
RESUMPTION-BASED CATEGORICAL GEOMETRY OF

INTERACTION FOR EFFECTS

計算効果のための、Resumptionに基づいた

圏論的Geometry of Interaction

by

Koko Muroya

室屋晃子

A Senior Thesis

卒業論文

Submitted to

the Department of Information Science

the Faculty of Science, the University of Tokyo

on February 4, 2014

in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science

Thesis Supervisor: Ichiro Hasuo 蓮尾一郎

Lecturer of Information Science

ABSTRACT

Girard’s Geometry of Interaction (GoI) gives a model of linear logic and is applied to
give semantics of programming languages. In this paper the base steps of an approach to
obtain resumption-based GoI interpretation of effects, namely resumption-based categor-
ical GoI, are described. In our approach, categorical GoI — a categorical axiomatization
of GoI introduced by Abramsky, Haghverdi and Scott — are used. The usage of resump-
tions for categorical GoI is also pointed out by them. Since resumptions are constructed
by a kind of state machine called transducer, we give the concrete constructions of trans-
ducers that are used in categorical GoI. We also give the construction that represent
algebraic operations. The ability of algebraic operations to represent effects is studied
by Power and Plotkin. Linear combinatory algebras are also studied in this paper. It is
described by Simpson that linear combinatory algebras can represent a kind of λ-calculus
named linear λ-calculus. We defined a model of linear λ-calculus and proved the linear
version of the Meyer-Scott theorem: it was found that linear combinatory algebras need
extra combinators to form a model of linear λ-calculus.

論文要旨

Girardによる Geometry of Interaction(GoI)は線形論理のモデルを与えるものであり、

プログラミング言語の意味論を与えるために応用されている。本論文では、計算効果のGoI

による解釈を得るための resumptionに基づいたアプローチについて、その基本となるステッ

プを説明する。このアプローチでは categorical GoIと呼ばれる、Abramsky, Haghverdi,

Scott によって与えられた GoIの圏論的な定式化を用いた。彼らは圏論的 GoIにおける

Resumptionの利用についても指摘している。Resumptionは transducerという一種のス

テートマシンによって構成されるので、我々は categorical GoIで利用される transducerの

具体的な構成を与えた。また algebraic operationを表現するような構成も与えた。Algebraic

operationの計算効果に対する表現能力は Plotkin,Powerによって研究されている。また本

論文では線形コンビネータ代数についても考察する。Simpsonによって線形コンビネータ

代数が線形ラムダ計算と呼ばれる一種のラムダ計算を表現することが示されたが、本論文

では線形ラムダ計算のモデルを定義し、Meyer-Scottの定理の線形版が成り立つこと、つ

まり線形コンビネータ代数が線形ラムダ計算のモデルとなるためには追加のコンビネータ

が必要であることを示した。

Acknowledgements

I am deeply grateful to my supervisor Ichiro Hasuo for helpful advice. I thank
Naohiko Hoshino for motivating this study. I appreciate useful discussions with
the members of Hasuo Laboratory.

Contents

1 Introduction 1

2 Resumption-Based Categorical GoI 4
2.1 Categorical GoI . 4
2.2 Monads on Set . 6
2.3 Algebraic Operations . 13
2.4 Transducers . 15
2.5 Behavioral Equivalence and Resumptions 18
2.6 Resumption-Based Categorical GoI for Effects 21

3 Model of Linear λ-Calculus 25
3.1 Linear λ-Model . 25
3.2 Linear Combinatory Algebra and Linear λ-Calculus 32

4 Conclusions and Future Work 36

References 37

iv

Chapter 1

Introduction

Girard introduced Geometry of Interaction (GoI) in [3] that gives semantics of
proofs of linear logic. GoI is applied to give semantics of programming languages
in various ways. Mackie gave semantics of PCF as token machines in [11]. In
[2] followed by several papers, Ghica gave game-theoretic semantics of functional
languages by translating programs into logical circuits. These results led to im-
plementations such that compilers. This is one of the advantages of using GoI:
semantics given by using GoI inherits the feature of GoI and enables us to observe
dynamics of computations. Hasuo and Hoshino adopted another approach in [5]:
they used a categorical axiomatization of GoI called categorical GoI together
with the realizability technique.

Categorical GoI is given by Abramsky, Haghverdi and Scott [1]. From a
category equipped with certain structures, called GoI situation, it extracts a
linear combinatory algebra that is a combinatory algebra equipped with the !
modality. The realizability technique is introduced by Kleene in [9]. By the
realizability technique, a category that gives a model of typed λ-calculus can be
obtained from a linear combinatory algebra. This category gives game-theoretic
interpretation of λ-calculus called GoI interpretation: the application of a term
over another is interpreted as interactions of these terms.

The GoI interpretation of a term is represented by an arrow in the source
category C of categorical GoI: in particular it is represented by a function if a
category of sets and functions is used as C. This leads to an idea that models
of λ-calculus with effects — for example nondeterminism and probability — can
be obtained by embedding the effect into arrows in C. This idea indeed works:
Hasuo and Hoshino [5] showed that some Kleisli categories can be the source
of categorical GoI and extracted a model of quantum computation. Following
Moggi [12], they modeled effects by monads and embedded effects into Kleisli
arrows.

However, it is found that the construction is not so straightforward as ex-
pected. Consider the call-by-value evaluation of the following λ-term

(λx. x+ x)(1 ⊔ 2)

where the subterm 1 ⊔ 2 returns 1 or 2 nondeterministically. Though we expect
that this term returns 2 or 4, the GoI interpretation of this term can return 3 as
the result of the following sequence of queries and answers.

1. The term λx. x+ x asks the value of x that occurs in left.

2. The term 1 ⊔ 2 returns a value 1.

3. The term λx. x+ x asks the value of x that occurs in right.

1

4. The term 1 ⊔ 2 returns a value 2.

5. The term λx. x+ x adds 2 to 1 and returns a value 3.

In the call-by-value evaluation we expect that after the term 1 ⊔ 2 chooses its
value it follows its choice permanently. In fact this problem is not due to the
evaluation strategy: consider the following term

(h ⊔ k)y .

The term h ⊔ k is also needed to follow its choice, otherwise the answer of y to
the request from h can be received by k. Indeed there is a case that the expected
equation

(h ⊔ k)y = hy ⊔ ky

does not hold: the GoI interpretation of the term

((λf. f 0) ⊔ (λf. (f 1) + 1))(λx. x)

can return an unexpected value 1 as well as expected values 0 and 2. The problem
here is that the term M ⊔N cannot remember its choice. To interpret effects, it
seems that GoI interpretations need to be equipped with “memories”.

In [5], the lack of “memories” was dealt with by using the continuation monad
on the category that is obtained by the realizability technique. There is another
approach to deal with this problem: to embed “memories” as well as effects into
arrows in the source category C. One way to embed “memories” and effects into
arrows is to use resumptions. Roughly speaking a resumption is a state machine:
given an input, it decides outputs and also the next state according to its cur-
rent internal state. This decision is affected by the embedded effect. Precisely a
resumption is an equivalence class of transducers modulo an appropriate equiva-
lence relation. “Memories” are embedded into resumptions as internal states and
an effect is embedded into resumptions by a monad following Moggi [12].

Our motivation is to obtain a GoI interpretation of effects. The expected
workflow based on resumptions is as below.

a monad T

a GoI situation based on resumptions an algebraic operation α

a linear combinatory algebra with an operation α

a cartesian closed category with certain properties

GoI interpretation of effects

_

��

�

,,XXXXX
XXXXXX

XXXXXX
XXXXXX

XXX

_

categorical GoI

��

&

rrffffff
ffffff

ffffff
ffffff

_

realizability

��

_

denotational semantics
��

In Chapter 2 we study the first two step of this workflow: we use a monad T and
an algebraic operation α to extract a linear combinatory algebra with operator α.
We call this procedure resumption-based categorical GoI. In fact it is described
in [1] that a category of resumptions can be the source category of categorical

2

GoI. We give a GoI situation based on resumptions by constructing concrete
transducers.

The idea to use an algebraic operation follows Plotkin and Power [14, 13].
They showed in [14] that algebraic operations give adequate semantics for alge-
braic effects. We expect that this result will help us to obtain GoI interpretation
of effects. In resumption-based categorical GoI we use an algebraic operation
α and define an operator α that constructs concrete transducer. We find that
this operator enables a linear combinatory algebra to represent some interfaces
to effects.

Additionally in Chapter 3 we study linear combinatory algebras. It is de-
scribed by Simpson [16] that linear combinatory algebras can represent a kind
of λ-calculus by its property called linear combinatory completeness. This λ-
calculus is called linear λ-calculus. It inherits the ! modality of linear logic and
explicitly tracks copying of data in computation. We define a model of untyped
linear λ-calculus named linear λ-model and prove that linear combinatory al-
gebras need extra power to form a linear λ-model. This result is the linear
counterpart of the Meyer-Scott theorem.

The results in Chapter 2 forms part of the paper [7].

3

Chapter 2

Resumption-Based Categorical GoI

2.1 Categorical GoI

In this section we describe the source and outcome of categorical GoI. What play
an important role in categorical GoI are the symmetric monoidal structure of a
category and a trace. The description of the symmetric monoidal structure is in
[10]. The following axiomatization of a trace is from [4].

Definition 2.1.1 (trace). A trace on a symmetric monoidal category (C, I,⊗) is
a family of functions {trXA,B : C(A⊗X,B ⊗X)→ C(A,B)}X,A,B∈C that satisfies
the following conditions:

• tightening (naturality): trXA′,B′((k ⊗ idX) ◦ f ◦ (h⊗ idX)) = k ◦ trXA,B(f) ◦ h
for all f : A⊗X → B ⊗X, h : A′ → A and k : B → B′

• sliding (dinaturality): trYA,B(f ◦ (idA ⊗ g)) = trXA,B((idB ⊗ g) ◦ f) for all
f : A⊗X → B ⊗ Y and g : Y → X

• vanishing : trIA,B(f) = f and trX⊗Y
A,B (g) = trXA,B(tr

Y
A⊗X,B⊗X(g)) for all

f : A→ B and g : A⊗X ⊗ Y → B ⊗X ⊗ Y

• superposing : trXC⊗A,C⊗B(idC⊗f) = idC⊗trXA,B(f) for all f : A⊗X → B⊗X

• yanking : trXX,X(cX,X) = idX where cY,Z : Y ⊗ Z → Z ⊗ Y is the symmetry
in C.

The trace trXA,B(f) can be seen as the “iteration” of f : given an input in A, f is
applied repeatedly until an output in B is obtained. A traced symmetric monoidal
category is a symmetric monoidal category that has a trace. When a category
(C, I,⊗) is a traced symmetric monoidal category, a symmetric monoidal functor
F : C→ C is traced if it satisfies the following equation

trFX
FA,FB(m

−1
B,X ◦ Ff ◦mA,X) = F (trXA,B(f))

for all f : A⊗X → B ⊗X where mA,B : FA⊗FB → F (A⊗B) is the coherence
isomorphism of F .

We use string diagrams to represent arrows in a traced symmetric monoidal
category (C, I,⊗). An arrow f : X → Y in C is represented by a box with inputs
and outputs. The box, inputs and outputs are labeled by f , X and Y respectively.
The symmetric monoidal structure is expressed by parallel alignment and traces
are expressed by “feedback”. Figure 2.1 shows examples of string diagrams: the
first one is of f : X ⊗ Z → Y ⊗ Z, the second one is of g ⊗ h : X ⊗ Z → Y ⊗W
and the third one is of trZX,Y (f) : X → Y .

4

f

X

Y

Z

Z

g h

X

Y

Z

W

f

X

Y

Z

Figure 2.1: string diagrams in C

f

h

k

A′

A

B

B′

X

X

f

h

k

A′

A

B

B′

X

naturality

= f

gA

B

Y

X

Y

f

g

A

B

X

Y

X

dinaturality

=

f

A

B

I

f

A

B

vanishing

=
g

A

B

Y

X

g

A

B

Y

X

vanishing

=

f

C

C

A

B

X

f
C

A

B

X

superposing

=

X

X

X

X

yanking

=

Figure 2.2: trace axioms in C

The axioms of trace in Definition 2.1.1 are expressed by string diagrams in
Figure 2.2.

