
Preorder-Constrained Simulations
for Program Refinement with Effects

Koko Muroya1[0000−0003−0454−6900], Takahiro Sanada1[0000−0003−3409−6963], and
Natsuki Urabe2[0000−0002−1554−6618]

1 RIMS, Kyoto University, Kyoto, Japan
{kmuroya,tsanada}@kurims.kyoto-u.ac.jp

2 National Institute of Informatics, Tokyo, Japan
urabenatsuki@nii.ac.jp

Abstract. We propose a notion of preorder-constrained simulation. It
is parameterised by a preorder (“observation preorder”) on traces, so
that it can uniformly characterise quantitative notions of program re-
finement for different effects, such as exception, nondeterminism and
I/O. Preorder-constrained simulation is additionally parameterised by
a positive number (“look-ahead bound”), and forms a generative spec-
trum governed by the look-ahead bound. We analyse the complexity
of determining preorder-constrained similarity, and show that preorder-
constrained simulation can be enhanced by the so-called up-to technique.

1 Introduction

It is often important to have two programs behave the same in programming,
for example, in code refactoring and compiler optimisation. Observational equiv-
alence [26] is the standard notion that asserts the same observable behaviour
between two programs.

Among known proof techniques for observational equivalence are coinductive
techniques. These techniques reduce the problem of observational equivalence
to stepwise comparison based on operational semantics. An important example
is applicative bisimilarity [1]. It is tailored to the ordinary reduction seman-
tics, syntactically constructing a binary relation that characterises observational
equivalence. Together with its extension known as environmental bisimilarity
[21], applicative bisimilarity is applicable to a wide range of side effects, such as
general state [21], I/O [36] and continuation [38].

Other coinductive techniques that are for abstract machines have emerged
recently. Examples are what we shall call counting simulation [27], and improve-
ment [4] which can be seen as an instance of counting simulation. Notably,
counting simulation can not only assert the same behaviour between programs,
but also compare efficiency of two programs in terms of the number of execution
steps. Despite this strength, it is only known to work on “deterministic” effects
that yield at most one result per program.

2 K. Muroya et al.

(1,Q)-similarity
.1,Q

−→ (2,Q)-similarity
.2,Q

−→ · · · −→ Q-trace inclusion
vQ

Fig. 1: A generative spectrum, parameterised by the observation preorder Q

observation preorder Q (1,Q)-simulation Q-trace inclusion vQ

= standard simulation finite trace inclusion
=rem{τ} weak simulation weak trace inclusion
Q̇

(new instances)
refinement �Qerr for exception

Q̇ ∩=rem{τ}∪Ωnd
refinement �Qnd for nondeterminism

Q̇ ∩=rem{τ} refinement �Qio for I/O
Table 1: Instances of the two ends of the generative spectrum (see Sec. 4 for
details)

It is desirable to obtain a coinductive proof technique for observational equiv-
alence that is applicable to various effects and capable of quantitative compar-
ison of efficiency. We have two kinds of techniques with different strengths: (1)
applicative bisimilarity and environmental bisimilarity accommodating various
effects, and (2) counting simulation and improvement which are capable of quan-
titative comparison. Our goal here is to enhance the techniques (2) so that they
can accommodate a wider range of effects including nondeterminism.

One of the challenges of accommodating various effects is that a notion of ob-
servational equivalence, in particular that of observation, varies between effects.
For example, nondeterministic choice is regarded as internal and unobservable.
A program or(1, 1) with a binary nondeterministic choice operator or would be
identified with a program 1. The choice (with the same result) is ignored. On
the other hand, the choice that is made according to a 1-bit input is regarded
as external and observable. A program in(1, 1), which results in 1 regardless of
the value of the 1-bit input, would not be identified with the program 1. The re-
ceived input value (0 or 1) and the induced choice (between 1 and 1) is observed.
We need to be able to both ignore and observe effectful choices.

We propose a notion of preorder-constrained simulation that is applicable to
effects such as nondeterminism and I/O, in addition to the “deterministic” ef-
fects such as exception. It is notably parameterised by an observation preorder,
a preorder on traces (or words). By altering the observation preorder, we can
characterise quantitative notions of observational refinement, which is the asym-
metric version of observational equivalence, for both internal and ignored effects,
and external and observed effects.

Preorder-constrained simulations are additionally parameterised by a posi-
tive number dubbed look-ahead bound. It determines the degree of awareness of
branching. By altering the look-ahead bound, one can obtain a spectrum illus-
trated in Fig. 1. The “limit” of the spectrum is a novel generalisation of trace
inclusion (i.e. Q-trace inclusion vQ) that is also parameterised by the obser-
vation preorder. The spectrum is generative in the sense that it yields various

Preorder-Constrained Simulations for Program Refinement with Effects 3

concrete spectra by instantiating the observation preorder Q. Some instances
are shown in Tab. 1, whose details will be evident in Sec. 4.

