Semantics of Higher-Order Quantum Computation via Geometry of Interaction

In: Proc. Logic in Computer Science (LICS), June 2011

Ichiro Hasuo
University of Tokyo (JP)

Naohiko Hoshino
RIMS, Kyoto University (JP)
Contribution

Denotational semantics of a functional quantum programming language
Contribution

Denotational semantics of a functional quantum programming language

Linear λ-calculus + quantum primitives
Contribution

One of the first to cover the full features!

- !-modality for duplicable data
- recursion

Denotational semantics of a functional quantum programming language

Linear λ-calculus + quantum primitives
Contributions

Denotational semantics of a functional quantum programming language

One of the first to cover the full features!
- !-modality for duplicable data
- recursion

Adequacy

Linear λ-calculus + quantum primitives

Hasuo (Tokyo)
Denotational semantics of a functional quantum programming language

One of the first to cover the full features!

- !-modality for duplicable data
- recursion

Adequacy

Linear \(\lambda \)-calculus + quantum primitives

... via GoI (Geometry of Interaction)

Hasuo (Tokyo)
Part 1

Functional QPL: Some Contexts
Quantum Programming Language

Classical vs. Quantum

<table>
<thead>
<tr>
<th>Classical</th>
<th>Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Boolean) circuit</td>
<td>Quantum circuit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming language</th>
</tr>
</thead>
<tbody>
<tr>
<td>int i, j;</td>
</tr>
<tr>
<td>int factorial(int k)</td>
</tr>
<tr>
<td>{</td>
</tr>
<tr>
<td>j = 1;</td>
</tr>
<tr>
<td>for (i = 1; i <= k; i++)</td>
</tr>
<tr>
<td>j = j * i;</td>
</tr>
<tr>
<td>return j;</td>
</tr>
<tr>
<td>}</td>
</tr>
</tbody>
</table>

Hasuo (Tokyo)
Quantum Programming Language

<table>
<thead>
<tr>
<th>Classical</th>
<th>Quantum Programming Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Boolean) circuit</td>
<td>Quantum circuit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming language</td>
<td>Quantum programming language</td>
</tr>
<tr>
<td>int i,j; int factorial(int k) { j=1; for (i=1; i<=k; i++) j=j*i; return j; }</td>
<td>autocall</td>
</tr>
</tbody>
</table>
Quantum Programming Language

<table>
<thead>
<tr>
<th>Classical</th>
<th>Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Boolean) circuit</td>
<td>Quantum circuit</td>
</tr>
<tr>
<td>Programming language</td>
<td>Programming language</td>
</tr>
</tbody>
</table>

```c
int i, j;
int factorial(int k)
{
    j = 1;
    for (i = 1; i <= k; i++)
    {
        j = j * i;
    }
    return j;
}
```

- For discovery of **algorithms**
- For **reasoning**, **verification**

Monday, November 7, 2011
Functional Quantum Programming Language
Functional Quantum Programming Language

* A real man’s programming style

Hasuo (Tokyo)
Functional Quantum Programming Language

* A real man’s programming style
* Heavily used in the financial sector
* ...

ICFP’11 Sponsors (Tokyo, Sep 2011)

Monday, November 7, 2011
Functional Quantum Programming Language

- A real man’s programming style
- Heavily used in the financial sector
- ...

- Mathematically nice and clean
- Aids semantical study
- Transfer from classical to quantum
Functional QPL: Syntax

* Linear λ-calculus + quantum primitives [van Tonder, Selinger, Valiron, ...]

* Linearity for no-cloning
 * "Input can be used only once"
 * Not allowed/typable:

* Duplicable (classical) data: by the $!$-modality
Functional QPL:
Syntax

* Linear λ-calculus + quantum primitives
 [van Tonder, Selinger, Valiron, ...]

* Linearity for no-cloning
 “Input can be used only once”

* Not allowed/typable:
 Duplicable (classical) data: by the $!$-modality
Functional QPL: Syntax

- Linear λ-calculus + quantum primitives [van Tonder, Selinger, Valiron, ...]
- Linearity for **no-cloning**
 - "Input can be used only once"
 - Not allowed/typable: $\lambda x. \langle \text{meas } x, \text{meas } x \rangle$
Functional QPL: Syntax

* Linear λ-calculus
 + quantum primitives

* Linearity for no-cloning

 "Input can be used only once"

* Not allowed/typable:

 $\lambda x. \langle \text{meas } x, \text{meas } x \rangle$

[van Tonder, Selinger, Valiron, ...]

Preparation/Unitary transformation/Measurement

Hasuo (Tokyo)
Functional QPL: Syntax

- Linear λ-calculus + quantum primitives
- Linearity for no-cloning
 - “Input can be used only once”
 - Not allowed/typable:
 $\lambda x. \langle \text{meas } x, \text{meas } x \rangle$
- Duplicable (classical) data: by the $!$-modality
 $\vdash \text{tt : } !\text{bit}$

[van Tonder, Selinger, Valiron, ...]
Functional QPL: Syntax

* Linear λ-calculus + quantum primitives

* Linearity for no-cloning

* “Input can be used only once”

* Not allowed/typable:

 \[\lambda x. \langle \text{meas } x, \text{meas } x \rangle \]

* Duplicable (classical) data: by the \(! \)-modality

 \[\vdash \text{tt} : !\text{bit} \]

 “arbitrary many copies”
Functional QPL: Semantics
Functional QPL:
Semantics

Semantics = mathematical model
Functional QPL: Semantics

* Semantics = mathematical model

* Operational semantics: [Selinger & Valiron, ’09]

 “Quantum closure,”
 reduction with probabilistic branching

 \[
 [\alpha|Q_0\rangle + \beta|Q_1\rangle, |x_1 \ldots x_n\rangle, \text{meas } x_i] \rightarrow_{|\alpha|^2} [Q_0, |x_1 \ldots x_n\rangle, 0] \\
 [\alpha|Q_0\rangle + \beta|Q_1\rangle, |x_1 \ldots x_n\rangle, \text{meas } x_i] \rightarrow_{|\beta|^2} [Q_1, |x_1 \ldots x_n\rangle, 1]
 \]

* Allows to identify linear logic \(\otimes\) and quantum \(\otimes\)
 (feature of the Selinger–Valiron language; not in ours)
Functional QPL: Semantics

$[\mathcal{M}]$
Functional QPL: Semantics

* Denotational semantics

* $[M]$: a function, or an arrow of a category
Functional QPL: Semantics

* Denotational semantics

* $\llbracket M \rrbracket$: a function, or an arrow of a category

* Compositionality: $\llbracket MN \rrbracket = \llbracket M \rrbracket \circ \llbracket N \rrbracket$
Functional QPL: Semantics

* Denotational semantics

* \([M]\): a function, or an arrow of a category

* Compositionality: \([MN] = [M] \circ [N]\)

* Linear category: [Benton & Wadler, Bierman]
 (axioms for) a categorical model of linear \(\lambda\)-calculus

Defn.
A linear category \((\mathcal{C}, \otimes, I, \multimap, !)\) is a sym. monoidal closed cat. with a linear exponential comonad !.
Functional QPL: Semantics

- **Denotational semantics**

- **Compositionality**: $[MN] = [M] \circ [N]$

- **Linear category**: [Benton & Wadler, Bierman]
 (axioms for) a categorical model of linear λ-calculus

Defn.
A linear category \mathbb{C} is a sym. monoidal closed cat. with a linear exponential comonad $!$.

For functional QPL? Is **Hilb** (or alike) a linear cat.?
Functional QPL: Semantics

* Hilb (or alike) is not a linear category

* **Challenge**: coexistence of quantum and classical data

* Only partial results
 * [Selinger & Valiron, ’08]: for strictly linear fragment (w/o !)
Functional QPL: Semantics

* Hilb (or alike) is **not** a linear category

monoidal closed str. \((\mathbb{C}, \otimes, I, \to)\)

! (for duplicable data)

* **Challenge**: coexistence of quantum and classical data

* Only partial results

 * [Selinger & Valiron, ’08]:
 for strictly linear fragment (w/o !)
Functional QPL: Semantics

* Hilb (or alike) is not a linear category

monoidal closed str. \((\mathbb{C}, \otimes, I, \sim)\)

\[\text{duality } V \cong V^\perp \]

* Challenge: coexistence of quantum and classical data

* Only partial results

 * [Selinger & Valiron, ‘08]:
 for strictly linear fragment (w/o !)
Functional QPL: Semantics

* Hilb (or alike) is not a linear category

\[
\text{monoidal closed str. } (\mathbb{C}, \otimes, I, \rightarrow)
\]

! (for duplicable data)

\[V \cong V^\perp \]

\text{finite dim.}

* Challenge: coexistence of quantum and classical data

* Only partial results

* [Selinger & Valiron, ‘08]:
 for strictly linear fragment (w/o !)
Functional QPL: Semantics

- Hilb (or alike) is not a linear category
- Challenge: coexistence of quantum and classical data
- Only partial results
 - [Selinger & Valiron, ’08]: for strictly linear fragment (w/o !)

\[
\text{duality } V \cong V^\perp
\]

\[
\text{monoidal closed str. } (\mathbb{C}, \otimes, I, \rightarrow)
\]

\[\text{! (for duplicable data)}\]

\[\text{infinite dim.}\]

\[\text{finite dim.}\]
Functional QPL: Semantics

- Hilb (or alike) is **not** a linear category

 monoidal closed str. \((\mathbb{C}, \otimes, I, \neg)\)

 duality \(V \cong V^\perp\)

 finite dim.

 infinite dim.

