
Von Neumann Algebras
Form a Model for

the Quantum Lambda Calculus
arXiv:1603.02133 [cs.LO]

Kenta Cho AbrahamWesterbaan

Radboud University, Nijmegen

QPL 2016
9 June 2016

We present ...

A denotational model for

the Quantum Lambda Calculus
[Selinger & Valiron 2000s]

by

von Neumann Algebras
[von Neumann (with Murray) ’30s–’40s]

Cho (Nijmegen) 2

We present ...

A denotational model for

the Quantum Lambda Calculus
higher-order quantum programming language

[Selinger & Valiron 2000s]

by

von Neumann Algebras
[von Neumann (with Murray) ’30s–’40s]

Cho (Nijmegen) 2

We present ...

A denotational model for

the Quantum Lambda Calculus
higher-order quantum programming language

[Selinger & Valiron 2000s]

by

von Neumann Algebras
generalisation of matrix algebras e.g.Mn = Cn×n

[von Neumann (with Murray) ’30s–’40s]

Cho (Nijmegen) 2

Quantum Lambda Calculus

Quantum Lambda Calculus
≈ linear lambda calculus + quantum primitives

qubit type, preparation, measurement, unitary transformation

(UnlikeQuipper, no manipulation of quantum circuits)

• Type system is based on linear logic with the
exponential modality “!”

• Each input can be used only (at most) once, unless it
has a duplicable type !A

• Studied extensively by Selinger and Valiron in 2000s

Cho (Nijmegen) 3

Quantum Lambda Calculus

Quantum Lambda Calculus
≈ linear lambda calculus + quantum primitives

qubit type, preparation, measurement, unitary transformation

(UnlikeQuipper, no manipulation of quantum circuits)

• Type system is based on linear logic with the
exponential modality “!”

• Each input can be used only (at most) once, unless it
has a duplicable type !A

• Studied extensively by Selinger and Valiron in 2000s

Cho (Nijmegen) 3

Quantum Lambda Calculus

Quantum Lambda Calculus
≈ linear lambda calculus + quantum primitives

qubit type, preparation, measurement, unitary transformation

(UnlikeQuipper, no manipulation of quantum circuits)

• Type system is based on linear logic with the
exponential modality “!”

• Each input can be used only (at most) once, unless it
has a duplicable type !A

• Studied extensively by Selinger and Valiron in 2000s

Cho (Nijmegen) 3

Quantum Lambda Calculus

Quantum Lambda Calculus
≈ linear lambda calculus + quantum primitives

qubit type, preparation, measurement, unitary transformation

(UnlikeQuipper, no manipulation of quantum circuits)

• Type system is based on linear logic with the
exponential modality “!”

• Each input can be used only (at most) once, unless it
has a duplicable type !A

• Studied extensively by Selinger and Valiron in 2000s

Cho (Nijmegen) 3

Quantum Lambda Calculus

Quantum Lambda Calculus
≈ linear lambda calculus + quantum primitives

qubit type, preparation, measurement, unitary transformation

(UnlikeQuipper, no manipulation of quantum circuits)

• Type system is based on linear logic with the
exponential modality “!”

• Each input can be used only (at most) once, unless it
has a duplicable type !A

• Studied extensively by Selinger and Valiron in 2000s

Cho (Nijmegen) 3

Syntax of Quantum Lambda Calculus
We follow [Selinger & Valiron ’06, ’09] (with ⊕ type,
without recursion)

Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

Term M,N,L ::= x | ∗ | new | meas | U | λx.M | MN

| let ⟨x, y⟩ = N in M

| ⟨M,N⟩ | inl(M) | inr(N)

| match L with (x 7→ M | y 7→ N)

Examples of typing:
3 x : qbit, y : qbit ⊢ ⟨x, y⟩ : qbit⊗ qbit

7 x : qbit ⊢ ⟨x, x⟩ : qbit⊗ qbit

3 x : !A ⊢ ⟨x, x⟩ : !A⊗ !A

Cho (Nijmegen) 4

Syntax of Quantum Lambda Calculus
We follow [Selinger & Valiron ’06, ’09] (with ⊕ type,
without recursion)

Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

Term M,N,L ::= x | ∗ | new | meas | U | λx.M | MN

| let ⟨x, y⟩ = N in M

| ⟨M,N⟩ | inl(M) | inr(N)

| match L with (x 7→ M | y 7→ N)

Examples of typing:
3 x : qbit, y : qbit ⊢ ⟨x, y⟩ : qbit⊗ qbit

7 x : qbit ⊢ ⟨x, x⟩ : qbit⊗ qbit

3 x : !A ⊢ ⟨x, x⟩ : !A⊗ !A

Cho (Nijmegen) 4

Syntax of Quantum Lambda Calculus
We follow [Selinger & Valiron ’06, ’09] (with ⊕ type,
without recursion)

Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

Term M,N,L ::= x | ∗ | new | meas | U | λx.M | MN

| let ⟨x, y⟩ = N in M

| ⟨M,N⟩ | inl(M) | inr(N)

| match L with (x 7→ M | y 7→ N)

Examples of typing:
3 x : qbit, y : qbit ⊢ ⟨x, y⟩ : qbit⊗ qbit

7 x : qbit ⊢ ⟨x, x⟩ : qbit⊗ qbit

3 x : !A ⊢ ⟨x, x⟩ : !A⊗ !A

Cho (Nijmegen) 4

Syntax of Quantum Lambda Calculus
We follow [Selinger & Valiron ’06, ’09] (with ⊕ type,
without recursion)

Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

Term M,N,L ::= x | ∗ | new | meas | U | λx.M | MN

| let ⟨x, y⟩ = N in M

| ⟨M,N⟩ | inl(M) | inr(N)

| match L with (x 7→ M | y 7→ N)

Examples of typing:
3 x : qbit, y : qbit ⊢ ⟨x, y⟩ : qbit⊗ qbit

7 x : qbit ⊢ ⟨x, x⟩ : qbit⊗ qbit

3 x : !A ⊢ ⟨x, x⟩ : !A⊗ !A

Cho (Nijmegen) 4

Syntax of Quantum Lambda Calculus
We follow [Selinger & Valiron ’06, ’09] (with ⊕ type,
without recursion)

Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

Term M,N,L ::= x | ∗ | new | meas | U | λx.M | MN

| let ⟨x, y⟩ = N in M

| ⟨M,N⟩ | inl(M) | inr(N)

| match L with (x 7→ M | y 7→ N)

Examples of typing:
3 x : qbit, y : qbit ⊢ ⟨x, y⟩ : qbit⊗ qbit

7 x : qbit ⊢ ⟨x, x⟩ : qbit⊗ qbit

3 x : !A ⊢ ⟨x, x⟩ : !A⊗ !A

Cho (Nijmegen) 4

Models of Quantum Lambda Calculus
A (denotational/categorical)model of a language consists
of a category C and an interpretation J−K:

types A 7−→ objects JAK ∈ C

well-typed terms
x : A ⊢ M : B

7−→ arrows JAK JMK−−→ JBK in C

Models of quantum lambda calculi are nontrivial!
• Selinger & Valiron introduced a quantum lambda
calculus with its operational semantics in 2005

• The first model was obtained by Malherbe in 2010
using presheaf categories

• Two other models (both accommodate recursion)
• [Hasuo & Hoshino, LICS’11], via GoI
• [Pagani, Selinger & Valiron, POPL’14], applying
quantitative semantics

Cho (Nijmegen) 5

Models of Quantum Lambda Calculus
A (denotational/categorical)model of a language consists
of a category C and an interpretation J−K:

types A 7−→ objects JAK ∈ C

well-typed terms
x : A ⊢ M : B

7−→ arrows JAK JMK−−→ JBK in C

Models of quantum lambda calculi are nontrivial!

• Selinger & Valiron introduced a quantum lambda
calculus with its operational semantics in 2005

• The first model was obtained by Malherbe in 2010
using presheaf categories

• Two other models (both accommodate recursion)
• [Hasuo & Hoshino, LICS’11], via GoI
• [Pagani, Selinger & Valiron, POPL’14], applying
quantitative semantics

Cho (Nijmegen) 5

Models of Quantum Lambda Calculus
A (denotational/categorical)model of a language consists
of a category C and an interpretation J−K:

types A 7−→ objects JAK ∈ C

well-typed terms
x : A ⊢ M : B

7−→ arrows JAK JMK−−→ JBK in C

Models of quantum lambda calculi are nontrivial!
• Selinger & Valiron introduced a quantum lambda
calculus with its operational semantics in 2005

• The first model was obtained by Malherbe in 2010
using presheaf categories

• Two other models (both accommodate recursion)
• [Hasuo & Hoshino, LICS’11], via GoI
• [Pagani, Selinger & Valiron, POPL’14], applying
quantitative semantics

Cho (Nijmegen) 5

Models of Quantum Lambda Calculus
A (denotational/categorical)model of a language consists
of a category C and an interpretation J−K:

types A 7−→ objects JAK ∈ C

well-typed terms
x : A ⊢ M : B

7−→ arrows JAK JMK−−→ JBK in C

Models of quantum lambda calculi are nontrivial!
• Selinger & Valiron introduced a quantum lambda
calculus with its operational semantics in 2005

• The first model was obtained by Malherbe in 2010
using presheaf categories

• Two other models (both accommodate recursion)
• [Hasuo & Hoshino, LICS’11], via GoI
• [Pagani, Selinger & Valiron, POPL’14], applying
quantitative semantics

Cho (Nijmegen) 5

Models of Quantum Lambda Calculus
A (denotational/categorical)model of a language consists
of a category C and an interpretation J−K:

types A 7−→ objects JAK ∈ C

well-typed terms
x : A ⊢ M : B

7−→ arrows JAK JMK−−→ JBK in C

Models of quantum lambda calculi are nontrivial!
• Selinger & Valiron introduced a quantum lambda
calculus with its operational semantics in 2005

• The first model was obtained by Malherbe in 2010
using presheaf categories

• Two other models (both accommodate recursion)
• [Hasuo & Hoshino, LICS’11], via GoI
• [Pagani, Selinger & Valiron, POPL’14], applying
quantitative semantics

Cho (Nijmegen) 5

Previous and our approaches

One reason that designing such a semantics [of QLC] is
difficult is that quantum computation is inherently defined on
finite dimensional Hilbert spaces, whereas the semantics of
higher-order functional programming languages [...] is
inherently infinitary. [Pagani, Selinger & Valiron ’14]

Previous approaches:

Fin. dim. structure
Cn,Mn

Construction
presheaf

GoI
quanti. sem.

Model

Our approach: simply use von Neumann algebras, an
infinite dimensional generalisation of matrix algebras

Cho (Nijmegen) 6

Previous and our approaches

One reason that designing such a semantics [of QLC] is
difficult is that quantum computation is inherently defined on
finite dimensional Hilbert spaces, whereas the semantics of
higher-order functional programming languages [...] is
inherently infinitary. [Pagani, Selinger & Valiron ’14]

Previous approaches:

Fin. dim. structure
Cn,Mn

Construction
presheaf

GoI
quanti. sem.

Model

Our approach: simply use von Neumann algebras, an
infinite dimensional generalisation of matrix algebras

Cho (Nijmegen) 6

Previous and our approaches

One reason that designing such a semantics [of QLC] is
difficult is that quantum computation is inherently defined on
finite dimensional Hilbert spaces, whereas the semantics of
higher-order functional programming languages [...] is
inherently infinitary. [Pagani, Selinger & Valiron ’14]

Previous approaches:

Fin. dim. structure
Cn,Mn

Construction
presheaf

GoI
quanti. sem.

Model

Our approach: simply use von Neumann algebras, an
infinite dimensional generalisation of matrix algebras

Cho (Nijmegen) 6

Previous and our approaches

One reason that designing such a semantics [of QLC] is
difficult is that quantum computation is inherently defined on
finite dimensional Hilbert spaces, whereas the semantics of
higher-order functional programming languages [...] is
inherently infinitary. [Pagani, Selinger & Valiron ’14]

Previous approaches:

Fin. dim. structure
Cn,Mn

Construction
presheaf

GoI
quanti. sem.