On a traced symmetric monoidal category, we can construct a GoI situation.

Definition 2.1.2 (retraction). A retraction f : X ◁ Y : g in a category C is a
pair of arrows f : X → Y and g : Y → X in C that satisfies

g ◦ f = idX .

If f ◦ g = idY also holds then we write f : X ∼= Y : g.

Definition 2.1.3 (GoI situation). A GoI situation is a triple (C, U, F) that
satisfies the following properties.

• The triple consists of a traced symmetric monoidal category (C, I,⊗), an
object U in C and a traced symmetric monoidal functor F : C→ C.

5

• There exist retractions:

ϕ : U ⊗ U ◁ U : ψ u : FU ◁ U : v n : I ◁ U : n′

eA : A◁ FA : e′A dA : FFA◁ FA : d′A

cA : FA⊗ FA◁ FA : c′A wA : I ◁ FA : w′
A

such that e, d, c and w are monoidal natural transformations.

From a GoI situation, a linear combinatory algebra is extracted via categorical
GoI.

Definition 2.1.4 (linear combinatory algebra). A linear combinatory algebra is
a triple (D, ·, !) that satisfies the following properties.

• The triple consists of a set D, a binary operation · : D × D → D (called
application) and a unary operation ! : D → D.

• The set D has elements I,B,C,K,W,D, δ,F (called combinators) that satisfy
the following equations for all a, b, c in D:

Ia = a Babc = a(bc)

Cabc = acb Kx ! y = x

Wx ! y = x ! y ! y D !x = x

δ !x = ! !x F !x ! y = !(xy) .

The application · in linear combinatory algebras is regarded as left-associative.

Proposition 2.1.5 (categorical GoI [1]). Let (C, U, F) be a GoI situation. A
triple (C(U,U), ·, !) forms a linear combinatory algebra where a binary operation
· and a unary operation ! are defined as

f · g := trUU,U ((idU ⊗ g) ◦ ψ ◦ f ◦ ϕ)
! f := u ◦ F (f) ◦ v .

Figure 2.3 shows string diagrams of arrows f · g and ! f . The application · is
represented by an interaction of the diagrams of f and g. The functor F is used
to represent the ! modality.

2.2 Monads on Set

Let Set be a category of sets and functions. It is known that Set has finite
coproducts (∅,+) and is a cartesian closed category i.e. a category with finite
products (1,×) and exponents ⇒. Here 1 represents an singleton {∗}. We de-
note the injections, codiagonal maps, swappings of products and distributions as
follows:

X
inlX,Y−−−−→X + Y

inrX,Y←−−−− Y X +X
γX−−→ X

X × Y
σX,Y−−−→∼= Y ×X X × Y +X × Z

δX,Y,Z−−−−→∼=
X × (Y + Z) .

Let T : Set → Set to be a monad. Since monads on Set are strong, T has
the tensorial strengths. We denote the unit, multiplication and strengths of T as
follows:

X
ηX−−→ TX T 2X

µX−−→ TX

TX × Y
stX,Y−−−→ T (X × Y) X × TY

st′X,Y−−−→ T (X × Y) .

Following [12], we use a monad T to model effects in computation.

6

f · g := f

U

φ

U

ψ

U

g

U

U

U

= f

U

φ

U

ψ

U

U

g

U

U

! f := F (f)

U

v

U
u

U

U

Figure 2.3: operators of a linear combinatory algebra

Example 2.2.1. We give examples of T : Set→ Set that models an effect.

• The list monad LX = 1 +X that models choices between termination or
continuation of computation.

• The powerset monad PX = 2X that models nondeterministic choices of
computation.

• The subdistribution monad DX = {d : X → [0, 1] |
∑

x∈X d(x) ≤ 1} that
models probabilistic choices of computation.

We write SetT for the Kleisli category of T . Kleisli compositions are defined
as

g ◦T f = µZ ◦ T (g) ◦ f : X →T Z

for all f : X →T Y and g : Y →T Z in SetT . Kleisli compositions and Kleisli
arrows are denoted as ◦T and →T respectively, while compositions and arrows in
the base category Set are denoted as ◦ and → respectively.

The constructor (−)∗ is defined as

f∗ := ηY ◦ f : X →T Y

for all f : X → Y in Set. It lifts arrows in Set to those in SetT , preserving
identities and compositions. It also lifts coproducts by lifting coprojections. The
operation ⊗ on SetT is defined as

g ⊗D := stX,D ◦ (g × idD) : X ×D →T Y ×D
D ⊗ g := st′D,Y ◦ (idD × g) : D ×X →T D × Y

7

for all sets D and g : X →T Y in SetT . It gives an premonoidal structure of SetT
[15]. For f : X →T Y and g : Z →T W in SetT , if the equation

(f ⊗W) ◦T (X ⊗ g) = (Y ⊗ g) ◦T (f ⊗ Z)

holds, then we write f ⊗ g for (f ⊗W) ◦T (X ⊗ g). It is easy to show that the
constructor (−)∗ and the operator ⊗ satisfies the following equations

f∗ ⊗ g∗ = (f × g)∗

f∗ ⊗A = f∗ ⊗ id∗A

A⊗ f∗ = id∗A ⊗ f∗

for all f : X → X ′ and g : Y → Y ′ in Set and for all sets A.
Arrows in SetT can be seen as arrows in Set (i.e. functions) that are equipped

with effects. Later we use them and form a GoI situation. To ensure that a GoI
situation is formed, we require the following condition.

Requirement 2.2.2. In the whole paper, we require that T : Set → Set is a
monad and it makes the symmetric monoidal category (SetT , ∅,+) have restricted
uniform trace operator tr [4]: for all f : A+X →T B+X and g : A+Y →T B+Y
in SetT and h : X → Y in Set, if (id∗B + h∗) ◦T f = g ◦T (id∗A + h∗) then
trXA,B(f) = trYA,B(g).

The following lemma shows the useful sufficient condition of Requirement 2.2.2.
All monads in Example 2.2.1 satisfies this condition. We give a detailed proof of
this lemma in the remainder of this section.

Lemma 2.2.3. If SetT is a Cppo-enriched cocartesian category and the bottom
maps {⊥A,B : A→T B}A,B∈SetT satisfies the following equations

f ◦T ⊥A,B = ⊥A,B′

⊥A,B ◦T g∗ = ⊥A′,B

for all f : B →T B′ in SetT and g : A′ → A in Set, then T satisfies Require-
ment 2.2.2.

Proof. For all arrows h in Set, we write S for the collection of lifted arrows h∗

in SetT . We want to show that SetT has a uniform trace operator for S.
The dual category of SetT , namely SetopT , is a Cppo-enriched cartesian cat-

egory since coproducts in one category are products in its dual category. As
the special case of the result in [4], on SetopT , uniform Conway operators for S
and uniform trace operators for S coincide. In addition, it is easy to show that
uniform trace operators for S on SetT and those for S on SetopT correspond.
Therefore the existence of a uniform trace operator for S on SetT is equivalent
to the existence of a uniform Conway operator for S on SetopT .

a uniform Conway operator for S on SetopT

a uniform trace operator for S on SetopT
a uniform trace operator for S on SetT

Here we define an operator (−)† on SetT and show that the corresponding
operator of (−)† on SetopT is a uniform Conway operator for S.

First, we explain that (−)† can be defined by using the least fixpoint operator
fix on a cppo i.e. a pointed complete partial order. Details of the least fixpoint

8

operator on cppo’s and the fixpoint theorem are in [17]. For a map f : X →T

A+X, a function Ff : SetT (X,A)→ SetT (X,A) can be defined as

Ff (g) := [id∗A, g] ◦T f : X →T A

for all g : X →T A. This function Ff is continuous for all f , i.e. Ff satisfies the
following properties.

• For each g, g′ : X →T A, if g ⊑ g′ then Ff (g) ⊑ Ff (g
′) holds because of the

continuity of the composition ◦T and cotupling [−,−].

• For all ω-chains g0 ⊑ g1 ⊑ . . . ⊑ gn ⊑ . . ., its least upper bound is preserved
by Ff : ⊔

n

Ff (gn) =
⊔
n

([id∗A, gn] ◦T f)

=
⊔
n

[id∗A, gn] ◦T f (continuity of composition)

= [id∗A,
⊔
n

gn] ◦T f (continuity of cotupling)

= Ff (
⊔
n

gn) .

Therefore we can take the least fixpoint of Ff by the fixpoint theorem and define
f † as

f † := fix(Ff)

=
⊔
n

Fn
f (⊥X,A) : X →T A .

Second, we show that the operator (−)† on SetT gives rise to a uniform
Conway operator for S on SetopT . We overload the operator (−)† as below:

f : A×X → X in SetopT
f : X → A+X in SetT

f † : X → A in SetT

f † : A→ X in SetopT

for each map f : A×X → X in SetopT . Obviously, the operator (−)† on SetopT is a
uniform Conway operator for S if and only if the operator (−)† on SetT satisfies
the following five conditions:

1. ((g + id∗X) ◦T f)† = g ◦T f † for all f : X →T A+X and g : A→T A
′

2. f † = [id∗A, f
†] ◦T f for all f : X →T A+X

3. ([inl∗A,X , g] ◦T f)† = [id∗A, ([inl
∗
A,Y , f] ◦T g)†] ◦T f for all f : X →T A + Y

and g : Y →T A+X

4. ((id∗A + ∇X) ◦T f)† = (f †)† for all f : X →T A + X + X, where ∇X :=
[id∗X , id

∗
X] : X +X →T X is the codiagonal map

5. f ◦T h∗ = (id∗A + h∗) ◦T g for all f : X →T A+X and g : Y →T A+ Y in
SetT and h : Y → X in Set.

9

These conditions are the dual version of the definition of a uniform Conway
operator explained in [4]. We show how these five conditions hold in the following.

1. For all f : X →T A+X and g : A→T A
′, the equation

Fn
(g+id∗X)◦T f (⊥X,A′) = g ◦T Fn

f (⊥X,A)

holds for all n ∈ ω. This can be proved by the induction on n:

• If n = 0 then ⊥X,A′ = g ◦T ⊥X,A.

• If the equation holds for n then

Fn+1
(g+id∗X)◦T f (⊥X,A′)

= [id∗A, F
n
(g+id∗X)◦T f (⊥X,A′)] ◦T (g + id∗X) ◦T f

= [id∗A, g ◦T Fn
f (⊥X,A)] ◦T (g + id∗X) ◦T f (induction hypothesis)

= [g, g ◦T Fn
f (⊥X,A)] ◦T f

= g ◦T [id∗A, F
n
f (⊥X,A)] ◦T f

= g ◦T Fn+1
f (⊥X,A) .

Therefore it holds that

((g + id∗X) ◦T f)† =
⊔
n

Fn
(g+id∗X)◦T f (⊥X,A′)

=
⊔
n

(g ◦T Fn
f (⊥X,A))

= g ◦T
⊔
n

Fn
f (⊥X,A)

= g ◦T f † .

2. Because fix is the least fixpoint operator, it holds that

f † = fix(Ff)

= Ff (fix(Ff))

= [id∗A, fix(Ff)] ◦T f
= [id∗A, f

†] ◦T f .

for all f : X →T A+X.

3. For all f : X →T A + Y and g : Y →T A + X, we need to confirm the
following equation

fix(F[inl∗A,X ,g]◦T f) = [id∗A, fix(F[inl∗A,Y ,f]◦T g)] ◦T f .

This equation can be confirmed by proving that [id∗A, fix(F[inl∗A,Y ,f]◦T g)]◦T f
is the least fixpoint of F[inl∗A,X ,g]◦T f . First, [id∗A, fix(F[inl∗A,Y ,f]◦T g)] ◦T f is a
fixpoint of F[inl∗A,X ,g]◦T f :

F[inl∗A,X ,g]◦T f ([id
∗
A, fix(F[inl∗A,Y ,f]◦T g)] ◦T f)

= [id∗A, [id
∗
A, fix(F[inl∗A,Y ,f]◦T g)] ◦T f] ◦T [inl∗A,X , g] ◦T f

= [id∗A, [id
∗
A, [id

∗
A, fix(F[inl∗A,Y ,f]◦T g)] ◦T f] ◦T g] ◦T f

= [id∗A, [id
∗
A, fix(F[inl∗A,Y ,f]◦T g)] ◦T [inl∗A,Y , f] ◦T g] ◦T f

= [id∗A, F[inl∗A,Y ,f]◦T g(fix(F[inl∗A,Y ,f]◦T g))] ◦T f

= [id∗A, fix(F[inl∗A,Y ,f]◦T g)] ◦T f .