- **Challenge**: coexistence of quantum and classical data
Functional QPL: Semantics

* Hilb (or alike) is **not** a linear category

 monoidal closed str. \((\mathbb{C}, \otimes, I, \sim)\)

 \[\text{duality } V \cong V^\perp \]

 \[\text{finite dim. } \]

 \[\text{infinite dim. } \]

* **Challenge:** coexistence of quantum and classical data

* Only partial results

* [Selinger & Valiron, ’08]:
 for strictly linear fragment (w/o !)

Hasuo (Tokyo)

Monday, November 7, 2011
“Quantum Data, Classical Control”

Quantum data

Classical control

Illustration by N. Hoshino
“Quantum Data, Classical Control”

Quantum data

\[\frac{1}{\sqrt{2}} \]

Illustration by N. Hoshino
"Quantum Data, Classical Control"

Quantum data

\[\frac{1}{\sqrt{2}} \]

\[+ \frac{1}{\sqrt{2}} \]

Classical control

Illustration by N. Hoshino

Monday, November 7, 2011
What We Do

* **GoI (Geometry of Interaction)** [Girard ’89]

 An “implementation” of **classical control**

\[
\text{tr}(f) = f_{XY} \sqcup \left(\bigsqcup_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} \right)
\]
What We Do

* GoI (Geometry of Interaction) [Girard ’89]
 An “implementation” of classical control

\[\text{tr}(f) = f_{XY} \sqcup \left(\bigsqcup_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} \right) \]
What We Do

* **GoI (Geometry of Interaction)** [Girard ’89]
An “implementation” of classical control

* **Categorical GoI** [Abramsky, Haghverdi, Scott ’02]
Its categorical axiomatics
What We Do

* **GoI (Geometry of Interaction)** [Girard ’89]
 An “implementation” of classical control

* **Categorical GoI** [Abramsky, Haghverdi, Scott ’02]
 Its categorical axiomatics

* We add a quantum layer to GoI
 * “Quantum data, classical control”
 * Used: theory of coalgebra
 [Hasuo, Jacobs, Sokolova ’07] [Jacobs ’10]
Part 2

The Categorical GoI Workflow
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium '88
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88
GoI:
Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ‘88

* **But** I’m no linear logician!
GoI: Geometry of Interaction

* J.-Y. Girard, at Logic Colloquium ’88

* But I’m no linear logician!

* In this talk:
 * Its categorical formulation
 [Abramsky, Haghverdi, Scott ’02]
 * “The GoI Animation”
The GoI Animation

\[[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{a partial function}) \]

= “piping”

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\end{array}
\]

... (countably many)
The GoI Animation

\[[M] = (N \twoheadrightarrow N, \text{ a partial function}) \]

= “piping”

1 2 3 4 ...

(countably many)
The GoI Animation

\[[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{a partial function}) \]

= “piping”

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\end{array}
\]

... (countably many)

Monday, November 7, 2011
\[\text{The GoI Animation} \]

\[
[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{a partial function}) = \text{“piping”} \\
1 \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\quad \ Quad
The GoI Animation

\[[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{a partial function}) \]

= “piping”

\[\downarrow \downarrow \downarrow \downarrow \downarrow \]

1 2 3 4 ...

(countably many)
The GoI Animation

\[[M] = (\mathbb{N} \rightarrow \mathbb{N}, \text{a partial function}) \]

= “piping”

\[1 \quad 2 \quad 3 \quad 4 \quad \ldots \]

(countably many)
The GoI Animation

\[[M]\] = (\mathbb{N} \twoheadrightarrow \mathbb{N}, \text{ a partial function})

= “piping”

1 2 3 4 ...

(countably many)
The GoI Animation

* Function application \([MN]\)

* by "parallel composition + hiding"
\[M N \] = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} N \end{bmatrix}
\[MN \] = [M] [N]
$[MN] = [M] [N]$
\[[M N] = [M] \quad \text{and} \quad [N] \]
\[M N \] = \[[M]\] \quad \cdots \quad \cdots \quad \cdots \quad \quarter
$[MN] = [M] \parallel [N]$

"parallel composition + hiding" (cf. games)
\[M \equiv \lambda x. x + 1 \quad N \equiv 2 \]
\[M \equiv \lambda x. 1 \quad N \equiv 2 \]
\[M \equiv \lambda f. f1 \quad N \equiv \lambda x. (x + 1) \]
\[M N \]

\[= \]

\[M = \lambda x. x + 1 \quad N = 2 \]
\[M = \lambda x. 1 \quad N = 2 \]
\[M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
\[MN \] =

\[M = \lambda x. x + 1 \quad N = 2 \]
\[M = \lambda x. 1 \quad N = 2 \]
\[M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
\[MN \] =

\[M = \lambda x. x + 1 \quad N = 2 \]
\[M = \lambda x. 1 \quad N = 2 \]
\[M = \lambda f. f 1 \quad N = \lambda x. (x + 1) \]
\[MN \]

\[
M = \lambda x. x + 1 \quad N = 2
\]

\[
M = \lambda x. 1 \quad N = 2
\]

\[
M = \lambda f. f1 \quad N = \lambda x. (x + 1)
\]
\[\boxed{MN} \]

\[= \]

\[\boxed{M} \]

\[\boxed{N} \]

\[
\begin{align*}
M &= \lambda x. x + 1 & N &= 2 \\
M &= \lambda x. 1 & N &= 2 \\
M &= \lambda f. f \, 1 & N &= \lambda x. (x + 1)
\end{align*}
\]
\[MN \]

\[= \]

\[[M] \]

\[[N] \]

\[M = \lambda x. x + 1 \quad N = 2 \]

\[M = \lambda x. 1 \quad N = 2 \]

\[M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]

Monday, November 7, 2011
\[[MN] = M = \lambda x. x + 1 \quad N = 2 \]
\[\quad \rightarrow M = \lambda x. 1 \quad N = 2 \]
\[\quad \rightarrow M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
\[MN \] =

\[[M] \]

\[[N] \]

\[M = \lambda x. x + 1 \quad N = 2 \]
\[M = \lambda x. 1 \quad N = 2 \]
\[M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
$$[MN] = \begin{align*}
M &= \lambda x. x + 1 & N &= 2 \\
M &= \lambda x. 1 & N &= 2 \\
\rightarrow M &= \lambda f. f1 & N &= \lambda x. (x + 1)
\end{align*}$$
\[M N \]

\[M = \lambda x. x + 1 \quad N = 2 \]
\[M = \lambda x. 1 \quad N = 2 \]
\[M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
\[[MN] = \]

\[M = \lambda x. x + 1 \quad N = 2 \]
\[M = \lambda x. 1 \quad N = 2 \]
\[M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]

Monday, November 7, 2011
\[[MN] = [M] \oplus [N] \]

\[M = \lambda x. x + 1 \quad N = 2 \]
\[M = \lambda x. 1 \quad N = 2 \]
\[\rightarrow M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
\[MN \]

\[= \]

\[M = \lambda x. x + 1 \quad N = 2 \]

\[M = \lambda x. 1 \quad N = 2 \]

\[M = \lambda f. f1 \quad N = \lambda x. (x + 1) \]
Categorical GoI

* Axiomatics of GoI in the categorical language

* Our main reference:

 * Especially its technical report version (Oxford CL), since it’s a bit more detailed
The Categorical GoI Workflow

Traced monoidal category \(C \)
+ other constructs \(\rightarrow \) “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category
The Categorical GoI Workflow

- Traced monoidal category \mathcal{C} + other constructs \rightarrow “GoI situation” [AHS02]
- Categorical GoI [AHS02]
- Linear combinatory algebra
- Realizability
- Linear category

Hasuo (Tokyo)

Monday, November 7, 2011
The Categorical GoI Workflow

Traced monoidal category \mathcal{C}
+ other constructs \Rightarrow “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

- Applicative str. + combinators
- Model of untyped calculus

Monday, November 7, 2011

Hasuo (Tokyo)
The Categorical GoI Workflow

Traced monoidal category \mathbb{C}
+ other constructs \rightarrow "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

\[\begin{array}{ccc}
A & f & B \\
B & C & B \\
\end{array} \quad \begin{array}{ccc}
A & \text{tr} & B \\
\text{tr}(f) & C & \text{tr}(f) \\
\end{array} \]

\[\text{Model of typed calculus} \]

Hasuo (Tokyo)

Applicative str. + combinators

Model of untyped calculus

Monday, November 7, 2011
The Categorical GoI Workflow

Traced monoidal category C
+ other constructs \mapsto “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

- Applicative str. + combinators
- Model of untyped calculus
- PER, ω-set, assembly, ...
- “Programming in untyped λ”

Model of typed calculus
The Categorical GoI Workflow

Traced monoidal category C
+ other constructs \rightarrow “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Model of typed calculus

Applicative str. + combinators

Model of untyped calculus

PER, ω-set, assembly, ...

