Compiling Effectful Terms to Transducers

Prototype Implementation of Memoryful Geometry of Interaction

Toshiki Kataoka

Dept. Computer Science, University of Tokyo

Koko Muroya

{muroykk,toshikik,ichiro}@is.s.u-tokyo.ac.jp

In this preliminary report for LOLA 2014, we present a prototype
implementation of the memoryful Gol framework in [Hoshino,
Muroya and Hasuo, CSL-LICS 2014] that translates lambda terms
with algebraic effects to transducers. Those transducers can be
thought of as “proof nets with memories” and are constructed in a
compositional manner by means of coalgebraic component calculi.
The transducers thus obtained can be simulated in our tool, too,
helping us to scrutinize the step-by-step interactions that take place
in higher-order effectful computation.

Geometry of Interaction (Gol) Girard’s Geometry of Interaction
(Gol) [6] is interaction based semantics of linear logic proofs and,
via suitable translations, of functional programs in general. The
mathematical cleanness of Gol has successfully identified various
essential structures in computation; moreover its use as a compila-
tion technique from programs to state machines—“Gol implemen-
tation,” so to speak—has been worked out by Mackie, Pinto, Ghica
and others [3, 4, 10, 11].

Gol is “Memoryless” In the common presentation of Gol by
token machines [10], a A-term induces a proof net on which a token
runs through and computes the semantic value of the term, the latter
being a cut-elimination invariant. A state of a token machine is the
current position of the token; a state transition of a token machine
is then a movement of the token, from one position to another. It
is notable that the underlying proof net—the “graph” on which the
token moves around—is static and remains unchanged.

This memoryless nature of Gol is a big advantage in view
of simplicity: it allows us to analyze complicated higher-order
computation in the elementary terms of nodes and edges in graphs
(or: links and edges in proof nets). The same nature, however, poses
certain limitations to the use of Gol, too. For example, it is long
known in the community that additive connectives in linear logic—
and similarly coproduct types like bit = 1 + 1—call for special
care in Gol interpretation that is far from trivial. One solution by so-
called additive slices [9], which can be thought of as an additional
“memory” layer on proof nets.

Another example of the limitations of “memoryless Gol” man-
ifests itself in presence of computational effects. Consider the call-
by-value evaluation of the term

P = (Ax:nat.x+x)(3U5) :nat 1

where the subterm 3 LI 5 returns 3 or 5 nondeterministically. Obvi-
ously the term is expected to yield 6 or 10 (but not 8). However the
usual Gol interpretation can yield 8 too: in the interaction between
the subterms Ax. x + x and 3 LI 5, the value of the latter is queried
twice, to which the subterm 3L/5 can answer differently. Here what
is needed is some memory mechanism that allows the subterm 3L/5
to remember the choice that it has made, and to stick to it.

“Memoryful” Gol Motivated by a similar (but more compli-
cated) technical challenge we encountered in the semantics of a

Ichiro Hasuo

Naohiko Hoshino

RIMS, Kyoto University
naophiko@kurims.kyoto-u.ac.jp

quantum A-calculus [7], in [8] we introduced the memoryful Gol
framework that systematically equips proof nets with memories.!

Let T' be a monad on Set and X be a set of algebraic operations,
as in [12]. Our framework yields a translation of a A-term ¢ (in
which algebraic operations ¢ can occur) to a (stream) transducer—
also called a Mealy machine or a sequential machine—that itself
has a T-effect. The latter is concretely given by

(X, XxAST(XxB),zm0€X) ;

it is a state machine that transforms streams over A to those over
B, in a way that depends on the internal state x € X. An example
is shown below that would adequately model the term 3 U 5 in (1).

/3 /5
/s (_J@ak——{Zas}———{s] ) ass @

Here the machine can initially respond to a query ¢ with 3 or
5; however, after that the machine sticks to the same choice by
remembering the choice by means of its internal state. We use such
a transducer as a memoryful node (or a “link™) of a proof net, or
their composite (i.e. a memoryful proof net).

What is notable about our framework is that the term-to-
transducer translation is based on denotational semantics—given
by a category of suitable partial equivalence relations (PERs)—and
hence is correct by construction and compositional. The construc-
tion of the denotational model relies on the categorical axiomatiza-
tion of Gol by Abramsky, Haghverdi and Scott [1, 2]: it allows one
to derive a Cartesian closed category from a traced monoidal cate-
gory C with suitable additional structures. What we do in [8] is take
as C the category of resumptions, i.e. transducers modulo a suitable
behavioral equivalence. This in fact is already done in [2]: our tech-
nical novelty is systematic use of component calculi—those calculi
for composing transducers, formulated in coalgebraic terms—in
composing resumptions.