Model

Our approach: simply use von Neumann algebras, an
infinite dimensional generalisation of matrix algebras

Cho (Nijmegen) 6

Von Neumann algebras

• A von Neumann algebra (aka.W ∗-algebra) is a
∗-algebra (‘ring’) of operators on a Hilbert space
which is closed in a suitable topology

• Developed by von Neumann and Murray in a series
of papers “On rings of operators” in 1930s–1940s

• Examples: B(H);Mn1 ⊕ · · · ⊕Mnk
; Cn

[The theory of von Neumann algebras] generalizes
many familiar facts about finite-dimensional algebra,
and is currently one of the most powerful tools in the
study of quantum physics. [P. R. Halmos 1973]

Cho (Nijmegen) 7

Von Neumann algebras

• A von Neumann algebra (aka.W ∗-algebra) is a
∗-algebra (‘ring’) of operators on a Hilbert space
which is closed in a suitable topology

• Developed by von Neumann and Murray in a series
of papers “On rings of operators” in 1930s–1940s

• Examples: B(H);Mn1 ⊕ · · · ⊕Mnk
; Cn

[The theory of von Neumann algebras] generalizes
many familiar facts about finite-dimensional algebra,
and is currently one of the most powerful tools in the
study of quantum physics. [P. R. Halmos 1973]

Cho (Nijmegen) 7

Von Neumann algebras

• A von Neumann algebra (aka.W ∗-algebra) is a
∗-algebra (‘ring’) of operators on a Hilbert space
which is closed in a suitable topology

• Developed by von Neumann and Murray in a series
of papers “On rings of operators” in 1930s–1940s

• Examples: B(H);Mn1 ⊕ · · · ⊕Mnk
; Cn

[The theory of von Neumann algebras] generalizes
many familiar facts about finite-dimensional algebra,
and is currently one of the most powerful tools in the
study of quantum physics. [P. R. Halmos 1973]

Cho (Nijmegen) 7

Interpretation of types in v.N. algebras
Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

J⊤K = C complex numbersJqbitK = M2 2× 2matricesJA⊗BK = JAK ⊗ JBK tensor product of v.N. alg.JA⊕BK = JAK ⊕ JBK direct sum of v.N. alg.

JA ⊸ BK = ??J!AK = ??

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

How does this work?

Cho (Nijmegen) 8

Interpretation of types in v.N. algebras
Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

J⊤K = C complex numbersJqbitK = M2 2× 2matricesJA⊗BK = JAK ⊗ JBK tensor product of v.N. alg.JA⊕BK = JAK ⊕ JBK direct sum of v.N. alg.

JA ⊸ BK = ??J!AK = ??

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

How does this work?

Cho (Nijmegen) 8

Interpretation of types in v.N. algebras
Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

J⊤K = C complex numbersJqbitK = M2 2× 2matricesJA⊗BK = JAK ⊗ JBK tensor product of v.N. alg.JA⊕BK = JAK ⊕ JBK direct sum of v.N. alg.JA ⊸ BK = ??J!AK = ??

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

How does this work?

Cho (Nijmegen) 8

Interpretation of types in v.N. algebras
Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

J⊤K = C complex numbersJqbitK = M2 2× 2matricesJA⊗BK = JAK ⊗ JBK tensor product of v.N. alg.JA⊕BK = JAK ⊕ JBK direct sum of v.N. alg.JA ⊸ BK = (FJ JBK)∗JAK
J!AK = ℓ∞(vN(JAK,C))

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

How does this work?

Cho (Nijmegen) 8

Interpretation of types in v.N. algebras
Type A,B ::= ⊤ | qbit | !A | A⊸B | A⊗B | A⊕B

J⊤K = C complex numbersJqbitK = M2 2× 2matricesJA⊗BK = JAK ⊗ JBK tensor product of v.N. alg.JA⊕BK = JAK ⊕ JBK direct sum of v.N. alg.JA ⊸ BK = (FJ JBK)∗JAK
J!AK = ℓ∞(vN(JAK,C))

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

How does this work?
Cho (Nijmegen) 8

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a

strong

monad

with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi

• L a

linear exponential

comonad

• a categorical model of the exponential modality “!”

• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras
• To interpret quantum primitives

• and certain conditions (e.g. L preserves ⊗,⊕)

Cho (Nijmegen) 9

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a

strong

monad

with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi

• L a

linear exponential

comonad

• a categorical model of the exponential modality “!”
• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras
• To interpret quantum primitives

• and certain conditions (e.g. L preserves ⊗,⊕)

Cho (Nijmegen) 9

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a strong monad with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi

• L a

linear exponential

comonad

• a categorical model of the exponential modality “!”
• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras
• To interpret quantum primitives

• and certain conditions (e.g. L preserves ⊗,⊕)

Cho (Nijmegen) 9

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a strong monad with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi
• L a

linear exponential

comonad

• a categorical model of the exponential modality “!”
• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras
• To interpret quantum primitives

• and certain conditions (e.g. L preserves ⊗,⊕)

Cho (Nijmegen) 9

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a strong monad with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi
• L a linear exponential comonad

• a categorical model of the exponential modality “!”
• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras
• To interpret quantum primitives

• and certain conditions (e.g. L preserves ⊗,⊕)

Cho (Nijmegen) 9

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a strong monad with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi
• L a linear exponential comonad

• a categorical model of the exponential modality “!”

• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras
• To interpret quantum primitives

• and certain conditions (e.g. L preserves ⊗,⊕)

Cho (Nijmegen) 9

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a strong monad with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi
• L a linear exponential comonad

• a categorical model of the exponential modality “!”
• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras
• To interpret quantum primitives

• and certain conditions (e.g. L preserves ⊗,⊕)

Cho (Nijmegen) 9

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a strong monad with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi
• L a linear exponential comonad

• a categorical model of the exponential modality “!”
• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras

• To interpret quantum primitives
• and certain conditions (e.g. L preserves ⊗,⊕)

Cho (Nijmegen) 9

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a strong monad with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi
• L a linear exponential comonad

• a categorical model of the exponential modality “!”
• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras
• To interpret quantum primitives

• and certain conditions (e.g. L preserves ⊗,⊕)

Cho (Nijmegen) 9

Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron ’09] is:

(C,⊗, I)L T

• (C,⊗, I) a SMC with finite coproducts (⊕, 0)