“Programming in untyped λ"
Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

- a binary operator (called an applicative structure)
 $$\cdot : A^2 \rightarrow A$$

- a unary operator
 $$! : A \rightarrow A$$

- (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$
satisfying

 $\begin{align*}
 Bxyz &= x(yz) & \text{Composition, Cut} \\
 Cxyz &= (xz)y & \text{Exchange} \\
 Ix &= x & \text{Identity} \\
 Kx!y &= x & \text{Weakening} \\
 Wx!y &= x!y!y & \text{Contraction} \\
 Dx &= x & \text{Dereliction} \\
 \delta!x &= !!x & \text{Comultiplication} \\
 F!x!y &= !(xy) & \text{Monoidal functoriality}
 \end{align*}$

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.
Linear Combinatory Algebra (LCA)

Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

- a binary operator (called an applicative structure)

 $\cdot : A^2 \to A$

- a unary operator

 $!: A \to A$

- (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

 $Bxyz = x(yz)$ Composition, Cut
 $Cxyz = (xz)y$ Exchange
 $lx = x$ Identity
 $Kxy = x$ Weakening
 $Wxy = x!y!y$ Contraction
 $D!x = x$ Dereliction
 $\delta!x = !!x$ Comultiplication
 $F!x!y = !(xy)$ Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.
Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

- a binary operator (called an applicative structure)
 $$
 \cdot : A^2 \rightarrow A
 $$
- a unary operator
 $$
 ! : A \rightarrow A
 $$
- (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$

satisfying

- $Bxyz = x(yz)$ Composition, Cut
- $Cxyz = (xz)y$ Exchange
- $Ix = x$ Identity
- $Kxy = x$ Weakening
- $Wxy = xxy$ Contraction
- $D!x = x$ Dereliction
- $\delta!x = !x$ Comultiplication
- $F!x = ! (xy)$ Monoidal functoriality

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.

* Model of untyped linear λ
Defn. (LCA)
A *linear combinatory algebra (LCA)* is a set A equipped with

- a binary operator (called an *applicative structure*)
 \[\cdot : A^2 \rightarrow A \]
- a unary operator
 \[! : A \rightarrow A \]
- *(combinators)* distinguished elements $B, C, I, K, W, D, \delta, F$
 satisfying

\[
\begin{align*}
Bxyz &= x(yz) & \text{Composition, Cut} \\
Cxyz &= (xz)y & \text{Exchange} \\
Ix &= x & \text{Identity} \\
Kx!y &= x & \text{Weakening} \\
Wx!y &= x!y!y & \text{Contraction} \\
D!x &= x & \text{Dereliction} \\
\delta!x &= !!x & \text{Comultiplication} \\
F!x!y &= !(xy) & \text{Monoidal functoriality}
\end{align*}
\]

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.

Model of untyped linear λ

- $a \in A \approx$ closed linear λ-term

What we want (outcome)
Defn. (LCA)
A linear combinatory algebra (LCA) is a set A equipped with

- a binary operator (called an applicative structure)
 $$\cdot : A^2 \to A$$

- a unary operator
 $$! : A \to A$$

- (combinators) distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying

\[
\begin{align*}
Bxyz &= x(yz) & \text{Composition, Cut} \\
Cxyz &= (xz)y & \text{Exchange} \\
Ix &= x & \text{Identity} \\
Kxy &= x & \text{Weakening} \\
Wxy &= x ! y ! y & \text{Contraction} \\
Dx &= x & \text{Dereliction} \\
\delta x &= !!x & \text{Comultiplication} \\
Fx ! y &= !(xy) & \text{Monoidal functoriality}
\end{align*}
\]

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.

What we want (outcome)

- Model of untyped linear λ
- $a \in A \approx$ closed linear λ-term
- No S or K (linear!)
Linear Combinatory Algebra (LCA)

Defn. (LCA)
A *linear combinatory algebra (LCA)* is a set A equipped with:

- a binary operator (called an *applicative structure*)

 $\cdot : A^2 \rightarrow A$

- a unary operator

 $!: A \rightarrow A$

- *(combinators)* distinguished elements $B, C, I, K, W, D, \delta, F$ satisfying:

 \[
 \begin{align*}
 Bxyz &= x(yz) & \text{Composition, Cut} \\
 Cxyz &= (xz)y & \text{Exchange} \\
 Ix &= x & \text{Identity} \\
 Kx!y &= x & \text{Weakening} \\
 W!x &= x!y!y & \text{Contraction} \\
 D!x &= x & \text{Dereliction} \\
 \delta!x &= !!x & \text{Comultiplication} \\
 F!x!y &= !(xy) & \text{Monoidal functoriality}
 \end{align*}
 \]

Here: \cdot associates to the left; \cdot is suppressed; and $!$ binds stronger than \cdot does.

What we want (outcome):

- Model of untyped linear λ
- $a \in A \approx$ closed linear λ-term
- No S or K (linear!)
- Combinatory completeness: e.g.

 $\lambda xyz. zxy$

 designates an elem. of A

Hasuo (Tokyo)
GoI situation

Defn. (GoI situation [AHS02])
A *GoI situation* is a triple \((C, F, U)\) where

- \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 \[
 \begin{align*}
 e & : FF \otimes F \to e' & \text{Comultiplication} \\
 d & : \text{id} \otimes F \to d' & \text{Dereliction} \\
 c & : F \otimes F \to c' & \text{Contraction} \\
 w & : K_I \otimes F \to w' & \text{Weakening}
 \end{align*}
 \]

 Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- \(U \in C\) is an object (called *reflexive object*), equipped with the following retractions.

 \[
 \begin{align*}
 j & : U \otimes U \otimes U \to k \\
 I & \otimes U \\
 u & : FU \otimes U \to v
 \end{align*}
 \]
GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple \((\mathcal{C}, F, U)\) where

- \(\mathcal{C} = (\mathcal{C}, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : \mathcal{C} \to \mathcal{C}\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 \[
 e : FF \triangleright F : e' \quad \text{Comultiplication}

 d : \text{id} \triangleright F : d' \quad \text{Dereliction}

 c : F \otimes F \triangleright F : c' \quad \text{Contraction}

 w : K_I \triangleright F : w' \quad \text{Weakening}
 \]

 Here \(K_I\) is the constant functor into the monoidal unit \(I\);
- \(U \in \mathcal{C}\) is an object (called reflexive object), equipped with the following retractions.

 \[
 j : U \otimes U \triangleright U : k \\
 I \triangleright U \\
 u : FU \triangleright U : v
 \]

Monoidal category \((\mathcal{C}, \otimes, I)\)

String diagrams
A GoI situation is a triple \((C, F, U)\) where

- \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : F F \triangleleft F : e'\) Comultiplication
 - \(d : \text{id} \triangleleft F : d'\) Dereliction
 - \(c : F \otimes F \triangleleft F : c'\) Contraction
 - \(w : K_I \triangleleft F : w'\) Weakening

Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- \(U \in C\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U \triangleleft U : k\)
 - \(I \triangleleft U\)
 - \(u : FU \triangleleft U : v\)
GoI situation

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

- $C = (C, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : C \to C$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 - $e : FF \otimes F \to e'$: Comultiplication
 - $d : \text{id} \otimes F \to d'$: Dereliction
 - $c : F \otimes F \otimes F \to c'$: Contraction
 - $w : K_I \otimes F \to w'$: Weakening

Here K_I is the constant functor into the monoidal unit I;

- $U \in C$ is an object (called reflexive object), equipped with the following retractions.

 - $j : U \otimes U \otimes U \to k$
 - $I \otimes U$
 - $u : FU \otimes U \to v$

Monoidal category (C, \otimes, I)

String diagrams

\[
A \xrightarrow{f} B \quad B \xrightarrow{g} C
\]

$A \xrightarrow{g \circ f} C$

\[
A \otimes C \xrightarrow{f \otimes g} B \otimes D
\]

$h \circ (f \otimes g)$

Monday, November 7, 2011
GoI situation

Defn. (GoI situation [AHS02])
A GoI situation is a triple (\mathcal{C}, F, U) where

- $\mathcal{C} = (\mathcal{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathcal{C} \to \mathcal{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - $e : FF < F : e'$ Comultiplication
 - $d : \text{id} < F : d'$ Dereliction
 - $c : F \otimes F < F : c'$ Contraction
 - $w : K_I < F : w'$ Weakening

Here K_I is the constant functor into the monoidal unit I;

- $U \in \mathcal{C}$ is an object (called reflexive object), equipped with the following retractions.
 - $j : U \otimes U < U : k$
 - $I < U$
 - $u : FU < U : v$

Traced monoidal category

“feedback”

\[
\begin{align*}
A \otimes C & \rightarrow^f B \otimes C \\
\downarrow^{\text{tr}(f)} & \downarrow^\rightarrow \\
A & \rightarrow \text{tr}(f) B
\end{align*}
\]

that is

\[
\begin{array}{c}
A \\
\downarrow^f \\
B
\end{array}
\rightarrow
\begin{array}{c}
A \\
\downarrow^\text{tr}(f) \\
B
\end{array}
\]
String Diagram vs. “Pipe Diagram”

I use two ways of depicting partial functions $\mathbb{N} \rightarrow \mathbb{N}$
I use two ways of depicting partial functions $\mathbb{N} \rightarrow \mathbb{N}$.