Our Tool TtT This is a preliminary report on the implementation
of memoryful Gol. Our tool is called TtT—short for “Terms to
Transducers”—and is implemented in Haskell. It consists of two
parts: TtT Compiler and TtT Simulator.

TtT Compiler implements the translation sketched in the above.
We express a transducer (with the effect 7") as a Haskell program
ofthetype Td m x a b:

type Tdmxab = (x, a) ->mn (x, b)

where m is the Haskell monad that corresponds to 7', x is the type
for a state space, a is the input type and b the output type.

The transducer obtained from an (effectful) A-term is then ex-
ecuted by TtT Simulator, in a meticulous way where every move-
ment is recorded. Recall that a transducer here is much like a proof

! The word “memory” here is almost synonymous with “internal states”; we
stick to the former so as to distinguish from states as a computational effect.



net equipped with memories: TtT Simulator records every move-
ment of a token on it, together with the change of memories (from
x € X to z) caused by the visit of the token. Examples of simula-
tion results are shown shortly.

TtT Compiler is parametric in the choice of a monad 7" and al-
gebraic operations, exploiting Haskell’s support of computational
effects as monads. TtT Simulator, however, is necessarily monad-
specific; currently it supports the powerset monad (nondetermin-
ism) and the distribution monad (probability).

TtT as a Prototype We emphasize that what our tool TtT cur-
rently does is of no practical use whatsoever: after all it trans-
lates an effectful A-term—that may well be simply expressed as
a Haskell program—to another Haskell program that is way more
complicated and runs more slowly. Nevertheless we believe this is
a worthwhile venture, for the following three reasons.

The first reason is theoretical: our memoryful Gol framework
in [8] seems to be a useful theoretical tool that gives us in-
sights into higher-order computation with effects. Automating the
translation—that is painfully complicated when done by hand—
will hence meet some theoreticians’ needs.

The second reason is speculative but practical: we wish to fol-
low the path of [3, 4, 10, 11] and use memoryful Gol as a compila-
tion technique to hardware. In our case this will specifically mean
to take hardware that natively supports the effect 7', and compiling
A-terms with T-algebraic effects to it. Doing so for emerging com-
puting paradigms like probabilistic and quantum programming will
have big practical impacts—not only because programs will exe-
cute faster (see e.g. [5]), but also because the compilation (based
on denotational semantics) is correct by construction. The current
toy tool of TtT will then form a basis of such practical compilers.

The third reason is: it’s simply a lot of fun to see higher-order
effectful computation in action—or Gol at work. We hope the
reader will be convinced by the following examples.

Transducers, Derived and Executed Consider the term P in (1)
with nondeterministic choice LI in it. Its translation to a (three-state,
nondeterministic) transducer (P)): 3 x N — P(3 x N), after some
manual simplifications, is depicted below (manually).

3

The figure is a string diagram in the traced monoidal category of
resumptions; the box (3) @,y (5) in (3) is the (equivalence class of)
the transducer (2), after suitably encoding messages like g or 3 as
natural numbers. The diagram (3) can be identified with a proof net
via the “Int construction.” Specifically: notice a horizontal axis of
symmetry; folding the diagram on the axis then gives a proof net,
where the four ¢ and v nodes get identified and yield two nodes
that are understood as %% or ® links in the proof net.

The tool TtT generates the transducer (P)) inductively by the
derivation of the type of P. The outcome is a Haskell program
of type Td [] x Int Int where: Td is as defined before; [] is
the list monad; and x is a type that stands for a three-element set.
Presenting it graphically as in (3) seems to take a lot of efforts and
is left as future work.

Instead of pictorial presentation, we “execute” the transducer
with TtT Simulator and observe its dynamic behaviors. The simu-
lation result of (P) for P in (1) consists of 741 lines and it yields 6
and 10 as possible outcomes, successfully excluding 8. Similarly,
for the term (Af. f 0+ f 1) (Az. 3L 5) we have a simulation result

of 4526 lines that yields 6, 8, 8, 10 as possible outcomes (duplica-
tion of 8 is due to different final states of the transducer).

Simulation Results We present actual simulation results for sim-
pler terms: 3115, written as 3| _|5 in Fig. 1; and (Az. ) 1 in Fig. 2.