We analyse the complexity of determining preorder-constrained similarity
.M,Q in the finite setting, and show that the complexity is polynomial time.
The complexity analysis is via a game-theoretic characterisation of preorder-
constrained simulation that is similar to buffered simulation game [17,16]. We
also show that preorder-constrained simulation can be enhanced by the so-called
up-to technique [32]. We discuss and identify sufficient conditions that make the
up-to technique work, in terms of observation preorders.

Our contributions can be summarised as follows.

– (Sec. 4) The notion of preorder-constrained simulation, which is a new vari-
ant of simulation for characterising observational refinement between pro-
grams (Cor. 1). Preorder-constrained simulations enjoy soundness (Thm. 1)
with respect to a novel generalisation of trace inclusion, and also monotonic-
ity (Cor. 2) that yields a generative spectrum (Fig. 1).

– (Sec. 5) A game-theoretic characterisation of preorder-constrained simula-
tion, with complexity analysis. The games also form a generative spectrum
(Fig. 12).

– (Sec. 6) Integration of the so-called up-to technique [32], in terms of obser-
vation preorders.

Proofs of statements marked by (†) are formalised in Agda, and available at
https://github.com/urabenatsuki/preorder-constr-sim-agda. Other proofs can
be found in App. C.

2 Preliminaries

Let N be the set of natural numbers, and N+ be the set of positive numbers. For
a set X, X∗ denotes the set {x1 . . . xn | n ∈ N;x1, . . . , xn ∈ X} of finite words
over X. We let ε denote the empty word, X+ denote X∗ \ {ε}, and |w| denote
the length of a finite word w ∈ X∗.

Given X ′ ⊆ X, the filtered equality =remX′ on the set X∗ is defined by
w =remX′ w

′ if w and w′ are the same except for symbols in X ′. For example,
aτbσσc =rem{τ,σ} σabτcτ =rem{τ,σ} abc.

A preorder Q ⊆ N×N is said to be s-closed if it is closed under summation,
i.e. kQl ∧ k′Ql′ =⇒ (k + k′)Q(l + l′). For a set Σ, a preorder Q ⊆ Σ∗ ×Σ∗ is
said to be c-closed if it is closed under concatenation, i.e. w1Qw2 ∧w′1Qw′2 =⇒
(w1w

′
1)Q(w′2w

′
2).

2.1 Nondeterministic Automata

A nondeterministic automaton (NA) is a quadruple A = (X,Σ, , F) consisting
of a set X called a state space, a set Σ called an alphabet, a transition relation
 ⊆ X × Σ ×X and a set F ⊆ X of accepting states. We write x a

 x′ when
(x, a, x′) ∈ , and x

w
 x′ for w = a1 · · · an when there exist x0 . . . xn ∈ X+

https://github.com/urabenatsuki/preorder-constr-sim-agda

4 K. Muroya et al.

t ::= x | t t | λx.t | t[x← t] | n | t+ t | t× t | f(t, . . . , t) (Terms TΩ)
v ::= λx.t | n (Values)
L ::= 〈 〉 | L[x← t] (Answer contexts)
E ::= 〈 〉 | E t | L〈v〉 E | E[x← t] | E + t | L〈v〉+ E | E × t | L〈v〉 × E

(Evaluation contexts)

L〈λx.t〉 L′〈v〉 τ→ L〈t[x← L〈v〉]〉 E〈x〉[x← L〈v〉] τ→ L〈E〈v〉[x← v]〉

• ∈ {+,×}

L〈n〉 • L′〈m〉 τ→ n •m f(t0, . . . , tar(f)−1)
fi→ ti

t
`→ u ` ∈ {τ} ∪Ω

E〈t〉 `→ E〈u〉 L〈n〉 n→ X

Fig. 2: Reduction semantics as an NA AΩ = (TΩ ∪{X}, {τ}∪N∪Ω, →, {X})

such that x0 = x, xn = x′ and xi−1
ai xi for each i ∈ {1, . . . , n}. In particular,

x
ε
 x. We write x 6 and say x is stuck, if there exist no x′ ∈ X and a ∈ Σ

such that x a
 x′. An NA is said to be branching-free if its transition relation

 ⊆ X × Σ × X satisfies the following: for any x ∈ X, if there exist two pairs
(a1, x1), (a2, x2) ∈ Σ×X such that x a1 x1 and x a2 x2, then (a1, x1) = (a2, x2).

The (finite) language of an NA A is a function L∗A : X → Σ∗ defined by
L∗A(x) := {w ∈ Σ∗ | ∃x′ ∈ F. x

w
 x′}. In particular, ε ∈ L∗A(x) when x ∈ F .

We omit the subscript and write L∗(x) for L∗A(x) when no confusion is likely.