In the monoidal category $(\text{Pfn}, +, 0)$.
Traced Sym. Monoidal Category
(Pfn, +, 0)

* Category Pfn of partial functions

* Obj. A set X

* Arr. A partial function

\[
\begin{array}{c}
X
ightarrow Y \text{ in Pfn} \\
X \rightarrow Y, \text{ partial function}
\end{array}
\]
Traced Sym. Monoidal Category
(Pfn, +, 0)

* Category Pfn of partial functions

* Obj. A set X

* Arr. A partial function

$X \rightarrow Y$ in Pfn

$X \rightarrow Y$, partial function

* is traced symmetric monoidal
Traced Sym. Monoidal Category

\((Pfn, +, 0)\)

\[
\begin{align*}
X + Z & \xrightarrow{f} Y + Z \quad \text{in } Pfn \\
X & \xrightarrow{\text{tr}(f)} Y \quad \text{in } Pfn
\end{align*}
\]
Traced Sym. Monoidal Category
(Pfn, +, 0)

\[
\begin{align*}
X + Z & \xrightarrow{f} Y + Z \quad \text{in Pfn} \\
X & \xrightarrow{\text{tr}(f)} Y \quad \text{in Pfn}
\end{align*}
\]

Traced Sym. Monoidal Category

\((\text{Pfn}, +, 0)\)

\[
\begin{align*}
X + Z & \xrightarrow{f} Y + Z \quad \text{in Pfn} \\
X & \xrightarrow{\text{tr}(f)} Y \quad \text{in Pfn}
\end{align*}
\]

How?
Traced Sym. Monoidal Category
(Pfn, +, 0)

\[
\begin{array}{c}
X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn} \\
X \xrightarrow{\text{tr}(f)} Y \quad \text{in Pfn}
\end{array}
\]

\[
f_{XY}(x) := \begin{cases}
 f(x) & \text{if } f(x) \in Y \\
 \perp & \text{o.w.}
\end{cases}
\]

Similar for \(f_{XZ}, f_{ZY}, f_{ZZ}\)

Monday, November 7, 2011
Traced Sym. Monoidal Category
(Pfn, +, 0)

\[
\begin{align*}
X + Z & \xrightarrow{f} Y + Z \quad \text{in Pfn} \\
X & \xrightarrow{\text{tr}(f)} Y \quad \text{in Pfn}
\end{align*}
\]

How?

\[
f_{xy}(x) := \begin{cases}
 f(x) & \text{if } f(x) \in Y \\
 \bot & \text{o.w.}
\end{cases}
\]

Similar for \(f_{xz}, f_{zy}, f_{zz}\)

Trace operator:

\[
\begin{aligned}
X & \quad f \\
Y & \quad Z
\end{aligned}
\]
Traced Sym. Monoidal Category
(Pfn, +, 0)

\[
\begin{aligned}
X + Z \xrightarrow{f} Y + Z \quad \text{in Pfn} \\
X \xrightarrow{\text{tr}(f)} Y \quad \text{in Pfn}
\end{aligned}
\]

How?

\[
f_{XY}(x) := \begin{cases}
 f(x) & \text{if } f(x) \in Y \\
 \bot & \text{o.w.}
\end{cases}
\]

Similar for \(f_{XZ}, f_{ZY}, f_{ZZ}\)

Trace operator:

\[
\text{tr}(f) = f_{XY} \sqcup \left(\bigsqcap_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} \right)
\]
Traced Sym. Monoidal Category

\[(Pfn, +, 0)\]

* \[\begin{align*}
X + Z \xrightarrow{f} Y + Z & \quad \text{in } Pfn \\
X \xrightarrow{\text{tr}(f)} Y & \quad \text{in } Pfn
\end{align*}\]

How?

* \[f_{XY}(x) := \begin{cases} f(x) & \text{if } f(x) \in Y \\ \bot & \text{o.w.} \end{cases}\]

Similar for \(f_{XZ}, f_{ZY}, f_{ZZ}\)

* Execution formula (Girard)

* Partiality is essential (infinite loop)

\[\text{tr}(f) = \bigcup f_{XY} \sqcup \left(\bigoplus_{n \in \mathbb{N}} f_{ZY} \circ (f_{ZZ})^n \circ f_{XZ} \right)\]
GoI situation

* A GoI situation is a triple \((C, F, U)\) where
 - \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
 - \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : FF \triangleleft F : e'\) \quad \text{Comultiplication}
 - \(d : \text{id} \triangleleft F : d'\) \quad \text{Dereliction}
 - \(c : F \otimes F \triangleleft F : c'\) \quad \text{Contraction}
 - \(w : K_I \triangleleft F : w'\) \quad \text{Weakening}

Here \(K_I\) is the constant functor into the monoidal unit \(I\);
 - \(U \in C\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U \triangleleft U : k\)
 - \(I \triangleleft U\)
 - \(u : FU \triangleleft U : v\)

* Where one can “feedback”

* Why for GoI?
\[MN \] = [M] \cdots [N] \]
\[[MN] = [M] \] in string diagram

Monday, November 7, 2011
Defn. (GoI situation [AHS02])

A GoI situation is a triple \((\mathcal{C}, F, U)\) where

- \(\mathcal{C} = (\mathcal{C}, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : \mathcal{C} \rightarrow \mathcal{C}\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : FF < F : e'\) Comultiplication
 - \(d : \text{id} < F : d'\) Dereliction
 - \(c : F \otimes F < F : c'\) Contraction
 - \(w : K_I < F : w'\) Weakening

Here \(K_I\) is the constant functor into the monoidal unit \(I\);
- \(U \in \mathcal{C}\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U < U : k\)
 - \(I < U\)
 - \(u : FU < U : v\)

Traced sym. monoidal cat.

- Where one can “feedback”

Why for GoI?

Leading example: Pfn

Monday, November 7, 2011
GoI situation

Defn. (GoI situation [AHS02])

A *GoI situation* is a triple \((C, F, U)\) where

- \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : FF \triangleleft F : e'\) Comultiplication
 - \(d : \text{id} \triangleleft F : d'\) Dereliction
 - \(c : F \otimes F \triangleleft F : c'\) Contraction
 - \(w : K_I \triangleleft F : w'\) Weakening

Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- \(U \in C\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U \triangleleft U : k\)
 - \(I \triangleleft U\)
 - \(u : FU \triangleleft U : v\)

Defn. (Retraction)

A *retraction* from \(X\) to \(Y\),

\[
f : X \triangleleft Y : g,
\]

is a pair of arrows

\[
\text{id} \quad X \quad Y
\]

\[
f \quad g
\]

such that \(g \circ f = \text{id}_X\).

\[\star\] **Functor \(F\)**

\[\star\] **For obtaining \(! : A \to A\)**
GoI situation

* The reflexive object U

* Retr. $U \otimes U \overset{j}{\leftrightarrow} U \overset{k}{\Leftarrow} U$

Defn. (GoI situation [AHS02])
A GoI situation is a triple (\mathcal{C}, F, U) where

- $\mathcal{C} = (\mathcal{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathcal{C} \to \mathcal{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e : FF \triangleleft F : e'$
 Comultiplication

 $d : id \triangleleft F : d'$
 Dereliction

 $c : F \otimes F \triangleleft F : c'$
 Contraction

 $w : K_I \triangleleft F : w'$
 Weakening

Here K_I is the constant functor into the monoidal unit I;

- $U \in \mathcal{C}$ is an object (called reflexive object), equipped with the following retractions.

 $j : U \otimes U \triangleleft U : k$

 $I \triangleleft U$

 $u : FU \triangleleft U : v$
GoI situation

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

- $C = (C, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : C \to C$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e : FF \triangleleft F : e'$ Comultiplication
 $d : \text{id} \triangleleft F : d'$ Dereliction
 $c : F \otimes F \triangleleft F : c'$ Contraction
 $w : K_I \triangleleft F : w'$ Weakening

Here K_I is the constant functor into the monoidal unit I.

- $U \in C$ is an object (called reflexive object), equipped with the following retraction.

 $j : U \otimes U \triangleleft U : k$
 $I \triangleleft U$
 $u : FU \triangleleft U : v$

The reflexive object U

Retr. $U \otimes U \xleftarrow{j} U \xrightarrow{k}$ with

$\begin{align*}
 j, \quad k \\
 \downarrow \quad \downarrow \\
 j, \quad k
\end{align*}$

$= \text{id}$

Hasuo (Tokyo)
GoI situation

* The reflexive object \(U \)

* Why for GoI?

\[\text{Defn. (GoI situation [AHS02])} \]

A GoI situation is a triple \((\mathcal{C}, F, U)\) where

- \(\mathcal{C} = (\mathcal{C}, \otimes, I) \) is a traced symmetric monoidal category (TSMC);
- \(F : \mathcal{C} \to \mathcal{C} \) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 - \(e : FF < F : e' \) Comultiplication
 - \(d : \text{id} < F : d' \)
 - \(c : F \otimes F < F : c' \) Contraction
 - \(w : K_I < F : w' \)

Here \(K_I \) is the constant functor.

- \(U \in \mathcal{C} \) is an object (called reflexive object), equipped with the following retractions.

 - \(j : U \otimes U < U : k \)
 - \(\text{I} < U \)
 - \(u : FU < U : v \)

* Example in Pfn:
GoI situation

* The reflexive object U

* Why for GoI?

* Example in Pfn:

Defn. (GoI situation [AHS02])

A GoI situation is a triple (\mathbb{C}, F, U) where

- $\mathbb{C} = (\mathbb{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathbb{C} \to \mathbb{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 $e : FF \triangleleft F : e' \quad \text{Comultiplication}$
 $d : \text{id} \triangleleft F : d' \quad \text{Dereliction}$
 $c : F \otimes F \triangleleft F : c' \quad \text{Contraction}$
 $w : K_I \triangleleft F : w' \quad \text{Weakening}$

Here K_I is the constant functor.

- $U \in \mathbb{C}$ is an object (called reflexive object), equipped with the following retractions.

 $j : U \otimes U \triangleleft U : k$
 $I \triangleleft U$
 $u : FU \triangleleft U : v$
GoI situation

Defn. (GoI situation [AHS02])

A GoI situation is a triple \((C, F, U)\) where

- \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : FF \triangleleft F \triangleleft e'\) Comultiplication
 - \(d : \text{id} \triangleleft F \triangleleft d'\)
 - \(c : F \otimes F \triangleleft F \triangleleft c'\) Contraction
 - \(w : K_I \triangleleft F \triangleleft w'\) Weakening

Here \(K_I\) is the constant functor.

- \(U \in C\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U \triangleleft U \triangleleft k\)
 - \(I \triangleleft U\)
 - \(u : FU \triangleleft U \triangleleft v\)

Why for GoI?

