
Semantics of Higher-Order
Quantum Computation

via Geometry of Interaction

Ichiro Hasuo
University of Tokyo (JP)

Naohiko Hoshino
RIMS, Kyoto University (JP)

In: Proc. Logic in Computer Science (LICS), June 2011

Hasuo (Tokyo)

Contribution

Denotational semantics of a
functional quantum programming language

Linear λ-calculus +
quantum primitives

One of the first to cover the full features!

!-modality for duplicable data

recursion

... via GoI (Geometry of Interaction)

Adequacy

Functional QPL:
Some Contexts

Part 1

Hasuo (Tokyo)

Quantum
Programming Language

Classical Quantum

(Boolean)
circuit

Quantum
circuit

Programming
language

int i,j;
int factorial(int k)
{
 j=1;
 for (i=1; i<=k; i++)
 j=j*i;
 return j;
}

Quantum
programming
language

[Null-Lobur] [beachhandball.es]

[Selinger-Valiron]

For discovery of algorithms

For reasoning, verification

Hasuo (Tokyo)

Functional Quantum
Programming Language
A real man’s programming style

Heavily used in the financial sector

...

Mathematically nice and clean

Aids semantical study

Transfer from classical to
quantum

ICFP’11 Sponsers (Tokyo, Sep 2011)

Hasuo (Tokyo)

Functional QPL:
Syntax

Linear λ-calculus
+ quantum primitives [van Tonder, Selinger, Valiron, ...]

Linearity for no-cloning
“Input can be used only once”

Not allowed/typable:

Duplicable (classical) data: by the !-modality

λx. �measx, measx�

� tt : !!! bit

“arbitrary many copies”

Preparation/Unitary
transformation/Measurement

Hasuo (Tokyo)

Functional QPL:
Semantics

Semantics = mathematical model

Operational semantics: [Selinger & Valiron, ’09]

“Quantum closure,”
reduction with probabilistic branching

Allows to identify linear logic ⊗ and quantum ⊗
(feature of the Selinger-Valiron language; not in ours)

Hasuo (Tokyo)

Functional QPL:
Semantics

Denotational semantics

 : a function, or an arrow of a category

Compositionality:

Linear category: [Benton & Wadler, Bierman]
(axioms for) a categorical model of linear λ-calculus

For functional QPL? Is Hilb (or alike) a linear cat.?

�M�

�MN� = �M� ◦ �N�

Defn.
A linear category (C,⊗, I,�, !) is a sym. monoidal
closed cat. with a linear exponential comonad !.

Hasuo (Tokyo)

Functional QPL:
Semantics

Hilb (or alike) is not a linear category

Challenge: coexistence of quantum and classical data

Only partial results

[Selinger & Valiron, ’08]:
for strictly linear fragmant (w/o !)

 ! (for duplicable data)

! infinite dim.

 monoidal closed str. (C,⊗, I,�)

! duality V ∼= V ⊥

! finite dim.

Hasuo (Tokyo)

Classical control

Quantum data

“Quantum Data,
Classical Control”

Illustration by N. Hoshino

1
√
2

+
1
√
2

Hasuo (Tokyo)

What We Do
GoI (Geometry of Interaction) [Girard ’89]

An “implementation” of classical control

Categorical GoI [Abramsky, Haghverdi, Scott ’02]
Its categorical axiomatics

We add a quantum layer to GoI

! “Quantum data, classical control”

Used: theory of coalgebra
[Hasuo, Jacobs, Sokolova ’07] [Jacobs ’10]

tr(f) =

fXY �
�
�

n∈N
fZY ◦ (fZZ)

n ◦ fXZ

�

M N

M N

quantum
state

The Categorical GoI
Workflow

Part 2

Hasuo (Tokyo)

GoI:
Geometry of Interaction

J.-Y. Girard, at Logic Colloquium ’88

But I’m no linear logician!

