
Integrability in Nonstandard Modeling of Hybrid Systems

Kengo Kido, The University of Tokyo. <k-kido@is.s.u-tokyo.ac.jp>

Nonstandard Modeling of Hybrid Systems
WHILEdt is a modeling language for hybrid systems intro-
duced in [Suenaga & Hasuo, ICALP’11]. It is an extension
of a usual imperative language, with a constant dt that rep-
resents an infinitesimal—a positive value that is smaller than
any positive real.

t := 0;
while (t ≤ 1)

t := t+ dt

(†)
In WHILEdt, we model contin-

uous flow in hybrid systems as if
it were infinitely many infinitesimal
jumps, dispensing with explicit use
of differential equations. An example is shown above, where
t is understood to grow from 0 to 1 in a continuous man-
ner. The usual Hoare-style program logic is just as valid in
this extension, leading to an automatic precondition genera-
tor in [Hasuo & Suenaga, CAV’12].

Nonstandard Analysis and Semantics of WHILEdt

The formal semantics of WHILEdt is given using Robin-
son’s nonstandard analysis (NSA), a framework that supports
use of infinitesimals in a mathematically rigorous manner.
There hyperreals—including (standard) reals, infinitesimals,
and infinites as their multiplicative inverses—are (equiva-
lence classes of) infinite sequences of real numbers. For ex-
ample, the hyperreal ω−1 =

[
(1, 12 ,

1
3 , . . .)

]
is infinitesimal

and is used as the denotation JdtK of the constant dt.
The semantics of the program (†) is then defined as fol-

lows. We consider the i-th section of the execution of the
program, for each i ∈ N:

t := 0;
while (t ≤ 1)

t := t+ 1

t := 0;
while (t ≤ 1)

t := t+ 1
2

· · ·
t := 0;
while (t ≤ 1)

t := t+ 1
i+1

· · · (∗)

Each section is dt-free and its semantics is obvious. The
values of t are then bundled up and we obtain

[
(1 + 1, 1 +

1
2 , 1+

1
3 , . . .)

]
. This is a hyperreal that is infinitely close to 1.

The Integrability Problem
In the current definition the denotation JdtK is fixed to be a
specific infinitesimal ω−1. This choice, however, is arbitrary:
we expect the behavior of a WHILEdt program to be inde-
pendent from the choice of JdtK—at least if the program is
modeling a “realistic” physical system. That is, we ask if a
program satisfies the following.

Definition (Integrability). A WHILEdt program P is inte-
grable if, for any positive infinitesimals ∂1 and ∂2 and any
memory state σ, we have JP K∂1σ ' JP K∂2σ. Here JP K∂ is

the (state transformer) semantics of P when JdtK = ∂; and'
denotes that all the stored values are infinitely close.

The name comes from the notion of Riemann integrability
in analysis, where any progressive sequence of partitions is
required to lead to the same Riemann sum.

t := 0;
while (t 6= 1)

t := t+ dt

Unfortunately, not every WHILEdt

program is integrable. An artificial ex-
ample is on the right: if JdtK = ω−1

the program terminates (since every
section does—see (∗)); however if JdtK =

[
(1π ,

1
2π ,

1
3π , . . .)

]
it does not. Worse, the following naive modeling of a (seem-
ingly benign) billiard ball bouncing between two walls turns
out to be nonintegrable.

x := 0.5; v := 1; t := 0;

while (t ≤ 10) do {
if (x < 0 ∨ x > 1)

then v := −0.8 ∗ v;
x := x+ v ∗ dt; t := t+ dt }

Indeed, while the program behaves in the way we intend
under JdtK = [(1, 13 ,

1
5 , ...)], under JdtK = [(12 ,

1
4 ,

1
6 , ...)] the

ball gets caught in the wall after the first bounce and stays
there since x does not get to ≤ 1.

For this specific example, we can make it integrable by
the following two simple modifications: 1) change the guard
x < 0∨ x > 1 of the if branch into (x < 0∧ v ≤ 0)∨ (x >
1 ∧ v ≥ 0); or 2) add x := 1 to the then clause.

Towards a Proof Method for Integrability
Hence we aim at a generic methodology for establishing inte-
grability of WHILEdt programs. The project is in a very early
stage and we will very much appreciate your suggestions.

One possible direction we are looking at is the relationship
to the non-interference property that concerns security of
programs. It states that there is no “information leak” from
high-security variables to low-security ones.

Definition (Non-interference). Let V = Vh ⊕ Vl be a parti-
tion of variables into high-security and low-security ones. A
program P satisfies non-interference if, for any states σ1, σ2
such that σ1|Vl

= σ2|Vl
, we have (JP Kσ1)|Vl

= (JP Kσ2)|Vl
.

Non-interference is similar to integrability if we see dt as a
high-security variable. Therefore we suspect that proof meth-
ods for non-interference like [Terauchi & Aiken, SAS’05]
and [Sabelfeld & Sands, CSF’00] can be applied.