Example in Pfn:

\[N \in \text{Pfn}, \text{ with } N + N \cong N, \]
\[N \cdot N \cong N \]
GoI Situation: Summary

* Categorical axiomatics of the “GoI animation”

Defn. (GoI situation [AHS02])
A GoI situation is a triple \((C, F, U)\) where

- \(C = (C, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - \(e : FF \otimes F \to F : e'\) Comultiplication
 - \(d : \text{id} \otimes F \to F : d'\) Dereliction
 - \(c : F \otimes F \otimes F \to F : c'\) Contraction
 - \(w : K_I \otimes F \to F : w'\) Weakening

Here \(K_I\) is the constant functor into the monoidal unit \(I\);
- \(U \in C\) is an object (called reflexive object), equipped with the following retractions.
 - \(j : U \otimes U \to U : k\)
 - \(I \otimes U \to U : v\)

Example:

\[(\text{Pfn}, N \cdot _, N)\]
Defn. (GoI situation [AHS02])

A GoI situation is a triple \((C, F, U)\) where

- \(C = (\mathcal{C}, \otimes, I)\) is a traced symmetric monoidal category (TSMC);
- \(F : C \to C\) is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).

 \begin{align*}
 e & : FF < F : e' & \text{Comultiplication} \\
 d & : \text{id} < F : d' & \text{Dereliction} \\
 c & : F \otimes F < F : c' & \text{Contraction} \\
 w & : K_I < F : w' & \text{Weakening}
 \end{align*}

Here \(K_I\) is the constant functor into the monoidal unit \(I\);

- \(U \in C\) is an object (called reflexive object), equipped with the following retractions.
 \begin{align*}
 j & : U \otimes U < U : k \\
 I & < U \\
 u & : FU < U : v
 \end{align*}

Example:

\((\text{Pfn}, N \cdot _ _ N)\)
Example:

\((\text{Pfn}, \mathbb{N} \cdot _ , \mathbb{N})\)
Categorical axiomatics of the "GoI animation"

Example:

\[(\text{Pfn}, \, N \cdot _, \, N)\]
Categorical axiomatics of the "GoI animation"

Example:

\[(\text{Pfn}, N \cdot _, N) \]
Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation \((\mathcal{C}, F, U)\), the homset
\[
\mathcal{C}(U, U)
\]
carries a canonical LCA structure.
Thm. ([AHS02])
Given a GoI situation \((\mathcal{C}, \mathbf{F}, \mathbf{U})\), the homset
\[\mathcal{C}(U, U) \]
carries a canonical LCA structure.
Categorical GoI: Constr. of an LCA

Thm. ([AHS02])
Given a GoI situation \((\mathcal{C}, F, U)\), the homset \(\mathcal{C}(U, U)\) carries a canonical LCA structure.

* Applicative str. \(\cdot\)
* ! operator
* Combinators B, C, I, ...
Thm. ([AHS02])

Given a GoI situation (\mathcal{C}, F, U), the homset $\mathcal{C}(U, U)$ carries a canonical LCA structure.

- Applicative str. ·
- ! operator
- Combinators B, C, I, ...

\[
\begin{align*}
g \cdot f &:= \text{tr}((U \otimes f) \circ k \circ g \circ j) \\
&= \begin{array}{c}
g \\
n \\
= \\
g \\
f \\
f \\
= \\
f \\
g \\
g \\
g \\
g \end{array}
\end{align*}
\]
Thm. ([AHS02])
Given a GoI situation \((\mathcal{C}, F, U)\), the homset \(\mathcal{C}(U, U)\) carries a canonical LCA structure.

* Applicative str. ⋅
* ! operator
* Combinators B, C, I, ...
Categorical GoI: Constr. of an LCA

* Combinator \(Bxyz = x(yz) \)

Figure 7: Composition Combinator B

from [AHS02]
Categorical GoI: Constr. of an LCA

* Combinator $Bxyz = x(yz)$
Hasuo (Tokyo)

Monday, November 7, 2011

Categorical GoI:

$$B_{xyz} = x(yz)$$
Categorical GoI: Constr. of an LCA

\[B_{x y z} = x(yz) \]
Hasuo (Tokyo)

Categorical GoI:

Constr. of an LCA

Combinator

\[Bxyz = x(yz) \]
Categorical GoI:

\[B_{xyz} = x(yz) \]
Categorical GoI: Constr. of an LCA

* Combinator $Bxyz = x(yz)$

Figure 7: Composition Combinator B

from [AHS02]
Categorical GoI: Constr. of an LCA

* Combinator \(B_{xyz} = x(yz) \)

Figure 7: Composition Combinator B

Nice dynamic interpretation of (linear) computation!!
Summary:
Categorical GoI

Defn. (GoI situation [AHS02])
A *GoI situation* is a triple (\mathcal{C}, F, U) where

- $\mathcal{C} = (\mathcal{C}, \otimes, I)$ is a traced symmetric monoidal category (TSMC);
- $F : \mathcal{C} \to \mathcal{C}$ is a traced symmetric monoidal functor, equipped with the following retractions (which are monoidal natural transformations).
 - $e : FF \otimes F : e'$ Comultiplication
 - $d : \text{Id} \otimes F : d'$ Dereliction
 - $c : F \otimes F \otimes F : c'$ Contraction
 - $w : K_I \otimes F : w'$ Weakening

Here K_I is the constant functor into the monoidal unit I;

- $U \in \mathcal{C}$ is an object (called *reflexive object*), equipped with the following retractions.
 - $j : U \otimes U \otimes U : k$
 - $I \otimes U
 - $u : FU \otimes U : v$

Thm. ([AHS02])
Given a GoI situation (\mathcal{C}, F, U), the homset $\mathcal{C}(U, U)$ carries a canonical LCA structure.
Why Categorical Generalization?:
Examples Other Than \texttt{Pfn} \cite{AHS02}

\begin{itemize}
 \item Strategy: find a TSMC!
 \item "Wave-style" examples
 \begin{itemize}
 \item \(\otimes\) is Cartesian product(-like)
 \item in which case,
 \end{itemize}
 \end{itemize}

\textcolor{red}{\texttt{trace} \approx \texttt{fixed point operator}} \cite{Hasegawa/Hyland}

\begin{itemize}
 \item An example: \((\omega\texttt{-Cpo}, \times, 1), (_)^\mathbb{N}, A^\mathbb{N}\)
 \item (... less of a dynamic flavor)
\end{itemize}
Why Categorical Generalization?: Examples Other Than Pfn [AHS02]

* “Particle-style” examples
 * Obj. \(X \in C \) is set-like; \(\otimes \) is coproduct-like
 * The GoI animation is valid

* Examples:
 * Partial functions
 \[((Pfn, +, 0), \mathbb{N} \cdot _ , \mathbb{N}) \]
 * Binary relations
 \[((Rel, +, 0), \mathbb{N} \cdot _ , \mathbb{N}) \]
 * “Discrete stochastic relations”
 \[((DSRel, +, 0), \mathbb{N} \cdot _ , \mathbb{N}) \]
Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

* **Pfn (partial functions)**

\[
\begin{align*}
X &\to Y \text{ in Pfn} \\
X &\to Y, \text{ partial function} \\
X &\to \mathcal{L}Y \text{ in Sets}
\end{align*}
\]
where \(\mathcal{L}Y = \{ \bot \} + Y \)

* **Rel (relations)**

\[
\begin{align*}
X &\to Y \text{ in Rel} \\
R &\subseteq X \times Y, \text{ relation} \\
X &\to \mathcal{P}Y \text{ in Sets}
\end{align*}
\]
where \(\mathcal{P} \) is the powerset monad

* **DSRel**

\[
\begin{align*}
X &\to Y \text{ in DSRel} \\
X &\to \mathcal{D}Y \text{ in Sets}
\end{align*}
\]
where \(\mathcal{D}Y = \{ d : Y \to [0, 1] | \sum_y d(y) \leq 1 \} \)
Why Categorical Generalization? Examples Other Than Pfn [AHS02]

* **Pfn** (partial functions)

 \[
 X \to Y \text{ in Pfn} \\
 X \to Y, \text{ partial function} \\
 X \to \mathcal{L}Y \text{ in Sets}
 \]

 where \(\mathcal{L}Y = \{ \bot \} + Y \)

* **Rel** (relations)

 \[
 X \to Y \text{ in Rel} \\
 R \subseteq X \times Y, \text{ relation} \\
 X \to \mathcal{P}Y \text{ in Sets}
 \]

 where \(\mathcal{P} \) is the powerset monad

* **DSRel**

 \[
 X \to Y \text{ in DSRel} \\
 X \to \mathcal{D}Y \text{ in Sets}
 \]

 where \(\mathcal{D}Y = \{ d : Y \to [0, 1] \mid \sum_y d(y) \leq 1 \} \)
Why Categorical Generalization?