10

Second, [id∗A, fix(F[inl∗A,Y ,f]◦T g)]◦T f is less than any fixpoint of F[inl∗A,X ,g]◦T f :

if h : X →T A is a fixpoint of F[inl∗A,X ,g]◦T f , then [id∗A, h] ◦T g is a fixpoint of
F[inl∗A,Y ,f]◦T g, as shown below

F[inl∗A,Y ,f]◦T g([id
∗
A, h] ◦T g) = [id∗A, [id

∗
A, h] ◦T g] ◦T [inl∗A,Y , f] ◦T g

= [id∗A, [id
∗
A, [id

∗
A, h] ◦T g] ◦T f] ◦T g

= [id∗A, [id
∗
A, h] ◦T [inl∗A,X , g] ◦T f] ◦T g

= [id∗A, F[inl∗A,X ,g]◦T f (h)] ◦T g

= [id∗A, h] ◦T g ,

therefore it holds that

[id∗A, fix(F[inl∗A,Y ,f]◦T g)] ◦T f ⊑ [id∗A, [id
∗
A, h] ◦T g] ◦T f

= [id∗A, h] ◦T [inl∗A,X , g] ◦T f
= F[inl∗A,X ,g]◦T f (h)

= h .

4. For all f : X →T A+X +X, by showing that F(id∗A+∇X)◦T f is a fixpoint of
Ffix(Ff) and vise versa, we can prove the equation

fix(F(id∗A+∇X)◦T f) = fix(Ffix(Ff)) .

First, if h : X →T A is a fixpoint of Ffix(Ff) then h is also a fixpoint of
F(id∗A+∇X)◦T f :

F(id∗A+∇X)◦T f (h) = [id∗A, h] ◦T (id∗A +∇X) ◦T f
= [id∗A, h ◦T ∇X] ◦T f
= [id∗A, [h, h]] ◦T f
= [[id∗A, h], h] ◦T f (associative law of +)

= [[id∗A, h], [id
∗
A, h] ◦T fix(Ff)] ◦T f

= [id∗A, h] ◦T [id∗A, fix(Ff)] ◦T f
= [id∗A, h] ◦T fix(Ff)

= h .

Second, if h : X →T A is a fixpoint of F(id∗A+∇X)◦T f then h satisfies the
inequation

fix(Ffix(Ff)) =
⊔
n

Fn⊔
m Fm

f (⊥X,A+X)(⊥X,A)

⊑ h .

This can be confirmed by proving that the inequation

Fn⊔
m Fm

f (⊥X,A+X)(⊥X,A) ⊑ h

holds for all n ∈ ω. This inequation is proved by induction on n:

• If n = 0 then ⊥X,A ⊑ h.

11

• Here we use g to represent Fn⊔
m Fm

f (⊥X,A+X)(⊥X,A). Assume that the

inequation holds for n, namely g ⊑ h. We want to confirm the follow-
ing inequation

Fn+1⊔
m Fm

f (⊥X,A+X)(⊥X,A) = F⊔
m Fm

f (⊥X,A+X)(g)

= [id∗A, g] ◦T
⊔
m

Fm
f (⊥X,A+X)

=
⊔
m

([id∗A, g] ◦T Fm
f (⊥X,A+X))

=
⊔
m

FFm
f (⊥X,A+X)(g)

⊑ h .

This inequation can be proved by confirming that the inequation

[id∗A, g] ◦T Fm
f (⊥X,A+X) = FFm

f (⊥X,A+X)(g) ⊑ h

holds for all m ∈ ω. We prove this by induction on m:

– If m = 0 then [id∗A, g] ◦T ⊥X,A+X = ⊥X,A ⊑ h.
– If the target inequation holds for m, then it holds that

[id∗A, g] ◦T Fm+1
f (⊥X,A+X) = [id∗A, g] ◦T [id∗A+X , F

m
f (⊥X,A+X)] ◦T f

= [[id∗A, g], [id
∗
A, g] ◦T Fm

f (⊥X,A+X)] ◦T f
= [[id∗A, g], FFm

f (⊥X,A+X)(g)] ◦T f

= [id∗A, [g, FFm
f (⊥X,A+X)(g)]] ◦T f

⊑ [id∗A, [h, h]] ◦T f (induction hypotheses)

= [id∗A, h] ◦T (id∗A +∇X) ◦T f
= F(id∗A+∇X)◦T f (h)

= h .

5. For all f : X →T A +X and g : Y →T A + Y in SetT and h : Y →T X in
Set, we want to prove the equation

fix(Fg) = fix(Ff) ◦T h∗

with the assumption f◦Th∗ = (id∗A+h
∗)◦T g. Here we show that fix(Ff)◦Th∗

is the least fixpoint of Fg. First, fix(Ff) ◦T h∗ is a fixpoint of Fg:

Fg(fix(Ff) ◦T h∗) = [id∗A, fix(Ff) ◦T h∗] ◦T g
= [id∗A, fix(Ff)] ◦T (id∗A + h∗) ◦T g
= [id∗A, fix(Ff)] ◦T f ◦T h∗

= Ff (fix(Ff)) ◦T h∗

= fix(Ff) ◦T h∗ .

Second, fix(Ff) ◦T h∗ is less than any fixpoint of Fg: if k : Y →T A is a
fixpoint of Fg, it holds that

fix(Ff) ◦T h∗ =
⊔
n

Fn
f (⊥X,A) ◦T h∗

=
⊔
n

(Fn
f (⊥X,A) ◦T h∗)

⊑ k .

12

This is the consequence of the inequation Fn
f (⊥X,A) ◦T h∗ ⊑ k that holds

for all n ∈ ω. This can be proved by induction on n:

• If n = 0 then ⊥X,A ◦T h∗ = ⊥Y,A ⊑ k.
• If the inequation holds for n, it holds that

Fn+1
f (⊥X,A) ◦T h∗ = [id∗A, F

n
f (⊥X,A)] ◦T f ◦T h∗

= [id∗A, F
n
f (⊥X,A)] ◦T (id∗A + h∗) ◦T g

= [id∗A, F
n
f (⊥X,A) ◦T h∗] ◦T g

⊑ [id∗A, k] ◦T g (induction hypothesis)

= Fg(k)

= k .

2.3 Algebraic Operations

In [14] Plotkin and Power gives adequate denotational semantics for algebraic
effects by using algebraic operations. Following this result, we utilize algebraic
operations in this paper with the hope that these enable resumptions to represent
algebraic effects. In this section we study algebraic operations.

First we recall the definition of algebraic operations in [13].

Definition 2.3.1 (algebraic operation [13]). Let (C, 1,×,⇒) be a cartesian
closed category with countable products

∏
and M : C → C be a strong monad.

For a countable set I, an I-ary algebraic operation on M is a family of arrows in
C

{αA,B : (A⇒MB)I → (A⇒MB)}A,B∈C

that is natural: for each A, A′, B and B′ in C, the following diagram commutes

(B ⇒MB′)× (A⇒MB)I × (A′ ⇒ A)

(B ⇒MB′)× (A⇒MB)× (A′ ⇒ A)

((B ⇒MB′)× (A⇒MB)× (A′ ⇒ A))I

(A′ ⇒MB′)I

A′ ⇒MB′

∆

((RR
RRR

RRR
RRR

RRR
RR

(B⇒MB′)×αA,B×(A′⇒A)

��

cpI

��

αA′,B′

��cp //

where the arrow ∆ is diagonal for the first and third arguments and cp is de-
fined as the bijective correspondent of the arrow cp in the following commutative
diagram.

(B ⇒MB′)× (A⇒MB)× (A′ ⇒ A)×A′ cp //

id×ev
��

MB′

(B ⇒MB′)× (A⇒MB)×A

id×ev
��

M2B′

µ

OO

(B ⇒MB′)×MB
st′ //M((B ⇒MB′)×B)

M(ev)

OO

13

The arrow cp can be seen as the Kleisli compositions. Since there is an isomor-
phism between an exponent object A⇒MB in Set and a homset SetM (A,B), if
C is Set then the naturality of algebraic operations can be also written as below:

αA′,B′{k ◦M fi ◦M h∗}i∈I = k ◦M αA,B{fi}i∈I ◦M h∗

for all h : A′ → A in Set, k : B →M B′ in SetM and {fi : A→M B}i∈I in SetM .
We denote the projections in C by∏

j∈J
Xj

πj−→ Xj

for a countable set J . Obviously these projections πj are J-ary algebraic opera-
tions on all strong monads M on C. We give an example of algebraic operations
on T , namely that on P in Example 2.2.1.

Example 2.3.2. For all arrows f and g in SetP , we define a family of maps
{⊕A,B : SetT (A,B)2 → SetT (A,B)}A,B∈Set as

(f ⊕ g)(x) := f(x) ∪ g(x) .

This is a 2-ary algebraic operation on P. Its naturality can be confirmed as below:
for all a′ in A′, h : A′ → A in Set, k : B →P B′ in SetP and {fi : A→P B}i∈I in
SetP , it holds that

((k ◦P f1 ◦P h∗)⊕A′,B′ (k ◦P f2 ◦P h∗))(a′)
= (k ◦P f1 ◦P h∗)(a′) ∪ (k ◦P f2 ◦P h∗)(a′)
= (k ◦P f1)(h(a′)) ∪ (k ◦P f2)(h(a′))
= {k(b) | b ∈ f1(h(a′))} ∪ {k(b) | b ∈ f2(h(a′))}
= {k(b) | b ∈ (f1(h(a

′)) ∪ f2(h(a′)))}
= {k(b) | b ∈ (f1 ⊕A,B f2)(h(a

′))}
= (k ◦P (f1 ⊕A,B f2))(h(a

′))

= (k ◦P (f1 ⊕A,B f2) ◦P h∗)(a′) .

A category of algebraic operations on M can be defined as below.

• Objects are countable sets.

• An arrow from I to J is a family of arrows {αA,B : (A ⇒ MB)I → (A ⇒
MB)J}A,B∈C in C such that πj ◦ α is an algebraic operation on M for all
j in J .

• The identity arrow of I is {id(A⇒MB) : (A⇒MB)I → (A⇒MB)I}A,B∈C.

• The composition of arrows {αA,B : (A ⇒ MB)I → (A ⇒ MB)I
′}A,B∈C

from I to I ′ and {βA,B : (A ⇒ MB)I
′ → (A ⇒ MB)J}A,B∈C from I ′ to J

is {βA,B ◦ αA,B : (A⇒MB)I → (A⇒MB)J}A,B∈C from I to J .

It is straightforward to confirm that the compositions indeed give algebraic op-
erations because the projections πj are algebraic operations on M . We write
AlgOpM for this category.

14

The categoryAlgOpM has countable products given by the countable disjoint
union

⊎
j∈J Ij of countable sets. This can be shown by the following bijective

correspondences.

{(A⇒MB)I → (A⇒MB)Ij}j∈J

{(A⇒MB)I
fj,k−−→ (A⇒MB)}j∈J,k∈Ij

{(A⇒MB)I
fj,k−−→ (A⇒MB)}(j,k)∈⊎j∈J Ij

(A⇒MB)I → (A⇒MB)
⊎

j∈J Ij

Due to this property, new algebraic operations can be constructed of existing
ones: for example, (x ⊕ y) ⊕ z constructed of ⊕ in Example 2.3.2 is a 3-ary
algebraic operation on P. The category AlgOpM is indeed a Lawvere theory
of algebraic operations (see e.g. [8]): it represents algebraic operations as arrows
and the equational theory of algebraic operations as commutative diagrams.

2.4 Transducers

We embed “memories” as well as effects into arrows in Set (i.e. functions) and
obtain T -transducers.

Definition 2.4.1 (T -transducer). For sets A and B, a T -transducer from A to
B is a triple (X, c, x) consisting of a set X, an arrow c : X ×A→T T (X ×B) in
SetT and an arrow x : 1→ X in Set.