• T a strong monad with a Kleisli exponential⊸ s.t.
C(A⊗B, TC) ∼= C(A,B ⊸ C)

• cf. Moggi’s computational lambda calculi
• L a linear exponential comonad

• a categorical model of the exponential modality “!”
• Kℓ(T) contains Selinger’s categoryQ (⊆ CPM)

• Quantum operations between fin. dim. algebras
• To interpret quantum primitives

• and certain conditions (e.g. L preserves ⊗,⊕)
Cho (Nijmegen) 9

Our model

(C,⊗, I)comonad L T monad

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C
2 vNop has coproducts given by direct sums ⊕

Cho (Nijmegen) 10

Our model

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C
2 vNop has coproducts given by direct sums ⊕

Cho (Nijmegen) 10

Our model

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C
2 vNop has coproducts given by direct sums ⊕

Cho (Nijmegen) 10

Our model

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

structure-preserving maps

• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C
2 vNop has coproducts given by direct sums ⊕

Cho (Nijmegen) 10

Our model

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

structure-preserving maps

quantum processes/operations

• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C
2 vNop has coproducts given by direct sums ⊕

Cho (Nijmegen) 10

Our model

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

structure-preserving maps

quantum processes/operations• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C
2 vNop has coproducts given by direct sums ⊕

Cho (Nijmegen) 10

Our model

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

structure-preserving maps

quantum processes/operations• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C
2 vNop has coproducts given by direct sums ⊕

Cho (Nijmegen) 10

Our model

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

structure-preserving maps

quantum processes/operations• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C

2 vNop has coproducts given by direct sums ⊕

Cho (Nijmegen) 10

Our model

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

structure-preserving maps

quantum processes/operations• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C
2 vNop has coproducts given by direct sums ⊕

Cho (Nijmegen) 10

Our model

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

(Opposite categories of)
• vN: v.N. algebras and normal unital
∗-homomorphisms (aka. normal MIU-maps)

• vNCPsU: v.N. algebras and normal completely
positive subuntial (CPsU) maps

structure-preserving maps

quantum processes/operations• vN ⊆ vNCPsU

Goal. vNop forms a concrete model of the QLC.

1 vNop is symm. mon. via tensor product ⊗ and C
2 vNop has coproducts given by direct sums ⊕

products in vN
Cho (Nijmegen) 10

A result of Andre Kornell
Theorem (Kornell 2012). The SMC (vNop,⊗,C) is
closed. Namely: for any v.N. alg. A ,B there is B∗A

(called the free exponential) s.t.
vNop(C ⊗ A ,B) ∼= vNop(C ,B∗A)

• Appeared (only) at arXiv:1202.2994 [math.OA]
Alternative proof by applying Adjoint Functor Theorem
to (−)⊗ A : vN → vN

1 vN is complete, locally small
2 (−)⊗ A preserves limits
3 Solution Set Condition

Warning: we do not know a good description of the
free exponential. (EvenM2

∗M2 is hard!)

Cho (Nijmegen) 11

A result of Andre Kornell
Theorem (Kornell 2012). The SMC (vNop,⊗,C) is
closed. Namely: for any v.N. alg. A ,B there is B∗A

(called the free exponential) s.t.
vNop(C ⊗ A ,B) ∼= vNop(C ,B∗A)

• Appeared (only) at arXiv:1202.2994 [math.OA]

Alternative proof by applying Adjoint Functor Theorem
to (−)⊗ A : vN → vN

1 vN is complete, locally small
2 (−)⊗ A preserves limits
3 Solution Set Condition

Warning: we do not know a good description of the
free exponential. (EvenM2

∗M2 is hard!)

Cho (Nijmegen) 11

A result of Andre Kornell
Theorem (Kornell 2012). The SMC (vNop,⊗,C) is
closed. Namely: for any v.N. alg. A ,B there is B∗A

(called the free exponential) s.t.
vNop(C ⊗ A ,B) ∼= vNop(C ,B∗A)

• Appeared (only) at arXiv:1202.2994 [math.OA]
Alternative proof by applying Adjoint Functor Theorem
to (−)⊗ A : vN → vN

1 vN is complete, locally small
2 (−)⊗ A preserves limits
3 Solution Set Condition

Warning: we do not know a good description of the
free exponential. (EvenM2

∗M2 is hard!)

Cho (Nijmegen) 11

A result of Andre Kornell
Theorem (Kornell 2012). The SMC (vNop,⊗,C) is
closed. Namely: for any v.N. alg. A ,B there is B∗A

(called the free exponential) s.t.
vNop(C ⊗ A ,B) ∼= vNop(C ,B∗A)

• Appeared (only) at arXiv:1202.2994 [math.OA]
Alternative proof by applying Adjoint Functor Theorem
to (−)⊗ A : vN → vN

1 vN is complete, locally small

2 (−)⊗ A preserves limits
3 Solution Set Condition

Warning: we do not know a good description of the
free exponential. (EvenM2

∗M2 is hard!)

Cho (Nijmegen) 11

A result of Andre Kornell
Theorem (Kornell 2012). The SMC (vNop,⊗,C) is
closed. Namely: for any v.N. alg. A ,B there is B∗A

(called the free exponential) s.t.
vNop(C ⊗ A ,B) ∼= vNop(C ,B∗A)

• Appeared (only) at arXiv:1202.2994 [math.OA]
Alternative proof by applying Adjoint Functor Theorem
to (−)⊗ A : vN → vN

1 vN is complete, locally small
2 (−)⊗ A preserves limits

3 Solution Set Condition
Warning: we do not know a good description of the
free exponential. (EvenM2

∗M2 is hard!)

Cho (Nijmegen) 11

A result of Andre Kornell
Theorem (Kornell 2012). The SMC (vNop,⊗,C) is
closed. Namely: for any v.N. alg. A ,B there is B∗A

(called the free exponential) s.t.
vNop(C ⊗ A ,B) ∼= vNop(C ,B∗A)

• Appeared (only) at arXiv:1202.2994 [math.OA]
Alternative proof by applying Adjoint Functor Theorem
to (−)⊗ A : vN → vN

1 vN is complete, locally small
2 (−)⊗ A preserves limits (

⊕
i Bi)⊗ A ∼=

⊕
i Bi ⊗ A

3 Solution Set Condition
Warning: we do not know a good description of the
free exponential. (EvenM2

∗M2 is hard!)