Examples Other Than Pfn

* **Pfn** (partial functions)

 \[
 X \to Y \text{ in } \text{Pfn} \quad \frac{X \to Y, \text{ partial function}}{X \to \mathcal{L}Y \text{ in } \text{Sets}} \quad \text{where } \mathcal{L}Y = \{\bot\} + Y
 \]

 (Potential) non-termination

* **Rel** (relations)

 \[
 X \to Y \text{ in } \text{Rel} \quad \frac{R \subseteq X \times Y, \text{ relation}}{X \to \mathcal{P}Y \text{ in } \text{Sets}} \quad \text{where } \mathcal{P} \text{ is the powerset monad}
 \]

 Non-determinism

* **DSRel**

 \[
 X \to Y \text{ in } \text{DSRel} \quad \frac{X \to \mathcal{D}Y \text{ in } \text{Sets}}{\text{where } \mathcal{D}Y = \{d : Y \to [0, 1] \mid \sum_y d(y) \leq 1\}}
 \]

 Probabilistic branching

Categories of sets and (functions with different branching/partiality)
Different Branching in The GoI Animation

- **Pfn** (partial functions)
- Pipes can be stuck
- **Rel** (relations)
- Pipes can branch
- **DSRel**
- Pipes can branch probabilistically
Different Branching in The GoI Animation

- **Pfn (partial functions)**
- Pipes can be stuck
- **Rel (relations)**
- Pipes can branch
- **DSRel**
- Pipes can branch probabilistically

Hasuo (Tokyo)
Different Branching in The GoI Animation

- Pfn (partial functions)
- Pipes can be stuck
- Rel (relations)
- Pipes can branch
- DSRel
- Pipes can branch probabilistically

Hasuo (Tokyo)

Monday, November 7, 2011
Different Branching in The GoI Animation

- Pfn (partial functions)
- Pipes can be stuck
- Rel (relations)
- Pipes can branch
- DSRel
- Pipes can branch probabilistically
Different Branching in The GoI Animation

- Pfn (partial functions)
- Pipes can be stuck
- Rel (relations)
- Pipes can branch
- DSRel
- Pipes can branch probabilistically
Different Branching in The GoI Animation

- **Pfn** (partial functions)
- Pipes can be stuck
- **Rel** (relations)
- Pipes can branch

DSRel

- Pipes can branch probabilistically
Different Branching in The GoI Animation

- **Pfn** (partial functions)
- Pipes can be stuck
- **Rel** (relations)
- Pipes can branch
- **DSRel**
- Pipes can branch probabilistically
Why Categorical Generalization?:
Examples Other Than Pfn \[AHS02\]

- **Pfn (partial functions)**
 \[
 \frac{X \to Y \text{ in Pfn}}{X \to Y, \text{ partial function}} \quad \text{where } \mathcal{LY} = \{\bot\} + Y
 \]
 \[
 \frac{X \to \mathcal{LY} \text{ in Sets}}{}
 \]

- **Rel (relations)**
 \[
 \frac{X \to Y \text{ in Rel}}{R \subseteq X \times Y, \text{ relation}} \quad \text{where } \mathcal{P} \text{ is the powerset monad}
 \]
 \[
 \frac{X \to \mathcal{P}Y \text{ in Sets}}{}
 \]

- **DSRel**
 \[
 \frac{X \to Y \text{ in DSRel}}{X \to \mathcal{D}Y \text{ in Sets}} \quad \text{where } \mathcal{D}Y = \{d : Y \to [0, 1] \mid \sum_y d(y) \leq 1\}
 \]
Why Categorical Generalization?: Examples Other Than Pfn [AHS02]

* **Pfn (partial functions)**

\[
\frac{X \rightarrow Y \text{ in Pfn}}{X \rightarrow Y, \text{ partial function}}
\]

\[
\frac{X \rightarrow \mathcal{LY} \text{ in Sets}}{\mathcal{LY} = \{ \bot \} + Y}
\]

* **Rel (relations)**

\[
\frac{X \rightarrow Y \text{ in Rel}}{R \subseteq X \times Y, \text{ relation}}
\]

\[
\frac{X \rightarrow \mathcal{PY} \text{ in Sets}}{\mathcal{PY} \text{ is the powerset monad}}
\]

* **DSRel**

\[
\frac{X \rightarrow Y \text{ in DSRel}}{X \rightarrow \mathcal{DY} \text{ in Sets}}
\]

\[
\mathcal{DY} = \{ d : Y \rightarrow [0, 1] \mid \sum_y d(y) \leq 1 \}
\]

Essential to have subdistribution, for infinite loops
The Coauthor

Naohiko Hoshino

DSc (Kyoto, 2011)

Supervisor: Masahito “Hassei” Hasegawa

Currently at RIMS, Kyoto U.

http://www.kurims.kyoto-u.ac.jp/~naophiko/
A Coalgebraic View

- Theory of coalgebra = Categorical theory of state-based dynamic systems (LTS, automaton, Markov chain, ...)

- In [Hasuo, Jacobs, Sokolova ’07]:
 - Coalgebras in a Kleisli category $Kl(B)$
 - Generic theory of “trace semantics”
Why Categorical Generalization?
Examples Other Than Pfn

* **Pfn** (partial functions)

\[
\begin{align*}
X &\to Y \text{ in Pfn} \\
X &\to Y, \text{ partial function} \\
X &\to \mathcal{L}Y \text{ in Sets}
\end{align*}
\]

where \(\mathcal{L}Y = \{ \bot \} + Y \)

* **Rel** (relations)

\[
\begin{align*}
X &\to Y \text{ in Rel} \\
R &\subseteq X \times Y, \text{ relation} \\
X &\to \mathcal{P}Y \text{ in Sets}
\end{align*}
\]

where \(\mathcal{P} \) is the powerset monad

* **DSRel**

\[
\begin{align*}
X &\to Y \text{ in DSRel} \\
X &\to \mathcal{D}Y \text{ in Sets}
\end{align*}
\]

where \(\mathcal{D}Y = \{ d : Y \to [0, 1] \mid \sum_y d(y) \leq 1 \} \)

(Potential) non-termination
Non-determinism
Probabilistic branching

Categories of sets and (functions with different branching/partiality)

Monday, November 7, 2011
Why Categorial Generalization?

Examples Other Than Pfn

Pfn (partial functions)

\[X \to Y \text{ in Pfn} \]

\[X \to Y, \text{ partial function} \]

\[X \to \mathcal{LY} \text{ in Sets} \]

where \(\mathcal{LY} = \{\bot\} + Y \)

Rel (relations)

\[X \to Y \text{ in Rel} \]

\[R \subseteq X \times Y, \text{ relation} \]

\[X \to \mathcal{PY} \text{ in Sets} \]

where \(\mathcal{P} \) is the powerset monad

DSRel

\[X \to Y \text{ in DSRel} \]

\[X \to \mathcal{DY} \text{ in Sets} \]

where \(\mathcal{DY} = \{d : Y \to [0, 1] \mid \sum_y d(y) \leq 1\} \)

\(Kl(B)\) for different branching monads \(B\)

(Potential) non-termination

Non-determinism

Probabilistic branching
Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a “branching monad” \(B \) on \(\text{Sets} \), the monoidal category
\[(K\ell(B), +, 0)\]
is

- a *unique decomposition category* [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.
\[((K\ell(B), +, 0), \mathbb{N} \cdot _-, \mathbb{N}) \] is a GoI situation.
Branching Monad: Source of Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])
Given a “branching monad” B on Sets, the monoidal category

$$(\mathcal{K}\ell(B), +, 0)$$

is

- a unique decomposition category
 [Haghverdi,PhD00], hence is
- a traced symmetric monoidal category.

Cor.

$$((\mathcal{K}\ell(B), +, 0), \mathbb{N} \cdot _ , \mathbb{N})$$ is a GoI situation.

(Roughly) monads in [Hasuo, Jacobs, Sokolova ’07]

- $\mathcal{K}\ell(B)$ is Cpo_\perp-enriched
- like \mathcal{L}, \mathcal{P}, \mathcal{D}
Thm. ([Jacobs, CMCS10])

Given a “branching monad” B on Sets, the monoidal category

$$(\mathcal{Kl}(B), +, 0)$$

is

• a unique decomposition category [Haghverdi, PhD00], hence is

• a traced symmetric monoidal category.

Cor.

$$((\mathcal{Kl}(B), +, 0), \mathbb{N} \cdot _ , \mathbb{N})$$ is a GoI situation.

(Roughly) monads in [Hasuo, Jacobs, Sokolova ’07]

• $\mathcal{Kl}(B)$ is Cpo_\bot-enriched

• like \mathcal{L}, \mathcal{P}, \mathcal{D}

Particle-style: trace via the execution formula

$$\text{tr}(f) = f_{xy} \sqcup \left(\bigsqcup_{n \in \mathbb{N}} f_{yz} \circ (f_{zz})^n \circ f_{xz} \right)$$

Hasuo (Tokyo)
The Categorical GoI Workflow

- Traced monoidal category \mathbb{C}
 + other constructs \Rightarrow "GoI situation" [AHS02]

 ➜

 Categorical GoI [AHS02]

 ➜

 Linear combinatory algebra

 ➜

 Realizability

 ➜

 Linear category

Hasuo (Tokyo)

Monday, November 7, 2011
The Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category \mathcal{C}
+ other constructs \Rightarrow "GoI situation" [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category
The Categorical GoI Workflow

Branching monad B

\downarrow

Coalgebraic trace semantics

Traced monoidal category \mathcal{C}

$+ \text{ other constructs } \rightarrow \text{“GoI situation” [AHS02]}

\downarrow

Categorical GoI [AHS02]

Linear combinatory algebra

\downarrow

Realizability

Linear category

Hasuo (Tokyo)

Model of fancy language
The Categorical GoI Workflow

- Branching monad B
- Coalgebraic trace semantics
- Traced monoidal category \mathbb{C}
 + other constructs \Rightarrow “GoI situation” [AHS02]
- Categorical GoI [AHS02]
- Linear combinatory algebra
- Realizability
- Linear category

Fancy LCA
Model of fancy language

Hasuo (Tokyo)

Monday, November 7, 2011
The Categorical GoI Workflow

- Linear category
- Realizability
- Linear combinatory algebra
- Categorical GoI [AHS02]
- Traced monoidal category \mathbb{C}
 + other constructs \Rightarrow “GoI situation” [AHS02]
- Branching monad B
- Coalgebraic trace semantics

- Model of fancy language
 - Fancy LCA
 - Fancy TSMC

Monday, November 7, 2011
The Categorical GoI Workflow

- Linear category
- Realizability
- Linear combinatory algebra
- Categorical GoI [AHS02]
- Traced monoidal category \mathbb{C} + other constructs \rightarrow "GoI situation" [AHS02]
- Branching monad B
- Coalgebraic trace semantics

- Model of fancy language
- Fancy LCA
- Fancy TSMC
- Fancy monad

Monday, November 7, 2011
What is Fancy, Nowadays?
What is Fancy, Nowadays?