T -transducers (X, c, x) from A to B are machines that have inputs A, outputs
B and internal states X. The arrow x indicates the initial state and the arrow
c is the transition function: given an input and the current state it decides the
output(s) and the next state(s). This decision is affected by the effect that is
represented by T . We write (X, c, x) : A _ B for T -transducers from A to B.

T -transducers (1, c, id1) : A _ B with one internal state behave as functions
from A to B and can be seen as “memoryless” transducers. Two constructors J
and J0 that lifts functions to T -transducers can be defined as

Jf := (1, f, id1) : A _ B for all f : A→T B in SetT

J0g := Jg∗ = (1, g∗, id1) : A _ B for all g : A→ B in Set.

In the remainder of this section, we introduce some notions on T -transducers.
Here we use quotation marks (“ ”) to represent each notion because in fact these
notions do not always satisfy corresponding axiomatizations. The main reason
for this problem is that T -transducers of the same behavior, i.e. T -transducers
that return the same output(s) to the same input, are sometimes distinguished
due to their unequal state spaces. To fix this problem and form a GoI situation
based on T -transducers, we introduce an appropriate equivalence relation called
behavioral equivalence in the next section.

The “composition” of two T -transducers (X, c, x) : A _ B and (Y, d, y) : B _
C is defined as

(Y, d, y) ◦ (X, c, x) := (X × Y, e, x× y) : A _ C

where e : X × Y ×A→T X × Y × C is defined as

e := (X ⊗ d) ◦T (X ⊗ σ∗B,Y) ◦T (c⊗ Y) ◦T (X ⊗ σ∗Y,A) .

15

One transition of this “composition” is internally two sequential transitions: the
first transition is according to c and the second one is according to d.

For each set A we define the “identity” of A as

JηA = (1, ηA, id1) : A _ A .

This “identity” is an example of the notion that does not satisfy the corresponding
axiomatizations: the “identity” is not actually neutral for “composition” because
T -transducers with unequal state spaces are distinguished. The “composition”
of a T -transducer with state space X and the “identity” of A has the state space
X × 1 or 1×X that is isomorphic but unequal to the original state space X.

For two T -transducers (X, c, x) : A _ B and (Y, d, y) : C _ D, the “monoidal
product” is defined as

(X, c, x)⊞ (Y, d, y) := (X × Y, e, x× y) : A+ C _ B +D

where e : X × Y × (A+C)→T X × Y × (B +D) is defined as the unique arrow
such that

e ◦T (X ⊗ Y ⊗ inl∗A,C) = (σ∗Y,X ⊗ inl∗B,D) ◦T (Y ⊗ c) ◦T (σ∗X,Y ⊗A)
e ◦T (X ⊗ Y ⊗ inr∗A,C) = (X ⊗ Y ⊗ inr∗B,D) ◦T (X ⊗ d) .

The “unit” of the “monoidal product” is defined as the unique T -transducer

Jη∅ = (1, η∅, id1) : ∅_ ∅ .
The “monoidal product” of T -transducers has two parallel T -transducers inter-
nally. Each time when an input comes, it chooses which T -transducer to run
according to the input.

The “trace” of a T -transducer (X, c, x) : A+ C _ B + C is defined as below
by using the trace operator tr on SetT :

TrCA,B(X, c, x) := (X, e, x) : A _ B

where e : X ×A→T X ×B is defined as

e := trX×C
X×A,X×B((δ

∗
X,B,C)

−1 ◦T c ◦T δ∗X,A,C) .

We expect this “trace” to be a trace in Definition 2.1.1 with respect to the
“symmetric monoidal structure” (⊞, ∅).

Let N be the set of natural numbers. For each n in N, set X and f : A → B
in Set, we define the following three arrows in Set:

κn : 1→ N
∗ 7→ n

ωn,X : XN → XN ×X
(x0, x1, . . . , xn, . . .) 7→ ((x0, x1, . . . , xn−1, xn+1, . . .), xn)

fN : AN → BN

(a0, a1, . . .) 7→ (f(a0), f(a1), . . .) .

The first arrow is the constant function that returns n. The second one extracts
the n-th object from a list. The last one applies f to each object in a list.

16

We define an operator F on both sets and T -transducers. For each set A, the
set FA is defined as

FA := N×A .

For each T -transducer (X, c, x) : A _ B, the T -transducer F (X, c, x) : FA _ FB
is defined as

F (X, c, x) := (XN, e, xN)

where e : XN × FA→T X
N × FB is defined as the unique arrow such that

e ◦T (XN ⊗ κ∗n ⊗A) = ((ω∗
n,X)−1 ⊗ κ∗n ⊗B) ◦T (XN ⊗ c) ◦T (ω∗

n,X ⊗A)

holds for all n in N. The operator F on T -transducers makes the countable infinite
copies of the given T -transducer (X, c, x). These copies runs independently: each
input to the T -transducer F (X, c, x) is read by one corresponding T -transducer
(X, c, x) and an output is made by this T -transducer (X, c, x).

Let ϕ : N + N ∼= N : ψ and u : FN ∼= N : v be bijections in Set. We choose
pairs of T -transducers that expected to be “retractions”:

J0ϕ : N+ N ∼= N : J0ψ

J0u : FN ∼= N : J0v

J0⊥N : ∅◁ N : J(trNN,∅(γ
∗
N))

J0(κ1 ×A) : A◁ FA : J0(⊤N ×A) (dereliction)

J0(u×A) : FFA ∼= FA : J0(v ×A) (digging)

J0⊥FA : ∅◁ FA : J(trFA
FA,∅(γ

∗
FA)) (weakening)

J0(ϕ×A) : FA+ FA ∼= FA : J0(ψ ×A) (contraction)

where ⊥X : ∅ → X is the unique arrow from the initial object ∅ and ⊤X : X → 1
is the unique arrow to the final object 1 in Set. We expect that the operator
F and these “retraction” forms a “GoI situation”. These “retractions” are used
to construct T -transducers of existing ones: for a T -transducer (X, c, x) : A _ A
and a retraction (Y, d, y) : A′◁A : (Y ′, d′, y′), a T -transducer (X ′, c′, x′) : A′ _ A′

is constructed as

(X ′, c′, x′) := (Y ′, d′, y′) ◦ (X, c, x) ◦ (Y, d, y) .

Figure 2.4 illustrates the constructions induced by “retractions”. Given a branch
of T -transducers, dereliction merges all T -transducers in the branch into one, dig-
ging sorts T -transducers and makes countably infinite branches, weakening dis-
cards the branch completely and contraction divides the branch into two branches.

We define a constructor (−) that makes an operator on T -transducers from an
algebraic operation on T . For an I-ary algebraic operation α on T and a family
of T -transducers {(Xi, ci, xi) : A _ B}i∈I , an operator α is defined as

αA,B{(Xi, ci, xi)}i∈I := (1 +
⨿
i∈I

Xi, d, inl
∗
1,
⨿

i∈I
)

where d : (1 +
⨿

i∈I Xi)×A→T (1 +
⨿

i∈I Xi)×B is the unique arrow such that

d ◦T inl∗1,
⨿

i∈I Xi
= αA,B{c̃i}i∈I

d ◦T ((inr∗1,
⨿

i∈I Xi
◦T inj∗i)⊗A) = ((inr∗1,

⨿
i∈I Xi

◦T inj∗i)⊗B) ◦T ci .

17

.

.

.

dereliction
7−→

.

.

.

weakening
7−→ ∅

.

.

.

digging
7−→

.

.

.

.

.

.

.

.

.

· · ·

.

.

.

contraction
7−→

.

.

.

.

.

.

Figure 2.4: constructions induced by “retractions”

We denote the countable coproducts in Set by
⨿

i∈I Xi
inji←−− Xi. For each arrow

ci : Xi ×A→T Xi ×B, an arrow c̃i : A→T (1 +
⨿

i∈I Xi)×B is defined as

c̃i := ((inr∗1,
⨿

i∈I Xi
◦T inj∗i)⊗B) ◦T ci ◦T (x∗i ⊗A) .

The arrow c̃i executes the initial transition of the T -transducer (Xi, ci, xi). The
T -transducer αA,B{(Xi, ci, xi)}i∈I has a flesh initial state. When it receives an in-
put for the first time it chooses which T -transducer to run by using the algebraic
operation α. After an i-th T -transducer (Xi, ci, xi) is chosen the T -transducer
αA,B{(Xi, ci, xi)}i∈I remembers its choice by using internal states and keeps be-
having as (Xi, ci, xi).

2.5 Behavioral Equivalence and Resumptions

As pointed out in Section 2.4, we need an appropriate equivalence relation to form
a GoI situation based on T -transducers. Here we use the behavioral equivalence.

Definition 2.5.1 (homomorphism). For T -transducers (X, c, x), (Y, d, y) : A _
B, an arrow h : X → Y in Set is a homomorphism from (X, c, x) to (Y, d, y) if it
holds that

(h∗ ⊗B) ◦T c = d ◦T (h∗ ⊗A) .

Definition 2.5.2 (behavioral equivalence). Two T -transducers (X, c, x) : A _ B
and (Y, d, y) : A _ B are behavioral equivalent if there exists a T -transducer
(Z, e, z) : A _ B such that there are homomorphisms from (X, c, x) to (Z, e, z)
and from (Y, d, y) to (Z, e, z).

This relation ≃T is indeed an equivalence relation on T -transducers: reflexivity
and symmetry are obvious and transitivity can be confirmed by using pushouts
in Set.

We write (X, c, x)
h−→ (Z, e, z) if h is a homomorphism from (X, c, x) to (Z, e, z)

and (X, c, x) ≃T
A,B (Y, d, y) if (X, c, x) and (Y, d, y) are behavioral equivalent.

Since an identity arrow idX : X → X is a homomorphism from (X, c, x) to
(X, c, x), the existence of a homomorphism from (X, c, x) to (Y, d, y) implies the
behavioral equivalence (X, c, x) ≃T

A,B (Y, d, y).

We write [(X, c, x)] : A _ B for the ≃T -equivalence class of a T -transducer
(X, c, x) : A _ B and call this resumption. A category of resumptions can be
defined as below.

18

• Objects are sets.

• An arrow from A to B is a resumption [(X, c, x)] : A _ B.

• The identity arrow of A is JηA : A _ A.

• The composition is given by ◦.

We write Res(T) for this category. In the remainder of this section it is proved
that all notions on T -transducers introduced in Section 2.4 can be extended to
resumptions and that a GoI situation can be obtained.

Proposition 2.5.3. Let α be an I-ary algebraic operation on T . The operator
α defined in Section 2.4 is well-defined modulo the behavioral equivalence.

Proof. Let {(Xi, ci, xi) : A _ B}i∈I and {(X ′
i, c

′
i, x

′
i) : A _ B}i∈I be families

of T -transducers. We show that if there exist homomorphisms {(Xi, ci, xi)
hi−→

(X ′
i, c

′
i, x

′
i)}i∈I then an arrow 1 +

⨿
i∈I hi : 1 +

⨿
i∈I Xi → 1 +

⨿
i∈I X

′
i is a ho-

momorphism from αA,B{(Xi, ci, xi)}i∈I to αA,B{(X ′
i, c

′
i, x

′
i)}i∈I i.e. the following

diagram in SetT commutes.

(1 +
⨿

i∈I Xi)×A e //

(1+
⨿

i∈I hi)
∗⊗A

��

(1 +
⨿

i∈I Xi)×B

(1+
⨿

i∈I hi)
∗⊗B

��
(1 +

⨿
i∈I X

′
i)×A

e′ // (1 +
⨿

i∈I X
′
i)×B

We write e for the transition function of αA,B{(Xi, ci, xi)}i∈I and e′ for that of
αA,B{(X ′

i, c
′
i, x

′
i)}i∈I .

Since (1 +
⨿

i∈I Xi)×A is isomorphic to 1×A+
⨿

i∈I(Xi ×A), it suffices to
show that the following two diagrams in SetT commutes for all i in I.