Cho (Nijmegen) 11

A result of Andre Kornell
Theorem (Kornell 2012). The SMC (vNop,⊗,C) is
closed. Namely: for any v.N. alg. A ,B there is B∗A

(called the free exponential) s.t.
vNop(C ⊗ A ,B) ∼= vNop(C ,B∗A)

• Appeared (only) at arXiv:1202.2994 [math.OA]
Alternative proof by applying Adjoint Functor Theorem
to (−)⊗ A : vN → vN

1 vN is complete, locally small
2 (−)⊗ A preserves limits (

⊕
i Bi)⊗ A ∼=

⊕
i Bi ⊗ A

3 Solution Set Condition

Warning: we do not know a good description of the
free exponential. (EvenM2

∗M2 is hard!)

Cho (Nijmegen) 11

A result of Andre Kornell
Theorem (Kornell 2012). The SMC (vNop,⊗,C) is
closed. Namely: for any v.N. alg. A ,B there is B∗A

(called the free exponential) s.t.
vNop(C ⊗ A ,B) ∼= vNop(C ,B∗A)

• Appeared (only) at arXiv:1202.2994 [math.OA]
Alternative proof by applying Adjoint Functor Theorem
to (−)⊗ A : vN → vN

1 vN is complete, locally small
2 (−)⊗ A preserves limits (

⊕
i Bi)⊗ A ∼=

⊕
i Bi ⊗ A

3 Solution Set Condition
Warning: we do not know a good description of the
free exponential. (EvenM2

∗M2 is hard!)
Cho (Nijmegen) 11

Monad part (right-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 The previous talk by A.W.:

• The inclusion J has a right adjoint F (via AFT)
• Kℓ(FJ) ∼= vNop

CPsU

(since vNop(A ,FJB) ∼= vNop
CPsU(A ,B))

2 vNop
CPsU containsQ (in fact, fdvNop

CPsU ≃ Q)
3 FJ is a strong monad, since J is strict monoidal
4 Kleisli exponential A ⊸ B := (FJB)∗A

• vNop(C ⊗ A ,FJB) ∼= vNop(C , (FJB)∗A)

Cho (Nijmegen) 12

Monad part (right-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 The previous talk by A.W.:
• The inclusion J has a right adjoint F (via AFT)
• Kℓ(FJ) ∼= vNop

CPsU

(since vNop(A ,FJB) ∼= vNop
CPsU(A ,B))

2 vNop
CPsU containsQ (in fact, fdvNop

CPsU ≃ Q)
3 FJ is a strong monad, since J is strict monoidal
4 Kleisli exponential A ⊸ B := (FJB)∗A

• vNop(C ⊗ A ,FJB) ∼= vNop(C , (FJB)∗A)

Cho (Nijmegen) 12

Monad part (right-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 The previous talk by A.W.:
• The inclusion J has a right adjoint F (via AFT)
• Kℓ(FJ) ∼= vNop

CPsU

(since vNop(A ,FJB) ∼= vNop
CPsU(A ,B))

2 vNop
CPsU containsQ (in fact, fdvNop

CPsU ≃ Q)

3 FJ is a strong monad, since J is strict monoidal
4 Kleisli exponential A ⊸ B := (FJB)∗A

• vNop(C ⊗ A ,FJB) ∼= vNop(C , (FJB)∗A)

Cho (Nijmegen) 12

Monad part (right-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 The previous talk by A.W.:
• The inclusion J has a right adjoint F (via AFT)
• Kℓ(FJ) ∼= vNop

CPsU

(since vNop(A ,FJB) ∼= vNop
CPsU(A ,B))

2 vNop
CPsU containsQ (in fact, fdvNop

CPsU ≃ Q)
3 FJ is a strong monad, since J is strict monoidal

4 Kleisli exponential A ⊸ B := (FJB)∗A

• vNop(C ⊗ A ,FJB) ∼= vNop(C , (FJB)∗A)

Cho (Nijmegen) 12

Monad part (right-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 The previous talk by A.W.:
• The inclusion J has a right adjoint F (via AFT)
• Kℓ(FJ) ∼= vNop

CPsU

(since vNop(A ,FJB) ∼= vNop
CPsU(A ,B))

2 vNop
CPsU containsQ (in fact, fdvNop

CPsU ≃ Q)
3 FJ is a strong monad, since J is strict monoidal
4 Kleisli exponential A ⊸ B := (FJB)∗A

• vNop(C ⊗ A ,FJB) ∼= vNop(C , (FJB)∗A)

Cho (Nijmegen) 12

Monad part (right-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 The previous talk by A.W.:
• The inclusion J has a right adjoint F (via AFT)
• Kℓ(FJ) ∼= vNop

CPsU

(since vNop(A ,FJB) ∼= vNop
CPsU(A ,B))

2 vNop
CPsU containsQ (in fact, fdvNop

CPsU ≃ Q)
3 FJ is a strong monad, since J is strict monoidal
4 Kleisli exponential A ⊸ B := (FJB)∗A

• vNop(C ⊗ A ,FJB) ∼= vNop(C , (FJB)∗A)

Cho (Nijmegen) 12

Linear exponential comonads

= Categorical models of the exponential modality “!”

A comonad L is linear exponential when endowed with
a comonoid structure on each object LA:

LA −→ LA⊗ LA LA −→ I

(suitably compatible with the comonad structures)

Theorem (Benton). If we have a symm. mon. adjunction
between a SMC and a cartesian monoidal category as in

(B,×, 1) (C,⊗, I)

F

⊥
G

then the comonad FG on C is linear exponential.

Cho (Nijmegen) 13

Linear exponential comonads
= Categorical models of the exponential modality “!”

A comonad L is linear exponential when endowed with
a comonoid structure on each object LA:

LA −→ LA⊗ LA LA −→ I

(suitably compatible with the comonad structures)

Theorem (Benton). If we have a symm. mon. adjunction
between a SMC and a cartesian monoidal category as in

(B,×, 1) (C,⊗, I)

F

⊥
G

then the comonad FG on C is linear exponential.