In this talk:

Its categorical formulation
[Abramsky, Haghverdi, Scott ’02]

“The GoI Animation”
Hasuo (Tokyo)

The GoI Animation
�M� = (N � N, a partial function)

= “piping”

[| M|]

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

"

token

Hasuo (Tokyo)

The GoI Animation
Function application

by “parallel composition + hiding”

�MN�

[| M|] [| N|]

...

... ...

...

...

...

...

...

[| MN|]

�MN�
=

“parallel composition + hiding”
(cf. games)

[| M|] [| N|]

...

... ...

...

...

...

�MN�
=

M = λx. x + 1 N = 2
M = λx. 1 N = 2
M = λf. f1 N = λx. (x + 1)

!
!
!

[| MN|]

Hasuo (Tokyo)

Categorical GoI
Axiomatics of GoI in the categorical language

Our main reference:

[AHS02] S. Abramsky, E. Haghverdi, and
P. Scott, “Geometry of interaction and linear
combinatory algebras,” MSCS 2002

Especially its technical report version
(Oxford CL), since it’s a bit more detailed

Hasuo (Tokyo)

The Categorical GoI
Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

tr�−→f
A

B

C

C

A

B

tr(f)

Realizability

Linear category

Applicative str. + combinators
Model of untyped calculus

Model of typed calculus

PER, ω-set, assembly, ...
“Programming in untyped λ”

Hasuo (Tokyo)

Linear Combinatory Algebra
(LCA)

Defn. (LCA)

A linear combinatory algebra (LCA) is a set A equipped with

• a binary operator (called an applicative structure)

· : A2 −→ A

• a unary operator

! : A −→ A

• (combinators) distinguished elements B,C, I,K,W,D, δ, F
satisfying

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

δ !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

Here: · associates to the left; · is suppressed; and ! binds

stronger than · does.

Model of
untyped linear λ
a ∈ A !
closed linear λ-term
No S or K (linear!)

Combinatory
completeness: e.g.

designates an elem. of A

λxyz. zxy

What
we want (outcome)

Hasuo (Tokyo)

GoI situation
What we use (ingredient)

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v
Hasuo (Tokyo)

GoI situation
Monoidal category

String diagrams

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

(C,⊗, I)

A
f−→ B B

g−→ C

A
g◦f−→ C

A

B

C

g

f

gf

h

h ◦ (f ⊗ g)

A

B

C
gf

D

A
f−→ B C

g−→ D

A ⊗ C
f⊗g−→ B ⊗ D

Hasuo (Tokyo)

GoI situation
Traced monoidal category

“feedback”

that is

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

A ⊗ C
f−→ B ⊗ C

A
tr(f)−→ B

tr�−→f
A

B

C

C

A

B

tr(f)

Hasuo (Tokyo)
Pipe diagram

I use two ways of depicting partial
functions

String Diagram vs.
“Pipe Diagram”

N � N

String diagram

�M�

N

N

In the monoidal category
(Pfn,+, 0)

Hasuo (Tokyo)

Traced Sym. Monoidal Category

Category Pfn of partial functions

Obj. A set X

Arr. A partial function

is traced symmetric monoidal

X → Y in Pfn
X � Y, partial function

f
X

Y

(Pfn,+, 0)

Hasuo (Tokyo)

Traced Sym. Monoidal Category

 How?

Trace operator:

f
X

Y

Z

Z

fXY (x) :=

�
f(x) if f(x) ∈ Y

⊥ o.w.

Similar for fXZ , fZY , fZZ

f
X

Y

tr(f) =

fXY �
�
�

n∈N
fZY ◦ (fZZ)

n ◦ fXZ

�

Execution formula (Girard)

Partiality is essential (infinite loop)

(Pfn,+, 0)
X + Z

f−→ Y + Z in Pfn

X
tr(f)−→ Y in Pfn

Hasuo (Tokyo)

GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

tr�−→f
A

B

C

C

A

B

tr(f) [| M|] [| N|]

...

... ...

...

