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In a recently submitted paper, we present a model for Selinger and Valiron’s quantum lambda calcu-
lus [5] using von Neumann algebras. The quantum lambda calculus is a typed quantum programming
language, which contains not only a qubit type, qbit, and basic quantum operations (allocation of qubits,
measurements and unitary transformations), but also a function type A(B and a ‘duplicable’ type !A
based on linear logic (used to deal with the fact that qubits may not be freely duplicated). Von Neumann
algebras are the generalisation of matrix algebras (such asM2, C, andM4⊕M37) introduced by von
Neumann and Murray following their work on giving Quantum Mechanics a solid mathematical basis.

In our model of the quantum lambda calculus, the first-order bits and pieces are interpreted exactly as
one might expect: the interpretation of qbit is the von Neumann algebraM2 of 2×2 complex matrices,
the tensor type ⊗ is interpreted by the (spatial) tensor product, application of a unitary U on a qubit is
modelled by the map A 7→U∗AU, M2→M2 (roughly speaking), and so on — no surprises here.

The interpretation of A(B and !A is less obvious:

J!AK = `∞(nsp(JAK)) and JA(BK = (FJ JBK)∗JAK. (1)

Here (−)∗JAK is the free exponential of Kornell [2], that is, the left adjoint to functor (−)⊗ JAK on
the category vNAMIU of von Neumann algebras and normal unital ∗-homomorphisms (the ‘structure
preserving’ maps). This makes (vNAop

MIU,⊗,C) into a monoidal closed category. The other symbols
from (1) come from the monoidal adjunctions shown below.
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Here vNACPsU is the category of von Neumann algebras with normal completely positive subunital maps
(representing quantum processes), which has vNAMIU as subcategory, J : vNAop

MIU→ vNAop
CPsU is simply

the inclusion functor, and `∞ is the functor which assigns to a set X the von Neumann algebra of bounded
functions from X to C.

The functor nsp is the right adjoint to `∞, and can be concretely described (it assigns to a von Neu-
mann algebra the set of normal multiplicative states). The functor F is the right adjoint to J and is
known to exist by the Adjoint Functor Theorem, but admits no better description, as far as we know.

While JA(BK defies concrete description, the interpretation of !(A(B) could not have been crisper:

J!(A(B)K = `∞({ normal CPsU-maps f : JBK−→ JAK })
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We should probably mention that the first adjunction in (2) is a linear-non-linear model for intuition-
istic linear logic, and that, because vNAop

CPsU is isomorphic to the Kleisli category of the monad F ◦J on
vNAop

MIU, the second adjunction is reminiscent of Moggi’s model for a lambda calculus with side-effects.
Together, these adjunctions constitute what Selinger and Valiron call a concrete model of the quantum
lambda calculus in [6, §1.6.8].

Our model is not the first model of the quantum lambda calculus; this honour goes to Malherbe who
gave one using presheaves in his thesis [3]. To our knowledge, only two other denotational models have
been given: one by Hasuo and Hoshino [1] via Geometry of Interaction, and one by Pagani et al. [4]
based on methods from quantitative semantics.

A major part of our paper is devoted to the proof that our model is adequate with respect to the
operational semantics. Technically, this makes our model the first known adequate model for Selinger
and Valiron’s quantum lambda calculus. After all, Malherbe concentrated on the existence of a model,
so it is not known whether his model is adequate, and while both models in [1] and in [4] are adequate,
they are models for variants of Selinger and Valiron’s language.

We should note that while it is possible to extend the quantum lambda calculus with recursion, we
have not yet been able to include it in our model, unlike [1, 4].

We believe that our interpretation of the quantum lambda calculus using von Neumann algebras is
clean and direct, and we suspect that von Neumann algebras might turn out to be the most appropriate
structures to interpret quantum programs between possibly infinite dimensional (and higher-order) data
types, but this is up to history.
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