Cho (Nijmegen) 13

Linear exponential comonads
= Categorical models of the exponential modality “!”

A comonad L is linear exponential when endowed with
a comonoid structure on each object LA:

LA −→ LA⊗ LA LA −→ I

(suitably compatible with the comonad structures)

Theorem (Benton). If we have a symm. mon. adjunction
between a SMC and a cartesian monoidal category as in

(B,×, 1) (C,⊗, I)

F

⊥
G

then the comonad FG on C is linear exponential.

Cho (Nijmegen) 13

Linear exponential comonads
= Categorical models of the exponential modality “!”

A comonad L is linear exponential when endowed with
a comonoid structure on each object LA:

LA −→ LA⊗ LA LA −→ I

(suitably compatible with the comonad structures)

Contraction
(Duplication)

Weakening
(Discarding)

Theorem (Benton). If we have a symm. mon. adjunction
between a SMC and a cartesian monoidal category as in

(B,×, 1) (C,⊗, I)

F

⊥
G

then the comonad FG on C is linear exponential.

Cho (Nijmegen) 13

Linear exponential comonads
= Categorical models of the exponential modality “!”

A comonad L is linear exponential when endowed with
a comonoid structure on each object LA:

LA −→ LA⊗ LA LA −→ I

(suitably compatible with the comonad structures)

Contraction
(Duplication)

Weakening
(Discarding)

Theorem (Benton). If we have a symm. mon. adjunction
between a SMC and a cartesian monoidal category as in

(B,×, 1) (C,⊗, I)

F

⊥
G

then the comonad FG on C is linear exponential.

Cho (Nijmegen) 13

Comonad part (left-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 vN(−,C) is a hom-functor
2 For each set X , ℓ∞(X) = {bounded φ : X → C} is a
v.N. algebra, giving a functor ℓ∞

3 The dual adjunction Set ⇄ vNop via
“swapping arguments” f(x)(a) = g(a)(x)
for f : X → vN(A ,C) and g : A → ℓ∞(X)

4 Set is cartesian (×, 1)

5 Set ⇄ vNop is monoidal: ℓ∞(X × Y) ∼= ℓ∞(X)⊗ ℓ∞(Y)

6 ℓ∞(vN(−,C)) is linear exponential by Benton

Cho (Nijmegen) 14

Comonad part (left-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 vN(−,C) is a hom-functor

2 For each set X , ℓ∞(X) = {bounded φ : X → C} is a
v.N. algebra, giving a functor ℓ∞

3 The dual adjunction Set ⇄ vNop via
“swapping arguments” f(x)(a) = g(a)(x)
for f : X → vN(A ,C) and g : A → ℓ∞(X)

4 Set is cartesian (×, 1)

5 Set ⇄ vNop is monoidal: ℓ∞(X × Y) ∼= ℓ∞(X)⊗ ℓ∞(Y)

6 ℓ∞(vN(−,C)) is linear exponential by Benton

Cho (Nijmegen) 14

Comonad part (left-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 vN(−,C) is a hom-functor
2 For each set X , ℓ∞(X) = {bounded φ : X → C} is a
v.N. algebra, giving a functor ℓ∞

3 The dual adjunction Set ⇄ vNop via
“swapping arguments” f(x)(a) = g(a)(x)
for f : X → vN(A ,C) and g : A → ℓ∞(X)

4 Set is cartesian (×, 1)

5 Set ⇄ vNop is monoidal: ℓ∞(X × Y) ∼= ℓ∞(X)⊗ ℓ∞(Y)

6 ℓ∞(vN(−,C)) is linear exponential by Benton

Cho (Nijmegen) 14

Comonad part (left-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 vN(−,C) is a hom-functor
2 For each set X , ℓ∞(X) = {bounded φ : X → C} is a
v.N. algebra, giving a functor ℓ∞

3 The dual adjunction Set ⇄ vNop via
“swapping arguments” f(x)(a) = g(a)(x)
for f : X → vN(A ,C) and g : A → ℓ∞(X)

4 Set is cartesian (×, 1)

5 Set ⇄ vNop is monoidal: ℓ∞(X × Y) ∼= ℓ∞(X)⊗ ℓ∞(Y)

6 ℓ∞(vN(−,C)) is linear exponential by Benton

Cho (Nijmegen) 14

Comonad part (left-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 vN(−,C) is a hom-functor
2 For each set X , ℓ∞(X) = {bounded φ : X → C} is a
v.N. algebra, giving a functor ℓ∞

3 The dual adjunction Set ⇄ vNop via
“swapping arguments” f(x)(a) = g(a)(x)
for f : X → vN(A ,C) and g : A → ℓ∞(X)

4 Set is cartesian (×, 1)

5 Set ⇄ vNop is monoidal: ℓ∞(X × Y) ∼= ℓ∞(X)⊗ ℓ∞(Y)

6 ℓ∞(vN(−,C)) is linear exponential by Benton

Cho (Nijmegen) 14

Comonad part (left-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 vN(−,C) is a hom-functor
2 For each set X , ℓ∞(X) = {bounded φ : X → C} is a
v.N. algebra, giving a functor ℓ∞

3 The dual adjunction Set ⇄ vNop via
“swapping arguments” f(x)(a) = g(a)(x)
for f : X → vN(A ,C) and g : A → ℓ∞(X)

4 Set is cartesian (×, 1)

5 Set ⇄ vNop is monoidal: ℓ∞(X × Y) ∼= ℓ∞(X)⊗ ℓ∞(Y)

6 ℓ∞(vN(−,C)) is linear exponential by Benton

Cho (Nijmegen) 14

Comonad part (left-hand side)

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

1 vN(−,C) is a hom-functor
2 For each set X , ℓ∞(X) = {bounded φ : X → C} is a
v.N. algebra, giving a functor ℓ∞

3 The dual adjunction Set ⇄ vNop via
“swapping arguments” f(x)(a) = g(a)(x)
for f : X → vN(A ,C) and g : A → ℓ∞(X)

4 Set is cartesian (×, 1)

5 Set ⇄ vNop is monoidal: ℓ∞(X × Y) ∼= ℓ∞(X)⊗ ℓ∞(Y)

6 ℓ∞(vN(−,C)) is linear exponential by Benton
Cho (Nijmegen) 14

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

forms a concrete model of the QLC, in the sense of S.&V.