...

...

�MN�
=

[| MN|]

 in string diagram�M� �N�

Hasuo (Tokyo)

GoI situation
Traced sym. monoidal cat.

Where one can “feedback”

Why for GoI?

Leading example: Pfn

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

tr�−→f
A

B

C

C

A

B

tr(f)

M N M

N

M

N

= = tr[]
Hasuo (Tokyo)

GoI situation

Functor F

For obtaining ! : A → A

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

Defn. (Retraction)
A retraction from X to Y ,

f : X � Y : g ,

is a pair of arrows

Xid ��

f
��
Y

g
��

such that g ◦ f = idX .

“embedding”

“projection”

Hasuo (Tokyo)

GoI situation
The reflexive object U

 Retr.

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

U ⊗ U

j
��U

k

��

 , with

 = id

j k

j

k

Hasuo (Tokyo)

GoI situation
The reflexive object U

Why for GoI?

Example in Pfn:

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

 , j k M N

N ∈ Pfn, with

N + N ∼= N,
N · N ∼= N

Hasuo (Tokyo)

Categorical axiomatics of
the “GoI animation”

Example:

GoI Situation: Summary
Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v

 , j k

M N

tr�−→f
A

B

C

C

A

B

tr(f)

For ! , via

F�−→f fff
...

(Pfn, N · , N)

· · · · · ·

· · · Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

∈ C(U,U)

g f=

g · f
:= tr

�
(U ⊗ f) ◦ k ◦ g ◦ j

�

=
f

g

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Thm. ([AHS02])

Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Applicative str. ⋅

! operator

Combinators B, C, I, ...

f
U

U

∈ C(U,U)

! f := u ◦ Ff ◦ v

=

U

v

u

Ff
FU

FU

U

=

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

Hasuo (Tokyo)

Categorical GoI:
Constr. of an LCA

Combinator Bxyz = x(yz)

from [AHS02]
Nice dynamic interpretation of
(linear) computation!!

Hasuo (Tokyo)

Summary:
Categorical GoI

Thm. ([AHS02])

Given a GoI situation (C, F, U), the homset

C(U,U)

carries a canonical LCA structure.

Defn. (GoI situation [AHS02])

A GoI situation is a triple (C, F, U) where

• C = (C,⊗, I) is a traced symmetric monoidal category

(TSMC);

• F : C → C is a traced symmetric monoidal functor,

equipped with the following retractions (which are monoidal

natural transformations).

e : FF � F : e� Comultiplication

d : id � F : d�
Dereliction

c : F ⊗ F � F : c� Contraction

w : KI � F : w�
Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with

the following retractions.

j : U ⊗ U � U : k

I � U

u : FU � U : v Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Strategy: find a TSMC!

“Wave-style” examples

⊗ is Cartesian product(-like)

in which case,

trace ! fixed point operator [Hasegawa/Hyland]

An example:

(... less of a dynamic flavor)

�
(ω-Cpo,×, 1), ()N, AN �

M N

Hasuo (Tokyo)

“Particle-style” examples

Obj. X∈C is set-like; ⊗ is coproduct-like

The GoI animation is valid

Examples:

Partial functions

Binary relations

“Discrete stochastic
relations”

M N

�
(Pfn,+, 0), N · , N

�

�
(Rel,+, 0), N · , N

�

�
(DSRel,+, 0), N · , N

�

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn (partial functions)

Rel (relations)

DSRel

X → Y in Pfn
X � Y, partial function

X → LY in Sets

where LY = {⊥} + Y

X → Y in Rel
R ⊆ X × Y, relation

X → PY in Sets

where P is the powerset monad

X → Y in DSRel
X → DY in Sets

where DY = {d : Y → [0, 1] |
�

y

d(y) ≤ 1}

Categories of sets and
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Hasuo (Tokyo)

Different Branching in
The GoI Animation

...

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

"

Pfn (partial functions)

Pipes can be stuck

Rel (relations)

Pipes can branch

DSRel

Pipes can branch
probabilistically

!

