Integrability in Nonstandard Modeling of Hybrid Systems

Kengo Kido, The University of Tokyo. <k-kido@is.s.u-tokyo.ac.jp>

Nonstandard Modeling of Hybrid Systems

WHILE^{dt} is a modeling language for hybrid systems introduced in [Suenaga & Hasuo, ICALP'11]. It is an extension of a usual imperative language, with a constant dt that represents an *infinitesimal*—a positive value that is smaller than any positive real.

In WHILE^{dt}, we model continuous flow in hybrid systems as if it were infinitely many infinitesimal jumps, dispensing with explicit use

$$\begin{array}{c|c} t := 0; \\ \texttt{while} \ (t \leq 1) \\ t := t + \texttt{dt} \end{array} (\dagger)$$

of differential equations. An example is shown above, where t is understood to grow from 0 to 1 in a continuous manner. The usual Hoare-style program logic is just as valid in this extension, leading to an automatic precondition generator in [Hasuo & Suenaga, CAV'12].

Nonstandard Analysis and Semantics of WHILE^{dt}

The formal semantics of WHILE^{dt} is given using Robinson's *nonstandard analysis (NSA)*, a framework that supports use of infinitesimals in a mathematically rigorous manner. There *hyperreals*—including (standard) reals, infinitesimals, and infinites as their multiplicative inverses—are (equivalence classes of) infinite sequences of real numbers. For example, the hyperreal $\omega^{-1} = \left[(\mathbf{1}, \frac{1}{2}, \frac{1}{3}, \dots) \right]$ is infinitesimal and is used as the denotation $\left[dt \right]$ of the constant dt.

The semantics of the program (\dagger) is then defined as follows. We consider the *i*-th section of the execution of the program, for each $i \in \mathbb{N}$:

$$\begin{vmatrix} t := 0; \\ \text{while } (t \le 1) \\ t := t + 1 \end{vmatrix} \begin{vmatrix} t := 0; \\ \text{while } (t \le 1) \\ t := t + \frac{1}{2} \end{vmatrix} \cdots \begin{vmatrix} t := 0; \\ \text{while } (t \le 1) \\ t := t + \frac{1}{i+1} \end{vmatrix} \cdots (*)$$

Each section is dt-free and its semantics is obvious. The values of t are then bundled up and we obtain $[(1 + 1, 1 + \frac{1}{2}, 1 + \frac{1}{2}, ...)]$. This is a hyperreal that is infinitely close to 1.

The Integrability Problem

In the current definition the denotation $\llbracket dt \rrbracket$ is fixed to be a specific infinitesimal ω^{-1} . This choice, however, is arbitrary: we expect the behavior of a WHILE^{dt} program to be independent from the choice of $\llbracket dt \rrbracket$ —at least if the program is modeling a "realistic" physical system. That is, we ask if a program satisfies the following.

Definition (Integrability). A WHILE^{dt} program P is *inte*grable if, for any positive infinitesimals ∂_1 and ∂_2 and any memory state σ , we have $[\![P]\!]^{\partial_1}\sigma \simeq [\![P]\!]^{\partial_2}\sigma$. Here $[\![P]\!]^{\partial}$ is the (state transformer) semantics of P when $[dt] = \partial$; and \simeq denotes that all the stored values are infinitely close.

The name comes from the notion of *Riemann integrability* in analysis, where any progressive sequence of partitions is required to lead to the same Riemann sum.

Unfortunately, not every WHILE^{dt} program is integrable. An artificial example is on the right: if $[dt] = \omega^{-1}$ the program terminates (since every section does—see (*)); however if [dt]

$$\label{eq:t} \begin{array}{l} t:=0;\\ \texttt{while}\;(t\neq 1)\\ t:=t+\texttt{dt} \end{array}$$

section does—see (*)); however if $\llbracket dt \rrbracket = \left[\left(\frac{1}{\pi}, \frac{1}{2\pi}, \frac{1}{3\pi}, \dots \right) \right]$ it does not. Worse, the following naive modeling of a (seemingly benign) billiard ball bouncing between two walls turns out to be nonintegrable.

$$\begin{split} x &:= 0.5; \ v := 1; \ t := 0; \\ \texttt{while} \ (t \leq 10) \ \texttt{do} \ \{ \\ \texttt{if} \ (x < 0 \lor x > 1) \\ \texttt{then} \ v := -0.8 * v; \\ x &:= x + v * \texttt{dt}; \quad t := t + \texttt{dt} \end{split}$$

Indeed, while the program behaves in the way we intend under $\llbracket dt \rrbracket = [(1, \frac{1}{3}, \frac{1}{5}, ...)]$, under $\llbracket dt \rrbracket = [(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, ...)]$ the ball gets caught in the wall after the first bounce and stays there since x does not get to ≤ 1 .

For this specific example, we can make it integrable by the following two simple modifications: 1) change the guard $x < 0 \lor x > 1$ of the if branch into $(x < 0 \land v \le 0) \lor (x > 1 \land v \ge 0)$; or 2) add x := 1 to the then clause.

Towards a Proof Method for Integrability

Hence we aim at a generic methodology for establishing integrability of WHILE^{dt} programs. The project is in a very early stage and we will very much appreciate your suggestions.

One possible direction we are looking at is the relationship to the *non-interference* property that concerns security of programs. It states that there is no "information leak" from high-security variables to low-security ones.

Definition (Non-interference). Let $V = V_h \oplus V_l$ be a partition of variables into *high-security* and *low-security* ones. A program P satisfies *non-interference* if, for any states σ_1, σ_2 such that $\sigma_1|_{V_l} = \sigma_2|_{V_l}$, we have $(\llbracket P \rrbracket \sigma_1)|_{V_l} = (\llbracket P \rrbracket \sigma_2)|_{V_l}$.

Non-interference is similar to integrability if we see dt as a high-security variable. Therefore we suspect that proof methods for non-interference like [Terauchi & Aiken, SAS'05] and [Sabelfeld & Sands, CSF'00] can be applied.