Interpretation of typesJ⊤K = C JqbitK = M2JA⊗BK = JAK ⊗ JBK JA⊕BK = JAK ⊕ JBKJA ⊸ BK = (FJ JBK)∗JAK J!AK = ℓ∞(vN(JAK,C))
Interpretation of terms
Well-typed term x : A ⊢ M : B is interpreted by

• a Kleisli map JAK JMK−−→ FJ JBK in vNop

• i.e. a map JAK → JBK in vNop
CPsU

• i.e. a normal CPsU-map JBK → JAK
(quantum process!)

Cho (Nijmegen) 15

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

forms a concrete model of the QLC, in the sense of S.&V.
Interpretation of typesJ⊤K = C JqbitK = M2JA⊗BK = JAK ⊗ JBK JA⊕BK = JAK ⊕ JBKJA ⊸ BK = (FJ JBK)∗JAK J!AK = ℓ∞(vN(JAK,C))

Interpretation of terms
Well-typed term x : A ⊢ M : B is interpreted by

• a Kleisli map JAK JMK−−→ FJ JBK in vNop

• i.e. a map JAK → JBK in vNop
CPsU

• i.e. a normal CPsU-map JBK → JAK
(quantum process!)

Cho (Nijmegen) 15

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

forms a concrete model of the QLC, in the sense of S.&V.
Interpretation of typesJ⊤K = C JqbitK = M2JA⊗BK = JAK ⊗ JBK JA⊕BK = JAK ⊕ JBKJA ⊸ BK = (FJ JBK)∗JAK J!AK = ℓ∞(vN(JAK,C))
Interpretation of terms
Well-typed term x : A ⊢ M : B is interpreted by

• a Kleisli map JAK JMK−−→ FJ JBK in vNop

• i.e. a map JAK → JBK in vNop
CPsU

• i.e. a normal CPsU-map JBK → JAK
(quantum process!)

Cho (Nijmegen) 15

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

forms a concrete model of the QLC, in the sense of S.&V.
Interpretation of typesJ⊤K = C JqbitK = M2JA⊗BK = JAK ⊗ JBK JA⊕BK = JAK ⊕ JBKJA ⊸ BK = (FJ JBK)∗JAK J!AK = ℓ∞(vN(JAK,C))
Interpretation of terms
Well-typed term x : A ⊢ M : B is interpreted by

• a Kleisli map JAK JMK−−→ FJ JBK in vNop

• i.e. a map JAK → JBK in vNop
CPsU

• i.e. a normal CPsU-map JBK → JAK
(quantum process!)

Cho (Nijmegen) 15

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

forms a concrete model of the QLC, in the sense of S.&V.
Interpretation of typesJ⊤K = C JqbitK = M2JA⊗BK = JAK ⊗ JBK JA⊕BK = JAK ⊕ JBKJA ⊸ BK = (FJ JBK)∗JAK J!AK = ℓ∞(vN(JAK,C))
Interpretation of terms
Well-typed term x : A ⊢ M : B is interpreted by

• a Kleisli map JAK JMK−−→ FJ JBK in vNop

• i.e. a map JAK → JBK in vNop
CPsU

• i.e. a normal CPsU-map JBK → JAK
(quantum process!)

Cho (Nijmegen) 15

Examples of interpretations

J!⊤K ∼= J⊤K = C

J!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅. This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

JA ⊸ BK = (FJ JBK)∗JAK = ??J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))
∼= ℓ∞(vN(FJ JBK, JAK))
∼= ℓ∞(vNCPsU(JBK, JAK))

Cho (Nijmegen) 16

Examples of interpretations

J!⊤K ∼= J⊤K = CJ!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)

J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅. This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

JA ⊸ BK = (FJ JBK)∗JAK = ??J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))
∼= ℓ∞(vN(FJ JBK, JAK))
∼= ℓ∞(vNCPsU(JBK, JAK))

Cho (Nijmegen) 16

Examples of interpretations

J!⊤K ∼= J⊤K = CJ!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅.

This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

JA ⊸ BK = (FJ JBK)∗JAK = ??J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))
∼= ℓ∞(vN(FJ JBK, JAK))
∼= ℓ∞(vNCPsU(JBK, JAK))

Cho (Nijmegen) 16

Examples of interpretations

J!⊤K ∼= J⊤K = CJ!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅. This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

initial in vNop

JA ⊸ BK = (FJ JBK)∗JAK = ??J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))
∼= ℓ∞(vN(FJ JBK, JAK))
∼= ℓ∞(vNCPsU(JBK, JAK))

Cho (Nijmegen) 16

Examples of interpretations

J!⊤K ∼= J⊤K = CJ!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅. This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

initial in vNop

JA ⊸ BK = (FJ JBK)∗JAK

= ??J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))
∼= ℓ∞(vN(FJ JBK, JAK))
∼= ℓ∞(vNCPsU(JBK, JAK))

Cho (Nijmegen) 16

Examples of interpretations

J!⊤K ∼= J⊤K = CJ!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅. This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

initial in vNop

JA ⊸ BK = (FJ JBK)∗JAK = ??

J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))
∼= ℓ∞(vN(FJ JBK, JAK))
∼= ℓ∞(vNCPsU(JBK, JAK))

Cho (Nijmegen) 16

Examples of interpretations

J!⊤K ∼= J⊤K = CJ!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅. This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

initial in vNop

JA ⊸ BK = (FJ JBK)∗JAK = ??J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))

∼= ℓ∞(vN(FJ JBK, JAK))
∼= ℓ∞(vNCPsU(JBK, JAK))

Cho (Nijmegen) 16

Examples of interpretations

J!⊤K ∼= J⊤K = CJ!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅. This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

initial in vNop

JA ⊸ BK = (FJ JBK)∗JAK = ??J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))
∼= ℓ∞(vN(FJ JBK, JAK))

∼= ℓ∞(vNCPsU(JBK, JAK))