1×A
inl∗1,

⨿
i∈I Xi

⊗A
// (1 +

⨿
i∈I Xi)×A e //

(1+
⨿

i∈I hi)
∗⊗A

��

(1 +
⨿

i∈I Xi)×B

(1+
⨿

i∈I hi)
∗⊗B

��
(1 +

⨿
i∈I X

′
i)×A

e′ // (1 +
⨿

i∈I X
′
i)×B

Xi ×A

inj∗i⊗A

��⨿
i∈I Xi ×A

inr∗
1,
⨿

i∈I Xi
⊗A

// (1 +
⨿

i∈I Xi)×A e //

(1+
⨿

i∈I hi)
∗⊗A

��

(1 +
⨿

i∈I Xi)×B

(1+
⨿

i∈I hi)
∗⊗B

��
(1 +

⨿
i∈I X

′
i)×A

e′ // (1 +
⨿

i∈I X
′
i)×B

The first diagram commutes because the following equation holds

((1 +
⨿
i∈I

hi)
∗ ⊗B) ◦T c̃i = c̃′i ◦T id∗A

for all i in I and leads to the equation

((1 +
⨿
i∈I

hi)
∗ ⊗B) ◦T αA,(1+

⨿
i∈I Xi)×B{c̃i}i∈I = αA,(1+

⨿
i∈I X

′
i)×B{c̃′i}i∈I

by naturality of the algebraic operation α. It is straightforward to confirm that
the second diagram commutes.

19

Proposition 2.5.4. The category (Res(T), ∅,⊞,Tr) forms a traced symmetric
monoidal category.

Proof. First, Res(T) indeed forms a category. The composition ◦ is well-defined
modulo the behavioral equivalence since it holds that

(X, c, x)
h−→ (X ′, c′, x′) ∧ (Y, d, y)

k−→ (Y ′, d′, y′)

=⇒ (Y, d, y) ◦ (X, c, x) h×k−−→ (Y ′, d′, y′) ◦ (X ′, c′, x′) .

The identity is neutral for the composition because there are homomorphisms

(X, c, x) ◦ (1, ηA, id1)
idX−−→ (X, c, x)

(1, ηB, id1) ◦ (X, c, x)
idX−−→ (X, c, x)

for each T -transducer (X, c, x) : A _ B.
Second, (Res(T), ∅,⊞) gives a symmetric monoidal structure. The monoidal

product ⊞ is well-defined modulo the behavioral equivalence since it holds that

(X, c, x)
h−→ (X ′, c′, x′) ∧ (Y, d, y)

k−→ (Y ′, d′, y′)

=⇒ (X, c, x)⊞ (Y, d, y)
h×k−−→ (X ′, c′, x′)⊞ (Y ′, d′, y′) .

The T -transducer (1, η∅, id1) : ∅ _ ∅ is indeed the unit of the monoidal product
because there are homomorphisms

(X, c, x)⊞ (1, η∅, id1)
idX−−→ (X, c, x)

(1, η∅, id1)⊞ (X, c, x)
idX−−→ (X, c, x)

for each T -transducer (X, c, x) : A _ B. The symmetric monoidal structure of
(Res(T), ∅,⊞) is lifted from that of (Set, ∅,+) by the constructor J0.

Finally, Tr is a trace on the symmetric monoidal category (Res(T), ∅,⊞). For
all T -transducers (X, c, x) : A+C _ B+C and (Y, d, y) : A+C _ B+C, assume
that h : X → Y is a homomorphism from (X, c, x) to (Y, d, y). We define arrows
c′ and d′ in SetT as

c′ := (δ∗X,B,C)
−1 ◦T c ◦T δ∗X,A,C

d′ := (δ∗Y,B,C)
−1 ◦T d ◦T δ∗Y,A,C .

Since the following diagram in SetT commutes,

X ×A+X × C
δ∗X,A,C

//

id∗+h∗⊗C
��

c′

++
X × (A+ C)

c //

h∗⊗(A+C)

��

X × (B + C)
(δ∗X,B,C)−1

//

h∗⊗(B+C)

��

X ×B +X × C

h∗⊗B+id∗

��
X ×A+ Y × C

h∗⊗A+id∗

��

Y ×B +X × C

id∗+h∗⊗C
��

Y ×A+ Y × C
δ∗Y,A,C //

d′

33Y × (A+ C)
d // Y × (B + C)

(δ∗Y,B,C)−1

// Y ×B + Y × C

the following equation holds by the restricted uniformity of tr.

trX×C
X×A,Y×B((h

∗ ⊗B + id∗X×C) ◦T c′) = trY×C
X×A,Y×B(d

′ ◦T (h∗ ⊗A+ id∗Y×C))

20

By naturality of tr, it holds that

(h∗ ⊗B) ◦T trX×C
X×A,X×B(c

′) = trY×C
Y×A,Y×B(d

′) ◦T (h∗ ⊗A)

and h is a homomorphism from TrCA,B(X, c, x) to TrCA,B(Y, d, y). It is proved in
[6] that Tr satisfies the axioms in Definition 2.1.1 and is indeed a trace.

Proposition 2.5.5. The triple (Res(T), F,N) forms a GoI situation.

Proof. First, F is a symmetric monoidal functor on Res(T). The composition

◦ is preserved by F because an isomorphism (X × Y)N
∼=−→ XN × Y N in Set is

an homomorphism from F ((Y, d, y) ◦ (X, d, x)) to F (Y, d, y) ◦ F (X, c, x) for all
T -transducers (X, d, x) : A _ B and (Y, d, y) : B _ C. The key is the following
commutative diagram in Set:

(X × Y)N

ωn,X×Y

��

∼= // XN × Y N

ωn,X×ωn,Y

��
(X × Y)N ×X × Y

∼= // XN ×X × Y N × Y

where n is an arbitrary element of N. The coherence isomorphism FA+ FB
m−→

F (A + B) is lifted from an isomorphism FA + FB → F (A + B) in Set by the
constructor J0.

Second, F is traced i.e. F satisfies the following equation

TrFC
FA,FB(J0m

−1 ◦ F (X, c, x) ◦ J0m) = F (TrCA,B(X, c, x)) (2.1)

for all T -transducers (X, c, x) : A + C _ B + C. We write trX×C
X×A,X×B(c

′) and

d′ respectively for the transition function of T -transducers TrCA,B(X, c, x) and

TrFC
FA,FB(J0m

−1 ◦ F (X, c, x) ◦ J0m). By the restricted uniformity and naturality
of tr, it holds that

trX
N×FC

XN×FA,XN×FB
(d′) ◦T (XN ⊗ κ∗n ⊗A)

= ((ω∗
n,X)−1 ⊗ κ∗n ⊗B) ◦T trX

N×X×C
XN×X×A,XN×X×B

((δ∗XN,X×B,X×C)
−1

◦T (XN ⊗ c′) ◦T δ∗XN,X×A,X×C) ◦T (ω∗
n,X ⊗A)

= ((ω∗
n,X)−1 ⊗ κ∗n ⊗B) ◦T (XN ⊗ trX×C

X×A,X×B(c
′)) ◦T (ω∗

n,X ⊗A)

for each n in N. This equation indicates that (2.1) holds: the two T -transducers
TrFC

FA,FB(J0m
−1 ◦ F (X, c, x) ◦ J0m) and F (TrCA,B(X, c, x)) are exactly equal.

Finally, the pairs of resumptions given in Section 2.4 are retractions and satisfy
the properties described in Definition 2.1.3. It is straightforward to confirm
this.

2.6 Resumption-Based Categorical GoI for Effects

In this section we briefly observe how can resumptions benefit us via categori-
cal GoI. From the GoI situation (Res(T),N, F) based on resumptions, a linear
combinatory algebra (Res(T)(N,N), ·, !) can be extracted via categorical GoI
(Proposition 2.1.5). The operators · and ! are given by

f · g := TrNN,N((J0ηN ⊞ g) ◦ J0ψ ◦ f ◦ J0ϕ)
! f := J0u ◦ F (f) ◦ J0v

21

for all f and g in Res(T)(N,N). By Proposition 2.5.3 this linear combinatory
algebra (Res(T)(N,N), ·, !) has an I-ary operator α for each I-ary algebraic op-
eration α on T . This operator α satisfies certain properties described in the
following theorem.

Theorem 2.6.1. Let α be an I-ary algebraic operation on T . The operator α is
natural and the trace Tr distributes over α modulo the behavioral equivalence:

• For each arrow h : A′ → A in Set, family of T -transducers {(Yi, di, yi) : A _
B} and T -transducer (X, c, x) : B _ B′, it holds that

(X, c, x) ◦ αA,B{(Yi, di, yi)}i∈I ◦ J0h ≃T
A,B αA′,B′{(X, c, x) ◦ (Yi, di, yi) ◦ J0h}i∈I .

• For each family of T -transducers (Xi, ci, xi) : A+ C _ B + C it holds that

TrCA,B(αA+C,B+C{(Xi, ci, xi)}i∈I) ≃T
A,B αA,B{TrCA,B(Xi, ci, xi)}i∈I .

Proof. The first behavioral equivalence can be confirmed by showing that the
arrow

1× (1 +
⨿

i∈I Yi)×X
∼=
��

1 +
⨿

i∈I(1× Yi ×X)

∼=
��

X +
⨿

i∈I(Yi ×X) 1 +
⨿

i∈I(Yi ×X)
x+

⨿
i∈I idYi×X

oo

is an homomorphism between the two T -transducers in the left-hand side and
the right-hand side of the first equation. This can be proved by using naturality
of the algebraic operation α.

We confirm the second behavioral equivalence by using string diagrams in
Res(T). The proof is shown in Figure 2.5. The unit where two strings are
merged represents the codiagonal map. Strings with black circles as the initial
points represent arrows from the initial object ∅.

As a consequence of this theorem, the operator α satisfies the following be-
havioral equivalence

αN,N{(Xi, ci, xi)}i∈I · (Y, d, y) ≃T
N,N αN,N{(Xi, ci, xi) · (Y, d, y)}i∈I (2.2)

for all T -transducers {(Xi, ci, xi)}i∈I : N _ N and (Y, d, y) : N _ N. In detail it
holds that

αN,N{(Xi, ci, xi)}i∈I · (Y, d, y)
= TrNN,N((J0ηN ⊞ (Y, d, y)) ◦ J0ψ ◦ αN,N{(Xi, ci, xi)}i∈I ◦ J0ϕ)
≃N,N TrNN,N(αN,N{(J0ηN ⊞ (Y, d, y)) ◦ J0ψ ◦ (Xi, ci, xi) ◦ J0ϕ}i∈I)
≃N,N αN,N{TrNN,N((J0ηN ⊞ (Y, d, y)) ◦ J0ψ ◦ (Xi, ci, xi) ◦ J0ϕ)}i∈I
≃T

N,N αN,N{(Xi, ci, xi) · (Y, d, y)}i∈I .

This behavioral equivalence indicates that the problem described in Section 1
can be solved by resumptions. It is known that a linear combinatory algebra
can represent abstractions and applications of linear λ-calculus via a term τ
on it. We recall this later in Chapter 3. On the linear combinatory algebra
(Res(T)(N,N), ·, !) we can extend terms with the operator α and define a term

22

x
∗
i ⊗A

x∗i ⊗ C

ci

∐
i∈I ci

αA+C,Y ×(B+C)

A A Xi × A Xi × B Y ×B

C

C

C Xi × C Xi × C Y × C B

Y ×A Y × B Y ×B

Y × C

Y × C

Y × C

x
∗
i ⊗A

x∗i ⊗ C

ci

∐
i∈I ci

αA+C,Y ×(B+C)

A A Xi × A Xi × B Y × B Y ×B

C C Xi × C Xi × C Y × C B

Y ×A Y × B

Y × C

Y × C

x∗i ⊗A
∐

i∈I ci

∐
i∈I ci

αA,Y ×A

A A Xi ×A Y ×A Y × B Y ×B

Y × C

Y × C B

Y ×A Y × B

Y × C

Y × C

x
∗
i ⊗A

∐
i∈I ci

∐
i∈I ci

αA,Y ×A

A A Xi ×A Y ×A Y ×B Y ×B

Y × CY × C

B

Y × A Y ×B

Y × CY × C

x
∗
i ⊗A

∐
i∈I ci

∐
i∈I ci

αA,Y ×A

A A Xi ×A Y ×A Y × B Y ×B

Y × CY × C B

Y × A Y ×B

Y × CY × C

x∗i ⊗A

ci

∐
i∈I ci

αA,Y ×B

A A Xi × A Xi × B Y ×B Y ×B

Xi × CXi × C B

Y × A Y × B

Y × CY × C

(LHS)

‖

‖ axioms of tr

‖ naturality of α

‖ axioms of tr

‖ axioms of tr

‖ naturality of α

‖ uniformity of tr

(RHS)

Figure 2.5: proof of the second behavioral equivalence in Theorem 2.6.1

23

α{τi}i∈I . This term α{τi}i∈I can be seen as an representation of algebraic effects
in linear λ-calculus. The behavioral equivalence (2.2) induces the equation

α{ei}i∈I · d = α{ei · d}i∈I

of terms {ei}i∈I and d on (Res(T)(N,N), ·, !). This equation can be seen as the
representation of the equation in linear λ-calculus, for example

(M1 ⊔M2)N = (M1N) ⊔ (M2N)

where ⊔ is an effect described in Chapter 1.