* Biology?
What is Fancy, Nowadays?

- Biology?
- Hybrid systems?
 - Both discrete and continuous data, typically in cyber-physical systems (CPS)
 - Our approach via non-standard analysis
 [Suenaga, Hasuo ICALP'11]
What is Fancy, Nowadays?

* Biology?

* Hybrid systems?
 * Both discrete and continuous data, typically in cyber-physical systems (CPS)
 * Our approach via non-standard analysis
 [Suenaga, Hasuo ICALP’11]

* Quantum?
 * Yes this worked!
Future Directions

- GoI 2: Non-converging algs (untyped \(J\)-calc / PCF)
 - uses more topological info on operati alg

- GoI 3: uses additives & additive proof nets

- GoI 4 (last month): von Neumann algebras:
 \[\text{Ex}(f, z) \quad f \quad \text{arb (not coming from proof)} \]

- Quantum GoI ?
Part 3

Phil Scott.
Page 47/47

Future Directions

- GoI 2: Non-converging algs
 (untyped I-calc / PCF)
 - uses more topological info on operati algs

- GoI 3: uses additives & additive
 proof nets —

- GoI 4 (last month): von Neumann
 algebras: \(\text{Ex}(f, z) \) for
 \(a \land b \) (not necessarily coming from proof)

Quantum GoI?
The Categorical GoI Workflow

1. Linear combinatory algebra
2. Realizability
3. Linear category
4. Categorical GoI [AHS02]
5. Traced monoidal category \mathbb{C}
 + other constructs \Rightarrow “GoI situation” [AHS02]
6. Branching monad B
7. Coalgebraic trace semantics
The Categorical GoI Workflow

- Branching monad B
 - Coalgebraic trace semantics
- Traced monoidal category \mathcal{C}
 + other constructs \rightarrow “GoI situation” [AHS02]
- Categorical GoI [AHS02]
- Linear combinatory algebra
- Realizability
- Linear category

- Quantum branching monad
- Quantum TSMC
- Quantum LCA
- Model of quantum language
The Quantum Branching Monad

\[QY = \left\{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \right\} \]
The Quantum Branching Monad

\[QY = \{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \} \]

\[QO_{m,n} := \begin{cases} \text{quantum operations,} \\ \text{from dim. } m \text{ to dim. } n \end{cases} \]
The Quantum Branching Monad

\[QY = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \right\} \]

\[QO_{m,n} := \{ \text{quantum operations, from dim. } m \text{ to dim. } n \} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \]

\[\forall m \in \mathbb{N}, \forall \rho \in D_m. \]
The Quantum Branching

\[QY = \left\{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \right\} \]

\[QO_{m,n} := \left\{ \text{quantum operations, from dim. } m \text{ to dim. } n \right\} \]

\[\text{the trace condition} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

* Compare with

\[PY = \left\{ c : Y \rightarrow 2 \right\} \]

\[DY = \left\{ c : Y \rightarrow [0,1] \left| \sum_{y \in Y} c(y) \leq 1 \right. \right\} \]
The Quantum Branching

\[QY = \left\{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \right\} \]

\[QO_{m,n} := \{ \text{quantum operations, from dim. } m \text{ to dim. } n \} \]

the trace condition

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1 , \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

\[\mathcal{P}Y = \left\{ c : Y \rightarrow 2 \right\} \]

\[\mathcal{D}Y = \left\{ c : Y \rightarrow [0, 1] \left| \sum_{y \in Y} c(y) \leq 1 \right\} \]

* Compare with

Hasuo (Tokyo)

Monday, November 7, 2011
The Quantum Branching

\[QY = \left\{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \right\} \]

\[QO_{m,n} := \left\{ \text{quantum operations, from dim. } m \text{ to dim. } n \right\} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

\[P_\mathcal{Y} = \left\{ c : Y \rightarrow 2 \right\} \]

\[D_\mathcal{Y} = \left\{ c : Y \rightarrow [0, 1] \mid \sum_{y \in Y} c(y) \leq 1 \right\} \]

* Compare with
The Quantum Branching Monad

\[QY = \{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

\[X \xrightarrow{f} Y \quad \text{in} \quad \mathcal{K}(Q) \]

\[X \xrightarrow{f} QY \quad \text{in} \quad \text{Sets} \]

* Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)
determines a quantum operation

\[\left(f(x)(y) \right)_{m,n} : D_m \to D_n \]

* Subject to the trace condition
Given $x \in X$, $y \in Y$, $m \in \mathbb{N}$, $n \in \mathbb{N}$ determines a quantum operation

$$
\left(f(x)(y) \right)_{m,n} : D_m \to D_n
$$

Subject to the trace condition

$$
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr} \left[(c(y))_{m,n}(\rho) \right] \leq 1,
\forall m \in \mathbb{N}, \forall \rho \in D_m.
$$

Any opr. on quantum data:
combination of
- preparation
- unitary transf.
- measurement
The Quantum Branching Monad

\[\mathcal{Q}Y = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} \mathcal{Q}O_{m,n} \right\} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

\[X \xrightarrow{f} Y \text{ in } \mathcal{Kl}(\mathcal{Q}) \]

\[X \xrightarrow{f} \mathcal{Q}Y \text{ in } \text{Sets} \]

* Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)
determines a quantum operation \((f(x)(y))_{m,n} \)

* trace cond.:
The Quantum Branching Monad

\[QY = \{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]

* Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)
determines a quantum operation \((f(x)(y))_{m,n} \)

* trace cond.:
The Quantum Branching Monad

Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)

determines a quantum operation \((f(x)(y))_{m,n} \)

\[QY = \{ c : Y \rightarrow \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \operatorname{tr}[(c(y))_{m,n}(\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]
The Quantum Branching Monad

Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)
determines a quantum operation \((f(x)(y))_{m,n} \)

\[QY = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \right\} \]

\[\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n} (\rho)] \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m. \]
The Quantum Branching Monad

\[
\mathcal{Q}_Y = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} \mathbb{Q}O_{m,n} \mid \text{the trace condition} \right\}
\]

\[
\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}(c(y))_{m,n}(\rho) \leq 1, \quad \forall m \in \mathbb{N}, \forall \rho \in D_m.
\]

\begin{itemize}
 \item Given \(x \in X, y \in Y, m \in \mathbb{N}, n \in \mathbb{N} \)
 \item determines a quantum operation \((f(x)(y))_{m,n} \)
 \item trace cond.:
\end{itemize}

\(\rho \in D_m \) for each \(n \)
The Quantum Branching Monad

Given $x \in X$, $y \in Y$, $m \in \mathbb{N}$, $n \in \mathbb{N}$ determines a quantum operation $(f(x)(y))_{m,n}$

trace cond.:

$$\sum_{y,n} \Pr \left(\text{Token led to } y \text{ with dim. } n \right) \leq 1$$

$$Q_Y = \left\{ c : Y \to \prod_{m,n \in \mathbb{N}} QO_{m,n} \mid \text{the trace condition} \right\}$$

$$\sum_{y \in Y} \sum_{n \in \mathbb{N}} \text{tr}[(c(y))_{m,n}(\rho)] \leq 1,$$

$\forall m \in \mathbb{N}, \forall \rho \in D_m.$

$\rho \in D_m$

$X \xrightarrow{f} Y$ in $\mathcal{Kl}(Q)$
$X \xrightarrow{f} QY$ in Sets

measure (and others)

entrance
exit
in dim.
out dim.

$X \xrightarrow{f} Y$ in $\mathcal{Kl}(Q)$
$X \xrightarrow{f} QY$ in Sets

$\rho \in D_m$

$\left(f(x)(y) \right)_{m,n}(\rho) \in D_n$

for each n
Quantum
Geometry of Interaction

$\left[M \right] = M$

Hasuo (Tokyo)

Monday, November 7, 2011
Quantum

Geometry of Interaction

Not just a token/particle, but quantum state!

\[
[M] = M
\]

... (countably many)

Hasuo (Tokyo)

Monday, November 7, 2011
Quantum Geometry of Interaction

Not just a token/particle, but quantum state!
Quantum
Geometry of Interaction

\[
\begin{bmatrix}
M
\end{bmatrix} =
\]

Not just a token/particle, but quantum state!

"Quantum Data"
Quantum Geometry of Interaction

\[[M] = M \]

“Quantum Data”

Not just a token/particle, but quantum state!

“Classical Control”

(countably many)
Quantum Geometry of Interaction

\[[M] = M\]

“Quantum Data”

“Classical Control”

* "in which pipe"
* (measurement \(\rightarrow\) case-distinction) leads a token to different pipes

Not just a token/particle, but quantum state!
Indeed...

- The monad Q qualifies as a "branching monad"
- The quantum GoI workflow leads to a linear category PER_Q
- From which we construct an adequate denotational model
End of the Story?

* No! All the technicalities are yet to come:
 * CPS-style interpretation (for partial measurement)
 * Result type: a final coalgebra in PER_Q
 * Admissible PERs for recursion
 * ...