Cho (Nijmegen) 16

Examples of interpretations

J!⊤K ∼= J⊤K = CJ!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅. This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

initial in vNop

JA ⊸ BK = (FJ JBK)∗JAK = ??J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))
∼= ℓ∞(vN(FJ JBK, JAK))
∼= ℓ∞(vNCPsU(JBK, JAK))

Cho (Nijmegen) 16

Examples of interpretations

J!⊤K ∼= J⊤K = CJ!bitK ∼= JbitK = C2 (bit := ⊤⊕⊤)J!qbitK = ℓ∞(vN(M2,C)) ∼= {0}

since vN(M2,C) = ∅. This is as expected, because
there is no valid typing judgement ⊢ M : !qbit.

initial in vNop

JA ⊸ BK = (FJ JBK)∗JAK = ??J!(A ⊸ B)K = ℓ∞(vN((FJ JBK)∗JAK,C))
∼= ℓ∞(vN(FJ JBK, JAK))
∼= ℓ∞(vNCPsU(JBK, JAK))

quantum processes
Cho (Nijmegen) 16

Remarks
• Duplicable types !A are interpreted by ℓ∞(X), rather
than arbitrary commutative von Neumann algebras
such as L∞(X,µ)

• There exists an adjunction CvNop ⇆ vNop, which
does not give a linear exponential comonad

• In fact, any comonoid in the SMC vNop (or vNop
CPsU)

must be of the form ℓ∞(X)

• C∗-algebras do not work similarly, since Cstarop is
not a closed SMC

• C∗-tensor ⊗ does not distribute over infinite⊕

• Our model is adequate wrt. the operational
semantics

• Laborious but straightforward, since our language
does not contain recursion

Cho (Nijmegen) 17

Remarks
• Duplicable types !A are interpreted by ℓ∞(X), rather
than arbitrary commutative von Neumann algebras
such as L∞(X,µ)

• There exists an adjunction CvNop ⇆ vNop, which
does not give a linear exponential comonad

• In fact, any comonoid in the SMC vNop (or vNop
CPsU)

must be of the form ℓ∞(X)

• C∗-algebras do not work similarly, since Cstarop is
not a closed SMC

• C∗-tensor ⊗ does not distribute over infinite⊕

• Our model is adequate wrt. the operational
semantics

• Laborious but straightforward, since our language
does not contain recursion

Cho (Nijmegen) 17

Remarks
• Duplicable types !A are interpreted by ℓ∞(X), rather
than arbitrary commutative von Neumann algebras
such as L∞(X,µ)

• There exists an adjunction CvNop ⇆ vNop, which
does not give a linear exponential comonad

• In fact, any comonoid in the SMC vNop (or vNop
CPsU)

must be of the form ℓ∞(X)

• C∗-algebras do not work similarly, since Cstarop is
not a closed SMC

• C∗-tensor ⊗ does not distribute over infinite⊕

• Our model is adequate wrt. the operational
semantics

• Laborious but straightforward, since our language
does not contain recursion

Cho (Nijmegen) 17

Remarks
• Duplicable types !A are interpreted by ℓ∞(X), rather
than arbitrary commutative von Neumann algebras
such as L∞(X,µ)

• There exists an adjunction CvNop ⇆ vNop, which
does not give a linear exponential comonad

• In fact, any comonoid in the SMC vNop (or vNop
CPsU)

must be of the form ℓ∞(X)

• C∗-algebras do not work similarly, since Cstarop is
not a closed SMC

• C∗-tensor ⊗ does not distribute over infinite⊕
• Our model is adequate wrt. the operational
semantics

• Laborious but straightforward, since our language
does not contain recursion

Cho (Nijmegen) 17

Remarks
• Duplicable types !A are interpreted by ℓ∞(X), rather
than arbitrary commutative von Neumann algebras
such as L∞(X,µ)

• There exists an adjunction CvNop ⇆ vNop, which
does not give a linear exponential comonad

• In fact, any comonoid in the SMC vNop (or vNop
CPsU)

must be of the form ℓ∞(X)

• C∗-algebras do not work similarly, since Cstarop is
not a closed SMC

• C∗-tensor ⊗ does not distribute over infinite⊕

• Our model is adequate wrt. the operational
semantics

• Laborious but straightforward, since our language
does not contain recursion

Cho (Nijmegen) 17

Remarks
• Duplicable types !A are interpreted by ℓ∞(X), rather
than arbitrary commutative von Neumann algebras
such as L∞(X,µ)

• There exists an adjunction CvNop ⇆ vNop, which
does not give a linear exponential comonad

• In fact, any comonoid in the SMC vNop (or vNop
CPsU)

must be of the form ℓ∞(X)

• C∗-algebras do not work similarly, since Cstarop is
not a closed SMC

• C∗-tensor ⊗ does not distribute over infinite⊕
• Our model is adequate wrt. the operational
semantics

• Laborious but straightforward, since our language
does not contain recursion

Cho (Nijmegen) 17

Remarks
• Duplicable types !A are interpreted by ℓ∞(X), rather
than arbitrary commutative von Neumann algebras
such as L∞(X,µ)

• There exists an adjunction CvNop ⇆ vNop, which
does not give a linear exponential comonad

• In fact, any comonoid in the SMC vNop (or vNop
CPsU)

must be of the form ℓ∞(X)

• C∗-algebras do not work similarly, since Cstarop is
not a closed SMC

• C∗-tensor ⊗ does not distribute over infinite⊕
• Our model is adequate wrt. the operational
semantics

• Laborious but straightforward, since our language
does not contain recursion

Cho (Nijmegen) 17

Conclusions
Von Neumann algebras are powerful enough to
interpret Selinger & Valiron’s Quantum Lambda
Calculus, via the adjunctions:

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

Future work:
• Recursion

• vNop
CPsU is dcpo-enriched, but vNop is not

• Understand the interpretation of⊸ better

Thank you!

Cho (Nijmegen) 18

Conclusions
Von Neumann algebras are powerful enough to
interpret Selinger & Valiron’s Quantum Lambda
Calculus, via the adjunctions:

Set vNop vNop
CPsU

ℓ∞

vN(−,C)

J

F
⊥ ⊥

Future work:
• Recursion

• vNop
CPsU is dcpo-enriched, but vNop is not

• Understand the interpretation of⊸ better

Thank you!

Cho (Nijmegen) 18