!

!
"" 1

3

2

3

11
1

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn [AHS02]

Pfn (partial functions)

Rel (relations)

DSRel

X → Y in Pfn
X � Y, partial function

X → LY in Sets

where LY = {⊥} + Y

X → Y in Rel
R ⊆ X × Y, relation

X → PY in Sets

where P is the powerset monad

X → Y in DSRel
X → DY in Sets

where DY = {d : Y → [0, 1] |
�

y

d(y) ≤ 1}

M N

Essential to have
subdistribution,
for infinite loops

Hasuo (Tokyo)

The Coauthor
Naohiko Hoshino

DSc (Kyoto, 2011)
Supervisor:
Masahito “Hassei” Hasegawa

Currently at RIMS,
Kyoto U.
http://www.kurims.kyoto-u.ac.jp/
~naophiko/

Hasuo (Tokyo)

A Coalgebraic View
Theory of coalgebra =
Categorical theory of state-based dynamic
systems (LTS, automaton, Markov chain, ...)

In [Hasuo, Jacobs, Sokolova ’07]:

Coalgebras in a Kleisli category Kl(B)

! Generic theory of “trace semantics”

X → Y in K�(B)

X → BY in Sets

Hasuo (Tokyo)

Why Categorical Generalization?:
Examples Other Than Pfn

Pfn (partial functions)

Rel (relations)

DSRel

X → Y in Pfn
X � Y, partial function

X → LY in Sets

where LY = {⊥} + Y

X → Y in Rel
R ⊆ X × Y, relation

X → PY in Sets

where P is the powerset monad

X → Y in DSRel
X → DY in Sets

where DY = {d : Y → [0, 1] |
�

y

d(y) ≤ 1}

Categories of sets and
(functions with different branching/partiality)

(Potential) non-termination

Non-determinism

Probabilistic branching

Kl(B) for different branching
monads B

Hasuo (Tokyo)

Branching Monad: Source of
Particle-Style GoI Situations

Thm. ([Jacobs,CMCS10])

Given a “branching monad” B on Sets, the
monoidal category

(K�(B),+, 0)

is

• a unique decomposition category
[Haghverdi,PhD00], hence is

• a traced symmetric monoidal category.

Cor.�
(K�(B),+, 0), N· , N

�
is a GoI situation.

(Roughly) monads in
[Hasuo, Jacobs, Sokolova ’07]

Kl(B) is Cpo⊥-enriched

like L, P, D

Particle-style: trace via
the execution formula

tr(f) =

fXY �
�
�

n∈N
fZY ◦ (fZZ)

n ◦ fXZ

�

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of fancy
language

Fancy
LCA

Fancy
TSMC

Fancy
monad

Hasuo (Tokyo)

What is Fancy,
Nowadays?

Biology?

Hybrid systems?

Both discrete and continuous data, typically in
cyber-physical systems (CPS)

! Our approach via non-standard analysis
[Suenaga, Hasuo ICALP’11]

Quantum?

Yes this worked!

GoI

Part 3

Phil Scott.
Tutorial on Geometry of
Interaction, FMCS 2004.
Page 47/47

Hasuo (Tokyo)

The Categorical GoI Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum
branching
monad

Hasuo (Tokyo)

Compare with

The Quantum Branching
Monad

QY =

�
c : Y →

�

m,n∈N
QOm,n

��� the trace condition
�

�

y∈Y

�

n∈N
tr
��
c(y)

�
m,n

(ρ)
�
≤ 1 ,

∀m ∈ N, ∀ρ ∈ Dm.

PY =
�
c : Y → 2

�

DY =
�
c : Y → [0, 1]

���
�

y∈Y

c(y) ≤ 1
�

QOm,n :=

�
quantum operations,
from dim. m to dim. n

�

Hasuo (Tokyo)

QY =

�
c : Y →

�

m,n∈N
QOm,n

��� the trace condition
�

The Quantum
Branching Monad

�

y∈Y

�

n∈N
tr
��
c(y)

�
m,n

(ρ)
�
≤ 1 ,

∀m ∈ N, ∀ρ ∈ Dm.