2.2 A Linear Substitution Calculus with Algebraic Effects

We recall algebraic effects [29] and present their reduction semantics as an NA.
Algebraic effects are specified by a signature Ω. It is a set of algebraic operations
f , each of which comes with an arity ar(f) ∈ N. We write f : n when ar(f) = n.

Example 1 (algebraic operations).

1. Ωerr = {err : 0} for raising an error.
2. Ωnd = {or : 2} for nondeterministic choice between two operands.
3. Ωio = {in : 2, out0 : 1, out1 : 1} for I/O with a single bit. We focus on a

single-bit I/O for simplicity. Evaluation of a term in(t0, t1) proceeds with
ti if the input value is i, for each i ∈ {0, 1}. Evaluation of a term outi(t)
outputs the value i ∈ {0, 1} and proceeds with t.

We use the (left-to-right) call-by-value linear substitution calculus (LSC) [5]
equipped with algebraic effects Ω and arithmetic. The LSC has been used as a
cost model of various abstract machines for the λ-calculus [3]. The LSC exploits
explicit substitutions [x← t] to disclose cost of the traditional β-reduction.

We present reduction semantics of the LSC, with a signature Ω, as an NA
defined by Fig. 2. Transitions are labelled in a similar way as the original reduc-
tion semantics for algebraic effects [29]; labels consist of τ representing silent

Preorder-Constrained Simulations for Program Refinement with Effects 5

2× (3 + 4)

2× 7

14

X

τ

τ

14

2× 3 + 2× 4

6 + 2× 4

6 + 8

14

X

τ

τ

τ

14

(a) AΩerr(2× (3+4)) and AΩerr(2×
3 + 2× 4)

or(1, 1)

1

X

or0 or1

1

or(1, 0)

1 0

X

or0 or1

1 0

(b) AΩnd(or(1, 1)) and
AΩnd(or(1, 0))

1 + 2 + in(0, 1)

3 + in(0, 1)

3 + 0 3 + 1

3 4

X

τ

in0 in1

τ τ

3 4

in(1 + 2 + 0, 1 + 2 + 1)

1 + 2 + 0 1 + 2 + 1

3 + 0 3 + 1

3 4

X

in0 in1

τ τ

τ τ

3 4

(c) AΩio(1 + 2 + in(0, 1)) and AΩio(in(1 + 2 + 0, 1 + 2 + 1))

Fig. 3: Example pairs of NAs

transitions, N representing result values, and a set Ω = {fi | f ∈ Ω, i ∈
{0, . . . , ar(f)−1}} labelling effect transitions. We add a return transition n n

 X
from each ground value to a sole accepting state X. This extra transition enables
us to observe an evaluation result as a transition label. For t ∈ TΩ , an NA AΩ(t)
is the restriction of AΩ to the states that are reachable from t.

A successful evaluation of a term t is given by a sequence t
w
� L〈n〉 n→ X of

silent or effect transitions followed by a return transition. We refer to the word
wn as a trace of t, and to n as a result of the execution. By removing the silent
transitions τ→, we obtain a word w′ from w. We refer to w′ as an effect trace of
t. Note that the NA AΩerr is in fact branching-free.

Example 2 (pairs of NAs).

1. In Fig. 3a, 2× (3+ 4) has a trace ττ14, and 2× 3+ 2× 4 has a trace τττ14.
2. In Fig. 3b, terms or(1, 1) and or(1, 0) have the same effect traces {or0, or1}.
3. In Fig. 3c, terms 1 + 2 + in(0, 1) and in(1 + 2 + 0, 1 + 2 + 1) have the same

results {3, 4} and the same effect traces {in0, in1}, but not the same traces.

We can now formalise program refinement, using NAs AΩ for the signatures
in Ex. 1. The notion is quantitative, in the sense that it is parameterised by a
length preorder Q ⊆ N× N.

Definition 1 ((quantitative) refinement). Let Q be a preorder on N (dubbed
length preorder).

6 K. Muroya et al.

1. For Ωerr, t �Qerr u is defined by ∀w.(t
w
� X =⇒ ∃w′.u

w′

� X ∧ |w|Q|w′|).

2. For Ωnd, t �Qnd u is defined by ∀w.(t
w
� X =⇒ ∃w′.u

w′

� X ∧ |w|Q|w′| ∧
w =rem{τ}∪Ωnd

w′).

3. For Ωio, t �Qio u is defined by ∀w.(t
w
� X =⇒ ∃w′.u

w′

� X ∧ |w|Q|w′| ∧
w =rem{τ} w

′).

The refinement t �Qerr u focuses on successful termination, and additionally,
compares the numbers of steps using Q. It asserts that when evaluation of t
terminates in m steps, evaluation of u also terminates in n steps, and moreover,
mQn. An example of Q is the total relation N× N. This yields the asymmetric
version of the basic notion of observational equivalence. Another example of Q
is the greater-than-equal relation ≥, with which refinement t �≥ u can assert
that u terminates in a fewer steps.

