetasuo (Tokyo)