Given
determines a quantum operation

Subject to the trace condition

x ∈ X, y ∈ Y, m ∈ N, n ∈ N

�
f(x)(y)

�

m,n
: Dm → Dn

Any opr. on
quantum data:

combination of

• preparation
• unitary transf.
• measurement

X
f→ Y in K�(Q)

X
f→ QY in Sets

Hasuo (Tokyo)

The Quantum
Branching Monad

...

...

Given
determines a quantum
operation

trace cond.:

x ∈ X, y ∈ Y, m ∈ N, n ∈ N

x

y y��

y,n

Pr

� �
≤ 1

Token led
to y

with dim. n

measure (and others)

ρ ∈ Dm

for each n

�
f(x)(y)

�

m,n
(ρ) ∈ Dn

QY =

�
c : Y →

�

m,n∈N
QOm,n

��� the trace condition
�

�

y∈Y

�

n∈N
tr
��
c(y)

�
m,n

(ρ)
�
≤ 1 ,

∀m ∈ N, ∀ρ ∈ Dm.

entrance exit
in

dim.
out
dim.

X
f→ Y in K�(Q)

X
f→ QY in Sets

�
f(x)(y)

�

m,n

Hasuo (Tokyo)

M

... (countably many)

...

1 2 3 4

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓

Quantum
 Geometry of Interaction

�M� =

Not just a token/
particle, but

quantum state!

“Quantum Data”

“Classical Control”

Not just a token/
particle, but

quantum state!

“in which pipe”

(measurement ! case-distinction)
leads a token to different pipes

Hasuo (Tokyo)

Indeed...
The monad Q qualifies as a
“branching monad”

The quantum GoI workflow leads
to a linear category PERQ

From which we construct an
adequate denotational model

Hasuo (Tokyo)

End of the Story?
No! All the technicalities are yet to come:

CPS-style interpretation (for partial
measurement)

Result type: a final coalgebra in PERQ

Admissible PERs for recursion

...

On the next occasion :-)

Hasuo (Tokyo)

Conclusion: the Categorical GoI Workflow

Traced monoidal category C
+ other constructs ! “GoI situation” [AHS02]

Categorical GoI [AHS02]

Linear combinatory algebra

Realizability

Linear category

Coalgebraic trace semantics

Branching monad B

Model of
quantum
language

Quantum
LCA

Quantum
TSMC

Quantum
branching
monad

Thank you for your attention!Ichiro Hasuo (Dept. CS, U Tokyo)http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro/

Hasuo (Tokyo)

The Language qλl
Roughly: linear λ + quantum primitives

“Quantum data, classical control”

 No superposed threads

Based on [Selinger&Valiron’09]

With slight modifications

Notably: quantum ⊗ vs. linear logic

The same in [Selinger&Valiron’09]
! clean type system, aids programming

But... problem with GoI-style semantics

�

Hasuo (Tokyo)

The Language qλl
The types of qλ� are:

A,B ::= n-qbit | !A | A � B | � | A � B | A + B ,

with conventions qbit := 1-qbit and bit := � + � .

The terms of qλ� are:

M,N, P ::=
x | λxA .M | MN | �M,N � | ∗ |
let �xA , yB� = M inN | let ∗ = M inN |
injB� M | injAr M |
matchP with (xA �→ M | yB �→ N) |
letrec fAx = M inN |
new |0� | measn+1

i | U | cmpm,n ,

with conventions tt := inj�� (∗) and ff := inj�r (∗) .