———- dd<42,137> --->
Query:[ [3|_15] @ Nothing ]
. —---- dd<42,137> --->
| Query:[ [311_156 @ * ]
| h; k_3; h
| [ [3]1I_15 @ * ]:Answer
| -—-- dd<42,3> --->
| [ [31_15] @ Just (Left (%)) ]:Answer
| ---- dd<42,3> --->
Result: 3 / State: Just (Left (%))
—---- dd<42,137> --->
| Query:[ 3|_1[5] @ * ]
| h; k_5; h
| [ 31_1[6] @ * ]:Answer
| ——-- dd<42,5> --->
| [ [31_15] @ Just (Right (%)) ]:Answer
| ---- dd<42,5> --->
Result: 5 / State: Just (Right (%))

|
4
|
|
|
|
|
|
|
(.

Figure 1. Simulation Result for 3L 5

The convention is as follows. A token carries a natural number n
around—or more precisely, an edge e.g. in (3) consists of |N|-many
“pipes” and a token goes through the n-th—and this is denoted by
—---- n --->. Therefore expressions like dd<42,137> in Fig. 1
stand for a certain natural number. We however chose to supple-
mentarily use the dynamic algebra notation (g for left and d for
right, in French, see e.g. [9, 11]), for readability and efficiency.

In Fig. 1, between movements -—-- n ---> of the token are
expressions like Query: [ [3|_15] @ Nothing Jandh; k_3; h.
The ones like the former stand for the token’s entrance to and exit
from a transducer. Specifically, p: [t@x]—with a subterm ¢’ of ¢
designated by [t'1—means: the token entered to (a copy of) the
transducer (t'), whose current state is z, at its port p. Typical ports
include: Query (a top-level query) and Answer x (an answer to
the previous query on x; see Fig. 2, lines 24 and 44). Similarly,
[t@x] : p means the token departed from the port p.

The latter class of expressions like h; k_3; h on Fig. 1, line
5 and phi on Fig. 2, line 3 are referred to as bookkeeping. For
example, h; k_3; h means the token traversed an h node, a k3
node and then an h node. The definition of these nodes (as pure
functions like h: N+ N — N + N) is found in [8]. As we noted
before, these bookkeeping nodes correspond to logical connectives
in a proof net; therefore they change the number carried by the
token. From line 1 to 4 in Fig. 2, g is added by phi i.e. 7; this is
much like in the dynamic algebra presentation [9].

Let us discuss effects. Branching occurred in Fig. 1, line 3,
as depicted by the lines on the left. As we discussed about the
term (1), different branches must result in different states x € X, or
“memories”; we see this is indeed the case in Fig. 1, lines 8 and 16,
hence eventually lines 10 and 18. The states Just (Left (*))
and Just (Right (*)) encode z3 and x5 in (2), respectively.

The indentation designates the depth of the subterm in focus. In
Fig. 2, we see a query on x raised on line 24. The token is returned
to shallower levels and is eventually passed on to the subterm 1 of
(Az.z) 1 (denoted by (\x.x) [11) on line 33; and then the value
1 of x is obtained and carried by the token (in the form of 1 in
<42,1>) to the originator on line 44.

We note that a query to a natural number value must be a token
carrying a number dd<n ,m>, where n and m are arbitrary (hence
42 and 137 in Fig. 1-2 are just arbitrary numbers). An answer to
this query, that the value is [, is given by a token carrying dd<n,[>.



65
66
67
68

---- dd<42,137> --->

Query: [
phi

[A\x.x) 1] @ ({_: *}, %) ]

-——- gdd<42,137> --->

Query:
h

[ \x.x] 1@ {_: *} ]

[ [\x.x] 1 @ {_: *} ]:Answer
---- dgdd<42,137> --->

psi; psi; phi

———- gdd<42,137> —-—>

Query:
h

[ OA\x.x) [1] e * 1]

[ (\x.x) [1] @ * ]:Answer
———— dgdd<42,137> --->

psi; e

; phi; phi

---- dd<0,gdd<42,137>> --->

Query:
h; v
0 {

[ D\x.x] 1@ {_: %} 1]

psi
-—-- dd<42,137> --->
Query: [ (\x.[x]) 1 @ * ]

h
[

(\x.[x]) 1 @ * ]:Query x

---- <42,137> --->
phi

}o
u; h

[ [\x.x] 1 @ {_: *x} ]:Answer
—---- dd<0,d<42,137>> --->
psi; psi; e’; phi

———— dd<42,137> --->

Query:
h; k

[ O(\x.x) [1] @ * ]

_1; h

[ (\x.x) [1] @ * ]:Answer
—--- dd<42,1> --->

psi; e

; phi; phi

———— dd<0,d<42,1>> —-->

Query:[ [\x.x] 1 @ {_: *} ]
h; v
0 {
psi
———- <42,1> ———>
Answer x:[ (\x.[x]) 1 @ * ]
h
[ (\x.[x]) 1 @ *x ]:Answer
-—-- dd<42,1> --->
phi
>0
u; h