24

Chapter 3

Model of Linear λ-Calculus

3.1 Linear λ-Model

Linear λ-calculus [16] is an extended λ-calculus with the ! modality that tracks
copying of data. It has two abstractions: linear abstractions λx.M and non-
linear abstractions λ!x.M . The argument x in linear abstractions λx.M must
be used once without copying, where it may be copied or discarded in non-linear
abstractions λ!x.M . The operator ! represents copying of terms.

Precisely, terms of linear λ-calculus is defined by the following rules

x⃗ ⊢ xi
(var) x⃗ ⊢M

x⃗ ⊢ !M
(bang)

x⃗, xn+1 ⊢M
x⃗ ⊢ λxn+1.M

(abs) (if xn+1 is linear in M)

x⃗, xn+1 ⊢M
x⃗ ⊢ λ!xn+1.M

(abs!) x⃗ ⊢M x⃗ ⊢ N
x⃗ ⊢MN

(app)

where x⃗ denotes x1, . . . , xn and each xi is in a set of variables Var. We write
M ≡ N if M and N are syntactically equal. A variable x is linear in a term
M if x is free and occurs exactly once in M except in the scope of the operator
!. We denote sets of free variables and linear variables of a term M by FV(M)
and LV(M) respectively. For a variable x and terms M and N , the substitution
M [N/x] is defined inductively as

x[N/x] = N

y[N/x] = y (if x ̸≡ y)
(λy.M)[N/x] = λy.M [N/x] (if x ̸≡ y and y /∈ FV(N))

(λ!y.M)[N/x] = λ!y.M [N/x] (if x ̸≡ y and y /∈ FV(N))

(M1M2)[N/x] = (M1[N/x])(M2[N/x])

(!M)[N/x] = !(M [N/x]) .

The β-reduction rules for linear λ-calculus are defined as

(λx.M)N →β M [N/x]

(λ!x.M)(!N)→β M [N/x] .

The application to the non-linear abstraction (λ!x.M)N ′ is reduced only if the
applied term N ′ is copied by the operator !.

We extend a model of untyped λ-calculus, namely a λ-model described in
[18] and define the linear λ-model that models untyped linear λ-calculus. One
important feature of λ-calculus is that abstractions of λ-terms λx.M — that

25

behave as “functions” — are also treated as λ-terms. Models of λ-calculus need
to express this feature, in other words they need the correspondence of “functions”
and “elements”. A λ-model is a model of untyped λ-calculus based on a cartesian
closed category (C, 1,×,⇒). It utilizes a retraction m′ : (D ⇒ D) ◁D : e′ in C
on a object D (called a reflexive object) in C that expresses the correspondence
of functions and elements, and gives sound denotational semantics of untyped
λ-calculus [18, Proposition 3.1.1].

We define a linear λ-model as the linear version of a λ-model. A linear λ-
model is also based on a cartesian closed category (C, 1,×,⇒). The category Set
of sets and functions is an example of a cartesian closed category.

Definition 3.1.1 (linear λ-model). Let (C, 1,×,⇒) be a cartesian closed cate-
gory. A data (D, e,m1,m2, !, J−K) is a linear λ-model if it satisfies the following
properties.

• The data consists of an object D in C and arrows e : D → (D ⇒ D),
m1,m2 : (D ⇒ D)→ D, ! : D → D and Jx⃗ ⊢MK : Dn → D in C.

• The arrows in the data satisfies following equationsJx⃗ ⊢ xiK = πi (3.1)Jx⃗ ⊢ λxn+1.MK = m1 ◦ Jx⃗, xn+1 ⊢MK∧ (if xn+1 ∈ LV(M)) (3.2)Jx⃗ ⊢ λ!xn+1.MK = m2 ◦ Jx⃗, xn+1 ⊢MK∧ (3.3)Jx⃗ ⊢M1M2K = ev ◦ (e× idD) ◦ (Jx⃗ ⊢M1K× Jx⃗ ⊢M2K) ◦∆Dn (3.4)Jx⃗ ⊢ !MK = ! ◦ Jx⃗ ⊢MK (3.5)Jx⃗, xn+1 ⊢MK∧ = e ◦m1 ◦ Jx⃗, xn+1 ⊢MK∧ (if xn+1 ∈ LV(M)) (3.6)

ev ◦ (Jx⃗, xn+1 ⊢MK∧ × idD)

= ev ◦ (e× idD) ◦ (m2 × idD) ◦ (Jx⃗, xn+1 ⊢MK∧ × idD) ◦ (idDn × !)
(3.7)

where ∆X : X → X ×X is the diagonal arrow in C, (−)∧ : C(X ×D,Y)→
C(X,D ⇒ Y) is the bijective correspondence of the adjunction (−)×D ⊣
(D ⇒ (−)) and ev : (D ⇒ Y)×D → Y is the counit of that adjunction.

A linear λ-model utilizes a retraction m1 : (D ⇒ D) ◁D : e that models linear
abstractions, and an arrow m2 : (D ⇒ D) → D that models non-linear abstrac-
tions with the arrow e. The pair of arrows m2 and e can be seen as a lim-
ited retraction: for any arrows d : 1 → (D ⇒ D) and d′ : 1 → D it holds that
ev ◦ (e ◦m2 ◦ d, ! d′) = ev ◦ (d, ! d′). This corresponds to the β-reduction rule that
indicates a term (λ!x.M)N is not always reduced.

A linear λ-model gives sound denotational semantics of untyped linear λ-
calculus: the linear version of [18, Proposition 3.1.1] holds. We give a detailed
proof in the remainder of this section.

Lemma 3.1.2. Let (D, e,m1,m2, !, J−K) be a linear λ-model. For substitutions
of linear λ-terms it holds thatJx⃗ ⊢M [N/xn+1]K = Jx⃗, xn+1 ⊢MK ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn

Proof. By induction on M.
If M ≡ xn+1,Jx⃗ ⊢ xn+1[N/xn+1]K = Jx⃗ ⊢ NK

= πn+1 ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn

= Jx⃗, xn+1 ⊢ xn+1K ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn .

26

If M ≡ xi,

Jx⃗ ⊢ xi[N/xn+1]K = Jx⃗ ⊢ xiK
= πi

= πi ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn

= Jx⃗, xn+1 ⊢ xiK ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn .

If M ≡ λxn+2.M
′,

Jx⃗ ⊢ (λxn+2.M
′)[N/xn+1]K

= Jx⃗ ⊢ λxn+2.M
′[N/xn+1]K

= m1 ◦ Jx⃗, xn+2 ⊢M ′[N/xn+1]K∧
= m1 ◦ (Jx⃗, xn+2, xn+1 ⊢M ′K
◦ (idDn+1 × Jx⃗, xn+2 ⊢ NK) ◦∆Dn+1)∧ (induction hypothesis)

= m1 ◦ (Jx⃗, xn+1, xn+2 ⊢M ′K
◦ (idDn × Jx⃗ ⊢ NK× idD) ◦ (∆Dn × idD))

∧ (since xn+2 /∈ FV(N))

= m1 ◦ (Jx⃗, xn+1, xn+2 ⊢M ′K)∧
◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn (by naturality of (−)∧)

= Jx⃗, xn+1 ⊢ λxn+2.M
′K ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn .

If M ≡ λ!xn+2.M
′,

Jx⃗ ⊢ (λ!xn+2.M
′)[N/xn+1]K

= Jx⃗ ⊢ λ!xn+2.M
′[N/xn+1]K

= m2 ◦ Jx⃗, xn+2 ⊢M ′[N/xn+1]K∧
= m2 ◦ (Jx⃗, xn+2, xn+1 ⊢M ′K
◦ (idDn+1 × Jx⃗, xn+2 ⊢ NK) ◦∆Dn+1)∧ (induction hypothesis)

= m2 ◦ (Jx⃗, xn+1, xn+2 ⊢M ′K
◦ (idDn × Jx⃗ ⊢ NK× idD) ◦ (∆Dn × idD))

∧ (since xn+2 /∈ FV(N))

= m2 ◦ (Jx⃗, xn+1, xn+2 ⊢M ′K)∧
◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn (by naturality of (−)∧)

= Jx⃗, xn+1 ⊢ λ!xn+2.M
′K ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn .

If M ≡M1M2,

Jx⃗ ⊢ (M1M2)[N/xn+1]K
= Jx⃗ ⊢ (M1[N/xn+1])(M2[N/xn+1])K
= ev ◦ (e× idD) ◦ (Jx⃗ ⊢M1[N/xn+1]K× Jx⃗ ⊢M2[N/xn+1]K) ◦∆Dn

= ev ◦ (e× idD) ◦ (Jx⃗, xn+1 ⊢M1K× Jx⃗, xn+2 ⊢M1K)
◦ ((idDn × Jx⃗ ⊢ NK)× (idDn × Jx⃗ ⊢ NK))
◦∆Dn×Dn ◦∆Dn (induction hypothesis)

= ev ◦ (e× idD) ◦ (Jx⃗, xn+1 ⊢M1K× Jx⃗, xn+2 ⊢M1K)
◦∆Dn+1 ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn

= Jx⃗, xn+1 ⊢M1M2K ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn .

27

If M ≡ !M ′,

Jx⃗ ⊢ (!M ′)[N/xn+1]K
= Jx⃗ ⊢ !(M ′[N/xn+1])K
= ! ◦ Jx⃗ ⊢M ′[N/xn+1]K
= ! ◦ Jx⃗, xn+1 ⊢M ′K ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn (induction hypothesis)

= Jx⃗, xn+1 ⊢ !M ′K ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn .

Proposition 3.1.3. For an arbitrary set D, (I) and (II) below are equivalent.

(I) A data (D, e,m1,m2, !, J−K) is a linear λ-model.

(II) A data (D, ·, !, J−K) consisting of functions · : D ×D → D, ! : D → D andJx⃗ ⊢MK : Dn → D satisfies the following properties for every d⃗ in Dn:

Jx⃗ ⊢ xiK(d⃗) = di (3.8)

(x ∈ LV(M) ∧ ∀dn+1 ∈ D. Jx⃗, xn+1 ⊢M1K(d⃗, dn+1) = Jx⃗, xn+1 ⊢M2K(d⃗, dn+1))

=⇒ Jx⃗ ⊢ λxn+1.M1K(d⃗) = Jx⃗ ⊢ λxn+1.M2K(d⃗) (3.9)

∀dn+1 ∈ D. Jx⃗, xn+1 ⊢M1K(d⃗, dn+1) = Jx⃗, xn+1 ⊢M2K(d⃗, dn+1)

=⇒ Jx⃗ ⊢ λ!xn+1.M1K(d⃗) = Jx⃗ ⊢ λ!xn+1.M2K(d⃗) (3.10)Jx⃗ ⊢M1M2K(d⃗) = Jx⃗ ⊢M1K(d⃗) · Jx⃗ ⊢M2K(d⃗) (3.11)Jx⃗ ⊢ !MK(d⃗) = ! Jx⃗ ⊢MK(d⃗) (3.12)

for each i such that xi ∈ FV(M),

di = d′i =⇒ Jx1, . . . , xn ⊢MK(d1, . . . , dn) = Jx1, . . . , xm ⊢MK(d′1, . . . , d′m)
(3.13)

M1 =β M2 =⇒ Jx⃗ ⊢M1K(d⃗) = Jx⃗ ⊢M2K(d⃗) . (3.14)

Proof. (I)⇒ (II) We define · : D ×D → D as

· := ev ◦ (e× idD) .