Different from quantum ⊗
(Unlike [Selinger-Valiron’09]);

same as the one in PER
2-qbit ∼= qbit ⊗ qbit

Recursion

Quantum
primitives Hasuo (Tokyo)

A <: A�

!∆, x : A � x : A� (Ax.1)
!Ac <: A
!∆ � c : A

(Ax.2)

∆ � M : !n A
∆ � injB� M : !n(A + B)

(+.I1)

∆ � N : !n B
∆ � injAr N : !n(A + B)

(+.I2)

!∆,Γ1 � P : !n(A + B)
!∆,Γ2, x : !n A � M : C
!∆,Γ2, y : !n B � N : C

!∆,Γ1,Γ2

� matchP with (x!n A �→ M | y!n B �→ N) : C

(+.E), (†)

x : A,∆ � M : B

∆ � λxA.M : A � B
(�.I1)

x : A, !∆ � M : B

!∆ � λxA.M : !n(A � B)
(�.I2)

!∆,Γ1 � M : A � B !∆,Γ2 � N : A
!∆,Γ1,Γ2 � MN : B

(�.E), (†)

!∆,Γ1 � M1 : !n A1 !∆,Γ2 � M2 : !n A2

!∆,Γ1,Γ2 � �M1,M2� : !n(A1 � A2)
(�.I), (†)

!∆ � ∗ : !n � (�.I)

!∆,Γ2, x1 : !n A1, x2 : !n A2 � N : A
!∆,Γ1 � M : !n(A1 � A2)

!∆,Γ1,Γ2 � let �x!n A1
1 , x!n A2

2 � = M inN : A
(�.E), (†)

!∆,Γ1 � M : � !∆,Γ2 � N : A
!∆,Γ1,Γ2 � let ∗ = M inN : A

(�.E), (†)
!∆,Γ, f : !(A � B) � N : C

!∆, f : !(A � B), x : A � M : B

!∆,Γ � letrec fA�Bx = M inN : C
(rec), (†)

Anew|0� := qbit
A

meas
n+1
i

:= (n + 1)-qbit � (bit � n-qbit) for n ≥ 1

Ameas11
:= qbit � bit

AU := n-qbit � n-qbit for a 2n × 2n matrix U
Acmpm,n

:= (m-qbit � n-qbit) � (m + n)-qbit

n = 0 ⇒ m = 0 (∗)
!n k-qbit <: !m k-qbit

(k-qbit) n = 0 ⇒ m = 0
!n � <: !m � (�)

A1 <: B1 A2 <: B2 (∗)
!n(A1 � A2) <: !m(B1 � B2)

(�) with � ∈ {�,+}

B1 <: A1 A2 <: B2 (∗)
!n(A1 � A2) <: !m(B1 � B2)

(�)

Measurements

Implicit linearity tracking
via subtyping <:
e.g. !A <: A, !A <: !!A
(following [Selinger-Valiron’09])

Bookkeeping
(due to ⊗ vs.) �

Hasuo (Tokyo)

Operational Semantics

Standard small-step one, CBV, but with probabilistic
branching (measurement)

E[(λxA.M)V] →1 E[M [V/x]]
E[let �xA, yB� = �V,W � inM] →1 E[M [V/x,W/y]]
E[let ∗ = ∗ inM] →1 E[M]
E[match (injB� V) with (x!n A �→ M | y!n B �→ N)]

→1 E[M [V/x]]
E[match (injAr V) with (x!n A �→ M | y!n B �→ N)]

→1 E[N [V/y]]
E[letrec fA�Bx = M inN]

→1 E[N [λxA.letrec fA�Bx = M inM/f]]
E[measn+1

i (new ρ)] →1 E[� tt, new �0i|ρ|0i� �]
E[measn+1

i (new ρ)] →1 E[� ff, new �1i|ρ|1i� �]
E[meas11(new ρ)] →�0|ρ|0� E[tt]
E[meas11(new ρ)] →�1|ρ|1� E[ff]
E[U(new ρ)] →1 E[new (Uρ)]
E[cmpm,n�new ρ, newσ�] →1 E[new (ρ ⊗ σ)]