[ [\x.x] 1 @ {_: *x} ]:Answer
———- dd<0,gdd<42,1>> —-->
psi; psi; e’; phi

———- dgdd<42,1> --->

Query:
h

[ (\x.x) [1] @ = ]

[ (\x.x) [1] @ * ]:Answer
---- gdd<42,1> --->

psi; phi; phi

---- dgdd<42,1> --->

Query:
h

[ D\x.x] 1@ {_: %} 1]

[ [\x.x] 1 @ {_: *} ]:Answer
———— gdd<42,1> --—>

psi

[ [O\x.x

) 11 @ ({_: *}, *) ]:Answer

———- dd<42,1> -——>

Result:

1 / State: ({_: *}, *)

Figure 2. Simulation Result for (Az. x) 1

Finally let us speak about making |N|-many copies of a transducer—
which interprets the ! modality that is implicit in the Girard
translation A — B = ! A — B. The bookkeeping function
v: N — N x N in Fig. 2, line 18, splits |N|-many pipes into
IN| - |N|-many pipes; and lines 19 and 27 mean the token went
to the O-th bunch of pipes, i.e., to the 0-th copy of the transducer
[ (\x.[x]) 1 @ * ]. The state {_: x} that occur e.g. on line
17 stands for the function N — 1, n — *, meaning that the state of
every copy of the transducer is the unique one *.

Acknowledgments

Thank are due to Ugo Dal Lago, Claudia Faggian, Dan Ghica and
Akira Yoshimizu for useful discussions, and to the anonymous ref-
erees for useful comments. K.M. and I.H. are supported by Grants-
in-Aid for Young Scientists (A) No. 24680001, JSPS; T.K. is sup-
ported by Grant-in-Aid for JSPS Fellows; and N.H. is supported by
Grants-in-Aid for Young Scientists (B) No. 26730004, JSPS.

References

[1] S. Abramsky. Retracing some paths in process algebra. In CONCUR,
pages 1-17, 1996.

[2] S. Abramsky, E. Haghverdi, and P. Scott. Geometry of interaction and
linear combinatory algebras. Math. Struct. in Comp. Sci., 12:625-665,
2002.

O. Fredriksson and D. R. Ghica. Seamless distributed computing from
the geometry of interaction. In C. Palamidessi and M. D. Ryan, editors,
Trustworthy Global Computing, volume 8191 of Lecture Notes in
Computer Science, pages 34—48. Springer Berlin Heidelberg, 2013.

,_
W
—_

[4

flnar

D. R. Ghica. Geometry of synthesis: a structured approach to VLSI
design. In M. Hofmann and M. Felleisen, editors, POPL, pages 363—
375. ACM, 2007. ISBN 1-59593-575-4.

[5] D. R. Ghica, A. I. Smith, and S. Singh. Geometry of synthesis
IV: compiling affine recursion into static hardware. In M. M. T.
Chakravarty, Z. Hu, and O. Danvy, editors, ICFP, pages 221-233.
ACM, 2011. ISBN 978-1-4503-0865-6.

J.-Y. Girard. Geometry of interaction 1: Interpretation of system F. In
S. V. R. Ferro, C. Bonotto and A. Zanardo, editors, Logic Colloquium
'88 Proceedings of the Colloquium held in Padova, volume 127 of
Studies in Logic and the Foundations of Mathematics, pages 221-260.
Elsevier, 1989.

[7] 1. Hasuo and N. Hoshino. Semantics of higher-order quantum compu-
tation via geometry of interaction. In LICS, pages 237-246, 2011.

[6

=

[8] N. Hoshino, K. Muroya, and I. Hasuo. Memoryful geometry of
interaction: From coalgebraic components to algebraic effects. In
CSL-LICS, 2014. To appear.

[9] O. Laurent. A token machine for full geometry of interaction. In
TLCA, pages 283-297, 2001.

[10] I. Mackie. The geometry of interaction machine. In R. K. Cytron
and P. Lee, editors, POPL, pages 198-208. ACM Press, 1995. ISBN
0-89791-692-1.

[11] J. S. Pinto. Implantation Paralléle avec la Logique Linéaire (Applica-
tions des Réfeaux d’Interaction et de la Géométrie de ’Interaction).
PhD thesis, Ecole Polytechnique, 2001. Main text in English.

[12] G. Plotkin and J. Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69-94, 2003.