(3.8), (3.11) and (3.12) are equivalent to (3.1), (3.4) and (3.5) respectively. (3.13)
can be proved by induction on M .

(3.9) and (3.10) hold by (3.2) and (3.3) because it holds that

∀dn+1 ∈ D. Jx⃗, xn+1 ⊢M1K(d⃗, dn+1) = Jx⃗, xn+1 ⊢M2K(d⃗, dn+1)

⇐⇒ Jx⃗, xn+1 ⊢M1K∧ = Jx⃗, xn+1 ⊢M2K∧ .

We can inductively prove that (3.14) holds if it holds that

M1 →β M2 =⇒ Jx⃗ ⊢M1K(d⃗) = Jx⃗ ⊢M2K(d⃗) .
By definition of β-reduction, it suffices to show that the following two equations
hold.

Jx⃗ ⊢ (λxn+1.M)NK = Jx⃗ ⊢M [N/xn+1]K (if xn+1 ∈ LV(M))Jx⃗ ⊢ (λ!xn+1.M) !NK = Jx⃗ ⊢M [N/xn+1]K
28

These equations indeed hold as below:

Jx⃗ ⊢ (λxn+1.M)NK
= ev ◦ (e× idD) ◦ (Jx⃗ ⊢ λxn+1.MK× Jx⃗ ⊢ NK) ◦∆Dn

= ev ◦ (e× idD) ◦ (m1 × idD) ◦ (Jx⃗, xn+1 ⊢MK∧ × idD)

◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn (since xn+1 ∈ LV(M))

= ev ◦ (Jx⃗, xn+1 ⊢MK∧ × idD) ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn (by (3.6))

= Jx⃗, xn+1 ⊢MK ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn (by definition of ev)

= Jx⃗ ⊢M [N/xn+1]K (by Lemma 3.1.2)Jx⃗ ⊢ (λ!xn+1.M) !NK
= ev ◦ (e× idD) ◦ (Jx⃗ ⊢ λ!xn+1.MK× Jx⃗ ⊢ !NK) ◦∆Dn

= ev ◦ (e× idD) ◦ (m2 × idD) ◦ (Jx⃗, xn+1 ⊢MK∧ × idD) ◦ (idDn × !)

◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn

= ev ◦ (Jx⃗, xn+1 ⊢MK∧ × idD) ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn (by (3.7))

= Jx⃗, xn+1 ⊢MK ◦ (idDn × Jx⃗ ⊢ NK) ◦∆Dn (by definition of ev)

= Jx⃗ ⊢M [N/xn+1]K . (by Lemma 3.1.2)

(I)⇐ (II) First, we fix an arbitrary element a0 of D and define e, m1 and m2

as

e(a)(d) := ad (for all d in D)

m1(f) :=

{Ju ⊢ λx. uxK(a) (if ∃a ∈ D. ∀d ∈ D. f(d) = ad)

a0 (otherwise)

m2(f) :=

{Ju ⊢ λ!x. u !xK(a) (if ∃a ∈ D. ∀d ∈ D. f(d) = a ! d)

a0 (otherwise) .

The well-definedness of m1 and m2 need to be confirmed. Assume that there
exists two elements a and a′ that satisfy f(d′) = ad′ = a′d′ for all d′ in D. For
all d in D, it holds that

Ju, x ⊢ uxK(a, d) = Ju, x ⊢ uK(a, d) · Ju, x ⊢ xK(a, d)
= ad

= a′d

= Ju, x ⊢ uK(a′, d) · Ju, x ⊢ xK(a′, d)
= Ju, x ⊢ uxK(a′, d) .

Since x is a linear variable of the term x, the following equation holds by (3.9):

Ju ⊢ λx. uxK(a) = Ju ⊢ λx. uxK(a′) .
Therefore m1 is well-defined.

Assume that there exists two elements a and a′ that satisfy f(d′) = a ! d′ =
a′ ! d′ for all d′ in D. For all d in D, it holds that

Ju, x ⊢ u !xK(a, d) = Ju, x ⊢ uK(a, d) · Ju, x ⊢ !xK(a, d)
= a ! d

= a′ ! d

= Ju, x ⊢ uK(a′, d) · Ju, x ⊢ !xK(a′, d)
= Ju, x ⊢ u !xK(a′, d) .

29

The following equation holds by (3.10):

Ju ⊢ λ!x. u !xK(a) = Ju ⊢ λ!x. u !xK(a′) .
Therefore m2 is well-defined.

Second, we prove that J−K satisfies certain properties in Definition 3.1.1. Ob-
viously, (3.1) is equivalent to (3.8), and (3.5) is equivalent to (3.12).

Assume that xn+1 is a linear variable ofM . For every dn+1 in D, the equation
below holds.

Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1)

= Jx⃗, xn+1 ⊢MK(d⃗, dn+1)

= Jx⃗, xn+1 ⊢ (λxn+1.M)xn+1K(d⃗, dn+1) (since xn+1 ∈ LV(M))

= Jx⃗, xn+1 ⊢ λxn+1.MK(d⃗, dn+1) · Jx⃗, xn+1 ⊢ xn+1K(d⃗, dn+1)

= Jx⃗, xn+1 ⊢ λxn+1.MK(d⃗, dn+1) · dn+1

= Jx⃗ ⊢ λxn+1.MK(d⃗) · dn+1 (since xn+1 /∈ FV(λxn+1.M)) (3.15)

From this equation it follows that

m1(Jx⃗, xn+1 ⊢MK∧(d⃗))
= Ju ⊢ λxn+1. uxn+1K(Jx⃗ ⊢ λxn+1.MK(d⃗)) . (by definition of m1) (3.16)

For every dn+1 in D, it also follows that

Ju, xn+1 ⊢ uxn+1K(Jx⃗ ⊢ λxn+1.MK(d⃗), dn+1)

= Ju, xn+1 ⊢ uK(Jx⃗ ⊢ λxn+1.MK(d⃗), dn+1)

· Ju, xn+1 ⊢ xn+1K(Jx⃗ ⊢ λxn+1.MK(d⃗), dn+1)

= Jx⃗ ⊢ λxn+1.MK(d⃗) · dn+1

= Jx⃗, xn+1 ⊢MK(d⃗, dn+1) . (by (3.15))

Therefore, by (3.9), (3.2) holds as below:

m1(Jx⃗, xn+1 ⊢MK∧(d⃗)) = Ju ⊢ λxn+1. uxn+1K(Jx⃗ ⊢ λxn+1.MK(d⃗)) (by (3.16))

= Jx⃗ ⊢ λxn+1.MK(d⃗) .
For every dn+1 in D, the equation below holds.

Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1)

= Jx⃗, xn+1 ⊢MK(d⃗, dn+1)

= Jx⃗, xn+1 ⊢ (λ!xn+1.M) !xn+1K(d⃗, dn+1)

= Jx⃗, xn+1 ⊢ λ!xn+1.MK(d⃗, dn+1) · Jx⃗, xn+1 ⊢ !xn+1K(d⃗, dn+1)

= Jx⃗, xn+1 ⊢ λ!xn+1.MK(d⃗, dn+1) · ! dn+1

= Jx⃗ ⊢ λ!xn+1.MK(d⃗) · ! dn+1 (since xn+1 /∈ FV(λ!xn+1.M)) (3.17)

From this equation it follows that

m2(Jx⃗, xn+1 ⊢MK∧(d⃗))
= Ju ⊢ λ!xn+1. u !xn+1K(Jx⃗ ⊢ λ!xn+1.MK(d⃗)) . (by definition of m2) (3.18)

30

For every dn+1 in D, it also follows that

Ju, xn+1 ⊢ u !xn+1K(Jx⃗ ⊢ λ!xn+1.MK(d⃗), dn+1)

= Ju, xn+1 ⊢ uK(Jx⃗ ⊢ λ!xn+1.MK(d⃗), dn+1)

· Ju, xn+1 ⊢ !xn+1K(Jx⃗ ⊢ λ!xn+1.MK(d⃗), dn+1)

= Jx⃗ ⊢ λ!xn+1.MK(d⃗) · ! dn+1

= Jx⃗, xn+1 ⊢MK(d⃗, dn+1) . (by (3.17))

Therefore, by (3.10), (3.3) holds as below:

m2(Jx⃗, xn+1 ⊢MK∧(d⃗))
= Ju ⊢ λ!xn+1. u !xn+1K(Jx⃗ ⊢ λ!xn+1.MK(d⃗)) (by (3.18))

= Jx⃗ ⊢ λ!xn+1.MK(d⃗) .
(3.4) holds as below:

Jx⃗ ⊢M1M2K(d⃗) = Jx⃗ ⊢M1K(d⃗) · Jx⃗ ⊢M2K(d⃗)
= e(Jx⃗ ⊢M1K(d⃗))(Jx⃗ ⊢M2K(d⃗)) (by definition of e)

= ev(e(Jx⃗ ⊢M1K(d⃗)), Jx⃗ ⊢M2K(d⃗)) .
Assume that xn+1 is a linear variable of M . For every dn+1 in D, (3.6) holds

as below:

e(m1(Jx⃗, xn+1 ⊢MK∧(d⃗)))(dn+1)

= e(Ju ⊢ λxn+1. uxn+1K(Jx⃗ ⊢ λxn+1.MK(d⃗)))(dn+1) (by (3.16))

= Ju ⊢ λxn+1. uxn+1K(Jx⃗ ⊢ λxn+1.MK(d⃗)) · dn+1 (by definition of e)

= Ju ⊢ λxn+1. uxn+1K(Jx⃗ ⊢ λxn+1.MK(d⃗)) · Jxn+1 ⊢ xn+1K(dn+1)

= Ju, xn+1 ⊢ (λxn+1. uxn+1)xn+1K(Jx⃗ ⊢ λxn+1.MK(d⃗), dn+1)

= Ju, xn+1 ⊢ uxn+1K(Jx⃗ ⊢ λxn+1.MK(d⃗), dn+1)

= Jx⃗ ⊢ λxn+1.MK(d⃗) · dn+1

= Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1) . (by (3.15))

For every dn+1 in D, (3.7) holds as below:

e(m2(Jx⃗, xn+1 ⊢MK∧(d⃗)))(! dn+1)

= e(Ju ⊢ λ!xn+1. u !xn+1K(Jx⃗ ⊢ λ!xn+1.MK(d⃗)))(! dn+1) (by (3.18))

= Ju ⊢ λ!xn+1. u !xn+1K(Jx⃗ ⊢ λ!xn+1.MK(d⃗)) · ! dn+1 (by definition of e)

= Ju ⊢ λ!xn+1. u !xn+1K(Jx⃗ ⊢ λ!xn+1.MK(d⃗)) · Jxn+1 ⊢ !xn+1K(dn+1)

= Ju, xn+1 ⊢ (λ!xn+1. u !xn+1) !xn+1K(Jx⃗ ⊢ λ!xn+1.MK(d⃗), dn+1)

= Ju, xn+1 ⊢ u !xn+1K(Jx⃗ ⊢ λ!xn+1.MK(d⃗), dn+1)

= Jx⃗ ⊢ λ!xn+1.MK(d⃗) · ! dn+1

= Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1) . (by (3.17))

31

3.2 Linear Combinatory Algebra and Linear λ-Calculus

In this section we study the ability of linear combinatory algebras (see Defini-
tion 2.1.4) to model linear λ-calculus. As described in [16], linear combinatory
algebras satisfy the property called linear combinatory completeness. We define
a term on a linear combinatory algebra (D, ·, !) by BNF as

τ ::= u ∈ Var | d ∈ D | τ · τ | ! τ .

All elements of D can be seen as a term that includes no variables. A variable
u is linear in a term τ if u occurs exactly once in τ except in the scope of the
operator !.

Proposition 3.2.1 (linear combinatory completeness [16]). Let (D, ·, !) be a lin-
ear combinatory algebra. For every term e on D, (I) and (II) below holds:

(I) If u is a linear variable of e, then a term e∗ on D exists and satisfies
following properties:

LV(e∗) = LV(e) \ {u}, FV(e∗) = FV(e) \ {u}, e = e∗u .