* On the next occasion :-)
Conclusion: the Categorical GoI Workflow

Branching monad B

Coalgebraic trace semantics

Traced monoidal category \mathcal{C}
+ other constructs \Rightarrow “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Quantum branching monad

Quantum TSMC

Quantum LCA

Model of quantum language

Monday, November 7, 2011
Conclusion: the Categorical GoI Workflow

- Linear combinatory algebra
- Realizability
- Coalgebraic trace semantics
- Traced monoidal category \(\mathbb{C} \)
- Categorical GoI [AHS02]
- Linear category
- Branching monad \(B \)

Thank you for your attention!
Ichiro Hasuo (Dept. CS, U Tokyo)
http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

Quantum branching monad
Quantum TSMC
Quantum LCA
Model of quantum language

Monday, November 7, 2011
The Language $q\lambda^e$

- Roughly: linear λ + quantum primitives
- “Quantum data, classical control”
- No superposed threads
- Based on [Selinger&Valiron’09]
- With slight modifications
- Notably: quantum \otimes vs. linear logic \otimes
- The same in [Selinger&Valiron’09]
 - clean type system, aids programming
- But... problem with GoI-style semantics
The Language $q\lambda_e$

The *types* of $q\lambda_e$ are:

\[
A, B ::= n\text{-}qbit \mid ! A \mid A \rightarrow B \mid \top \mid A \otimes B \mid A + B,\]

with conventions $q\text{bit} := 1\text{-}qbit$ and $\text{bit} := \top + \top$.

The *terms* of $q\lambda_e$ are:

\[
M, N, P ::= \\
 x \mid \lambda x^A \cdot M \mid MN \mid \langle M, N \rangle \mid * \mid \\
\text{let } \langle x^A, y^B \rangle = M \text{ in } N \mid \text{let } * = M \text{ in } N \mid \\
\text{inj}_B \ M \mid \text{inj}_A \ M \mid \\
\text{match } P \text{ with } (x^A \leftrightarrow M \mid y^B \leftrightarrow N) \mid \\
\text{letrec } f^A x = M \text{ in } N \mid \\
\text{new } |0\rangle \mid \text{meas}_{i}^{n+1} \mid U \mid \text{cmp}_{m,n},
\]

with conventions $\text{tt} := \text{inj}_\ell^\top(*)$ and $\text{ff} := \text{inj}_r^\top(*)$.
The **types** of $q\lambda_e$ are:

$$A, B ::= n\text{-qbit} \mid !A \mid A \rightarrow B \mid \top \mid A \otimes B \mid A + B,$$

with conventions $\text{qbit} := 1\text{-qbit}$ and $\text{bit} := \top + \top$.

The **terms** of $q\lambda_e$ are:

$$M, N, P ::= $x \mid \lambda x^A.M \mid MN \mid \langle M, N \rangle \mid * \mid$$

let $\langle x^A, y^B \rangle = M$ in N \mid let $\ast = M$ in N \mid

$\text{inj}^B_M \mid \text{inj}^A_M \mid$

match P with $(x^A \mapsto M \mid y^B \mapsto N) \mid$

letrec $f^A x = M$ in N \mid

new $|0\rangle \mid \text{meas}^{n+1}_i \mid U \mid \text{cmp}_{m,n}$,

with conventions $\text{tt} := \text{inj}^\top_\ell(*)$ and $\text{ff} := \text{inj}^\top_r(*)$.
2-qbit \cong \text{qbit} \otimes \text{qbit}

\[A, B ::= n\text{-qbit} \mid !A \mid A \to B \mid \top \mid A \boxtimes B \mid A + B , \]

with conventions \(\text{qbit} := 1\text{-qbit} \) and \(\text{bit} := \top + \top \).

The terms of \(\text{q}\lambda\ell \) are:

\[M, N, P ::= \]

\[x \mid \lambda x^A.M \mid MN \mid \langle M, N \rangle \mid * \mid \]

\[\text{let} \langle x^A, y^B \rangle = M \text{ in } N \mid \text{let } * = M \text{ in } N \mid \]

\[\text{inj}^B_M \mid \text{inj}^A_M \mid \]

\[\text{match } P \text{ with } (x^A \mapsto M \mid y^B \mapsto N) \mid \]

\[\text{letrec } f^A x = M \text{ in } N \mid \]

\[\text{new } |0\rangle \mid \text{meas}^{n+1}_i \mid U \mid \text{cmp}_{m,n} , \]

with conventions \(\text{tt} := \text{inj}_\ell^\top(*) \) and \(\text{ff} := \text{inj}_r^\top(*) \).
The Language

\[A, B ::= n\text{-qbit} \mid !A \mid A \to B \mid \top \mid A \otimes B \mid A + B , \]
with conventions \(\text{qbit} := 1\text{-qbit} \) and \(\text{bit} := \top + \top \).

The terms of \(\lambda_\ell \) are:

\[M, N, P ::= \]
\[x \mid \lambda x^A.M \mid MN \mid \langle M, N \rangle \mid * \mid \]
let \(\langle x^A, y^B \rangle = M \) in \(N \) | let \(* = M \) in \(N \) |
\[\text{inj}_B^A \ M \mid \text{inj}_r^A \ M \mid \]
match \(P \) with \((x^A \mapsto M \mid y^B \mapsto N) \) |
letrec \(f^A x = M \) in \(N \) |
\[\text{new} |0\rangle \mid \text{meas}_{i}^{n+1} |U \mid \text{cmp}_{m,n} , \]
with conventions \(\text{tt} := \text{inj}_\ell^\top(*) \) and \(\text{ff} := \text{inj}_r^\top(*) \).

Different from quantum \(\otimes \) (Unlike [Selinger-Valiron’09]); same as the one in PER.

Recursion

2-qbit \(\cong \text{qbit} \otimes \text{qbit} \)
The Language

2-qbit \cong qbit \otimes qbit

$$A, B ::= n\text{-qbit} \mid !A \mid A \rightarrow B \mid \top \mid A \otimes B \mid A + B,$$

with conventions qbit $:= 1$-qbit and bit $:= \top + \top$.

The terms of $q\lambda_\ell$ are:

$$M, N, P ::= $$

- x | $\lambda x^A. M$ | MN | $\langle M, N \rangle$ | $*$ |
- let $\langle x^A, y^B \rangle = M$ in N | let $* = M$ in N |
- inj$_B^A$ M | inj$_r^A$ M |
- match P with $(x^A \mapsto M \mid y^B \mapsto N)$ |
- letrec $f^A x = M$ in N |
- new $|0\rangle$ | meas$_i^{n+1}$ $|U\rangle$ | cmp$_{m,n}$ |

with conventions $\text{tt} := \text{inj}_\ell^\top(*)$ and $\text{ff} := \text{inj}_r^\top(*)$.

Recursion

Quantum primitives

Different from quantum \otimes (Unlike [Selinger-Valiron’09]); same as the one in PER

Monday, November 7, 2011
Implicit linearity tracking via subtyping <:

e.g. !A <: A, !A <: !!A

(following [Selinger-Valiron’09])

\[n = 0 \Rightarrow m = 0 \] (T)
\[\mathsf{\text{k-qbit}} <: !^m \mathsf{\text{k-qbit}} \] (k-qbit)
\[A_1 <: B_1 \quad A_2 <: B_2 \] (k-qbit)
\[!^m(A_1 \otimes A_2) <: !^m(B_1 \otimes B_2) \] (\#) with \# \in \{\otimes, +\}

Measurements

- \(A_{\text{new}0} := \text{qbit} \)
- \(A_{\text{meas}i} := (n+1)\text{-qbit} \rightarrow (\text{bit} \otimes n\text{-qbit}) \) for \(n \geq 1 \)
- \(A_{\text{meas}1} := \text{qbit} \rightarrow \text{bit} \)
- \(A_U := n\text{-qbit} \rightarrow n\text{-qbit} \) for a \(2^n \times 2^n \) matrix \(U \)
- \(A_{\text{cmp}_{m,n}} := (m\text{-qbit} \otimes n\text{-qbit}) \rightarrow (m+n)\text{-qbit} \)

Bookkeeping (due to \(\otimes \) vs. \(\otimes \))

Hasuo (Tokyo)
Operational Semantics

- $E[(\lambda x^A.M)V] \rightarrow_1 E[M[V/x]]$
- $E[\text{let } \langle x^A, y^B \rangle = \langle V, W \rangle \text{ in } M] \rightarrow_1 E[M[V/x, W/y]]$
- $E[\text{let } * = * \text{ in } M] \rightarrow_1 E[M]$
- $E[\text{match } (\text{inj}_l^B V) \text{ with } (x^m_A \mapsto M \mid y^m_B \mapsto N)] \rightarrow_1 E[M[V/x]]$
- $E[\text{match } (\text{inj}_r^A V) \text{ with } (x^m_A \mapsto M \mid y^m_B \mapsto N)] \rightarrow_1 E[N[V/y]]$
- $E[\text{letrec } f^{A\rightarrow B} x = M \text{ in } N] \rightarrow_1 E[N[\lambda x^A.\text{letrec } f^{A\rightarrow B} x = M \text{ in } M/f]]$
- $E[\text{meas}_i^{n+1}(\text{new } \rho)] \rightarrow_1 E[\langle \text{tt}, \text{new } \langle 0_i|\rho|0_i \rangle \rangle]]$
- $E[\text{meas}_i^{n+1}(\text{new } \rho)] \rightarrow_1 E[\langle \text{ff}, \text{new } \langle 1_i|\rho|1_i \rangle \rangle]$