(II) If u is a variable, then a term e!∗ on D exists and satisfies following prop-
erties:

LV(e!∗) = LV(e) \ {u}, FV(e!∗) = FV(e) \ {u}, e = e!∗ !u .

It is known that linear combinatory completeness enables linear combinatory
algebras to represent two abstractions of linear λ-calculus and β-reductions of
closed linear λ-terms.

However, it is found that a linear combinatory algebra itself cannot form
a linear λ-model i.e. give sound denotational semantics of linear λ-calculus, as
stated in the following theorem. This theorem is the linear version of the Meyer-
Scott theorem (see [18]) that is for a λ-model and SK-algebra. Here we show its
proof in detail.

Theorem 3.2.2 (linear version of the Meyer-Scott theorem). For an arbitrary
set D, (I) and (II) below are equivalent.

(I) A data (D, e,m1,m2, !, J−K) is a linear λ-model.

(II) A triple (D, ·, !) is a linear combinatory algebra with extra combinators L
and R that satisfy the following properties: for every a, a′, b in D,

Lab = ab, ∀d ∈ D. ad = a′d =⇒ La = La′

Ra ! b = a ! b, ∀d ∈ D. a ! d = a′ ! d =⇒ Ra = Ra′ .

Proof. (I) ⇒ (II) It suffices to prove that Proposition 3.1.3(II) ⇒ (II), since (I)
and Proposition 3.1.3(II) are equivalent by Proposition 3.1.3. We define combi-
nators as

I := J ⊢ λx. xK(∗) B := J ⊢ λx. λy. λz. x(yz)K(∗)
C := J ⊢ λx. λy. λz. xzyK(∗) K := J ⊢ λx. λ!y. xK(∗)
W := J ⊢ λx. λ!y. x ! y ! yK(∗) D := J ⊢ λ!x. xK(∗)
δ := J ⊢ λ!x. ! !xK(∗) F := J ⊢ λ!x. λ!y. !(xy)K(∗)
L := J ⊢ λx. λy. xyK(∗) R := J ⊢ λx. λ!y. x ! yK(∗)

32

where D0 = {∗}. It is easy to show that combinators satisfy certain equations in
Definition 2.1.4. The properties of combinators L and R need to be confirmed.

For all d in D, if two elements a and a′ of D satisfy ad = a′d, then it holds
that

Jx, y ⊢ xyK(a, d) = Jx, y ⊢ xK(a, d) · Jx, y ⊢ yK(a, d)
= ad

= a′d

= Jx′, y ⊢ x′K(a′, d) · Jx′, y ⊢ yK(a′, d)
= Jx′, y ⊢ x′yK(a′, d) .

From this equation it follows that

La = J ⊢ λx. λy. xyK(∗) · a
= J ⊢ λx. λy. xyK(∗) · Jx ⊢ xK(a)
= Jx ⊢ (λx. λy. xy)xK(a)
= Jx ⊢ λy. xyK(a)
= Jx′ ⊢ λy. x′yK(a′) (by (3.9))

= Jx′ ⊢ (λx′. λy. x′y)x′K(a′)
= J ⊢ λx′. λy. x′yK(∗) · Jx′ ⊢ x′K(a′)
= J ⊢ λx′. λy. x′yK(∗) · a′
= La′ .

For all d in D, if two elements a and a′ of D satisfy a ! d = a′ ! d, then it holds
that

Jx, y ⊢ x ! yK(a, d) = Jx, y ⊢ xK(a, d) · Jx, y ⊢ ! yK(a, d)
= a ! d

= a′ ! d

= Jx′, y ⊢ x′K(a′, d) · Jx′, y ⊢ ! yK(a′, d)
= Jx′, y ⊢ x′ ! yK(a′, d) .

From this equation it follows that

Ra = J ⊢ λx. λ!y. x ! yK(∗) · a
= J ⊢ λx. λ!y. x ! yK(∗) · Jx ⊢ xK(a)
= Jx ⊢ (λx. λ!y. x ! y)xK(a)
= Jx ⊢ λ!y. x ! yK(a)
= Jx′ ⊢ λ!y. x′ ! yK(a′) (by (3.10))

= Jx′ ⊢ (λx′. λ!y. x′ ! y)x′K(a′)
= J ⊢ λx′. λ!y. x′ ! yK(∗) · Jx′ ⊢ x′K(a′)
= J ⊢ λx′. λ!y. x′ ! yK(∗) · a′
= Ra′ .

(I)⇐ (II) First, we fix an arbitrary element a0 of D and define e, m1 and m2

33

as

e(a)(d) := ad (for every d in D)

m1(f) :=

{
La (if ∃a ∈ D. ∀d ∈ D. f(d) = ad)

a0 (otherwise)

m2(f) :=

{
Ra (if ∃a ∈ D. ∀d ∈ D. f(d) = a ! d)

a0 (otherwise) .

The well-definedness of m1 and m2 need to be confirmed. For all d in D,
assume that there exists two elements a and a′ of D that satisfy f(d) = ad = a′d.
This leads to the following equation that means m1 is well-defined:

La = La′ .

For all d in D, assume that there exists two elements a and a′ of D that
satisfy f(d) = a ! d = a′ ! d. This leads to the following equation that means m2

is well-defined:

Ra = Ra′ .

Second, we define J−K inductively by (3.1), (3.2), (3.3), (3.4) and (3.5).
Assume that xn+1 is a linear variable ofM . When an arbitrary element dn+1 of

D is regarded as a variable, it can be inductively proved that di is a linear variable
of a term Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1) on D. Therefore, by Proposition 3.2.1, an
element a of D that does not include dn+1 exists and it satisfies the following
equation:

Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1) = adn+1 . (3.19)

In other words, for all dn+1 in D, an element a of D exists and it satisfies the
equation (3.19). Therefore, for all dn+1 in D, (3.6) holds as below:

e(m1(Jx⃗, xn+1 ⊢MK∧(d⃗)))(dn+1)

= e(La)(dn+1) (by (3.19) and definition of m1)

= Ladn+1 (by definition of e)

= adn+1

= Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1) . (by (3.19))

For a term Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1) on D, when an arbitrary element dn+1

of D is regarded as a variable, it holds by Proposition 3.2.1 that an element a of
D that does not include dn+1 exists and it satisfies the following equation:

Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1) = a ! dn+1 . (3.20)

In other words, for all dn+1 in D, an element a of D exists and it satisfies the
equation (3.20). Therefore, for all dn+1 in D, (3.7) holds as below:

e(m2(Jx⃗, xn+1 ⊢MK∧(d⃗)))(! dn+1)

= e(Ra)(! dn+1) (by (3.20) and definition of m2)

= Ra ! dn+1 (by definition of e)

= a ! dn+1

= Jx⃗, xn+1 ⊢MK∧(d⃗)(dn+1) . (by (3.20))

34

This theorem claims that a linear combinatory algebra needs extra combinators L
and R to form a linear λ-model. These extra combinators are kinds of “classifiers”.
They classify the linear λ-terms that have the “same” behavior, i.e. that are β-
equivalent when the same term is applied to them.

In this section we studied the ability of linear combinatory algebras to model
linear λ-calculus. It was found that linear combinatory algebras themselves can-
not give sound denotational semantics of linear λ-calculus although they can
represent β-reductions. In terms of functional programming, we can say that lin-
ear combinatory algebras cannot classify the same functions although they can
express evaluations of functions and applications.

35

Chapter 4

Conclusions and Future Work

We technically described the base steps of the workflow shown in Chapter 1,
namely resumption-based categorical GoI. We gave a GoI situation based on
resumptions by defining concrete constructions of transducers: compositions,
monoidal products, traces, countable infinite copying and suitable retractions.
We also gave an operator α on resumptions by using an algebraic operation α.
The operator α constructs transducers that represents the algebraic operation
α. It was found that the operator α enables the extracted linear combinatory
algebra to represent some interfaces to effects.

Additionally, we defined a model of untyped linear λ-calculus called a linear
λ-model. A linear λ-model was proved to give sound denotational semantics. We
explained the ability of linear combinatory algebras to represent linear λ-calculus
by proving the linear version of the Meyer-Scott theorem. It was found that linear
combinatory algebras need extra combinators that classify functions with respect
to their behavior to form a linear λ-model. This is much like in the classical
setting.

Given this technical result, however, it is not trivial that how the extra com-
binators of a linear combinatory algebra are obtained especially in the framework
of categorical GoI. Since the extra combinators are a kind of classifiers, we guess
that they might be produced by resumption-based categorical GoI with an ap-
propriate equivalence relation on transducers.

To give a concrete GoI interpretation in terms of resumptions, we need to
describe the rest of the workflow in Chapter 1. It needs to be explained that how
effects are interpreted by an algebraic operation α and an induced operator α on
resumptions. Our approach to give a resumption-based GoI interpretation has
several parameters: a monad that models effects, an algebraic operations that
represents effects and an equivalence relation used to define resumptions. This is
due to the generality of categorical framework. These parameters will affect what
kind of effects are interpreted in our framework. For example, following Hasuo
and Hoshino [5] a resumption-based GoI interpretation of quantum computations
might be obtained if quantum effects are represented by algebraic operations. We
are also interested in an equivalence relation. We use the behavioral equivalence
in this paper but the trace equivalence is another example; we might indeed be
able to give an axiomatization of equivalence relations such that resumption-based
categorical GoI works.

As mentioned in Chapter 1, our approach takes advantage of the feature of GoI
and enables us to observe dynamics of computations. That is, our approach will
give concrete transducers as a GoI interpretation of programs. We expect that
this enables us to implement compilers of programming languages that supports
effects, like the results in [11] and [2].

36

References

[1] Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of
interaction and linear combinatory algebras. Mathematical Structures in
Computer Science, 12:625–665, 10 2002.

[2] Dan R. Ghica. Geometry of synthesis: a structured approach to VLSI design.
In Martin Hofmann and Matthias Felleisen, editors, POPL, pages 363–375.
ACM, 2007.

[3] Jean-Yves Girard. Geometry of interaction 1: Interpretation of system F. In
S. Valentini R. Ferro, C. Bonotto and A. Zanardo, editors, Logic Colloquium
’88 Proceedings of the Colloquium held in Padova, volume 127 of Studies in
Logic and the Foundations of Mathematics, pages 221–260. Elsevier, 1989.

[4] Masahito Hasegawa. The uniformity principle on traced monoidal categories.
ENTCS, 69(0):137–155, 2003. CTCS’02.

[5] Ichiro Hasuo and Naohiko Hoshino. Semantics of higher-order quantum
computation via geometry of interaction. In LICS, pages 237–246, 2011.

[6] Ichiro Hasuo and Bart Jacobs. Traces for coalgebraic components. Mathe-
matical Structures in Computer Science, 21:267–320, 4 2011.

[7] Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of
interaction: From coalgebraic components to algebraic effects. preprint.

[8] Martin Hyland and John Power. The category theoretic understanding of
universal algebra: Lawvere theories and monads. 172:437–458, 2007.

[9] S. C. Kleene. On the interpretation of intuitionistic number theory. 10:109–
124, 1945.

[10] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin,
2nd edition, 1998.

[11] Ian Mackie. The geometry of interaction machine. In Ron K. Cytron and
Peter Lee, editors, POPL, pages 198–208. ACM Press, 1995.

[12] Eugenio Moggi. Computational lambda-calculus and monads. Technical
Report ECS-LFCS-88-66, Laboratory for Foundations of Computer Science,
1988.

[13] Gordon Plotkin and John Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69–94, 2003.

[14] Gordon D. Plotkin and John Power. Adequacy for algebraic effects. In
FoSSaCS, pages 1–24, 2001.

37

[15] John Power and Edmund Robinson. Premonoidal categories and notions of
computation. Mathematical Structures in Computer Science, 7:453–468, 10
1997.

[16] Alex Simpson. Reduction in a linear lambda-calculus with applications to
operational semantics. In Giesl Jürgen, editor, RTA, volume 3467 of LNCS,
pages 219–234. Springer Berlin Heidelberg, 2005.

[17] Glynn Winskel. The Formal Semantics of Programming Languages. 1993.

[18] 高橋 正子. 計算論——計算可能性とラムダ計算. 近代科学社, 1991.

38