Def. 1(2) and Def. 1(3) use the filtered equality differently to deal with dif-
ferent observations made for nondeterministic choice and I/O. The refinement
t �nd u for nondeterministic choice asserts that when evaluation of t termi-
nates, evaluation of u also terminates with the same result. The filtered equality
w =rem{τ}∪Ωnd

w′ in Def. 1(2) ignores effect traces, and only ensures the coin-
cidence of results. We note that Def. 1(2) corresponds to program refinement
for angelic nondeterminism [35]. In contrast, the refinement t �io u for I/O as-
serts that when evaluation of t terminates, evaluation of u also terminates with
the same effect trace and result. The filtered equality w =rem{τ} w

′ in Def. 1(3)
observes effect traces.

The three pairs of NAs in Fig. 3 all exhibit refinement. We have 2×(3+4) �≤err

2×3+2×4, or(1, 1) �=
nd or(1, 0), and 1+2+in(0, 1) �=

io in(1+2+0, 1+2+1).
We do not always have the opposite: i.e. or(1, 0) 6�=

nd or(1, 1).

3 Counting Simulation and its Deficiencies

We recall the simulation notion that was introduced for an abstract machine
for programs with at most one result [27]. We call it counting simulation, albeit
with no connection to counter automata. It is parameterised by a preorder Q on
natural numbers, dubbed length preorder, to count and compare the number of
steps. The original presentation [27, Def. 4.4.1] of the counting simulation is for
an unlabelled transition system, and it is equipped with an up-to technique. We
here present its naive extension to NAs, but without any up-to technique.

In this section, we let Ai = (Xi, Σ, i, Fi) (i ∈ {1, 2}) be two NAs with the
same alphabet, and Q ⊆ N× N be an s-closed preorder.

Definition 2 (counting simulations). A binary relation R ⊆ X1×X2 is a Q-
counting simulation from A1 to A2 if, for any (x, y) ∈ R, the following C-Final
and C-Step hold.

C-Final If x ∈ F1, then y ∈ F2.

Preorder-Constrained Simulations for Program Refinement with Effects 7

x yR

(a) C-Final

x

x′

x′′

y
a

w

R

(b) C-Step (1) where x′′ 6

x

x′

x′′

y

y′

a

w

w′R

R

(c) C-Step (2) where |aw|Q|w′|

Fig. 4: Conditions of Def. 2. Black parts are universally quantified, and magenta
parts are existentially quantified.

1 + 2 + in(0, 0 + 1)

3 + in(0, 0 + 1)

3 + 0 3 + (0 + 1)

3 3 + 1

4X

τ

in0 in1

τ τ

3 τ4

in(1 + 2 + 0, 5)

1 + 2 + 0 5

3 + 0

3
X

in0 in1

τ

τ

3

5

Fig. 5: Unsoundness of counting simulation

C-Step For each x′ ∈ X1 and a ∈ Σ such that x a
 1 x

′, either of the following
holds.
1. There exist x′′ ∈ X1 and w ∈ Σ∗ such that x′

w
 1 x

′′ 6 1 and x′′ /∈ F1.
2. There exist x′′ ∈ X1, y′ ∈ X2 and w,w′ ∈ Σ∗, such that x′

w
 1 x

′′,

y
w′

 2 y
′, |aw|Q|w′|, and x′′Ry′.

Fig. 4 illustrates the conditions of Def. 2. The condition C-Final is standard.
The condition C-Step (1) deals with a stuck and non-accepting state x′′ ∈ X1

(i.e. x′′ 6 and x′′ 6∈ F1). A term err() ∈ TΩerr is an example of such a state
in AΩerr . Lastly, C-Step (2) is the key condition of Def. 2. It asserts that any
transition x a

 x′ followed by some transitions x′
w
 x′′ in A1 can be simulated

by some transitions y
w′

 y′ in A2.
Thanks to C-Step, which compares not just single steps but numbers of steps,

counting simulation can witness quantitative refinement for exception.

Proposition 1 (correctness wrt. refinement). If R is a Q-counting simu-
lation from AΩerr to AΩerr , then tRu =⇒ t �Qerr u holds for any t, u ∈ TΩerr . ut

Example 3. For the pair of branching-free NAs in Fig. 3a, a relation Rdistr =
{(2 × (3 + 4), 2 × 3 + 2 × 4), (X,X)} is a ≤-counting simulation. The length
preorder ≤ asserts that 2 × (3 + 4) has better efficiency. The relation Rdistr

represents the distributive law, without relating any intermediate states.

Nevertheless, counting simulation cannot witness refinement for effects such
as nondeterminism and I/O. This is due to two challenges. The first challenge

8 K. Muroya et al.

is varying observation. While we ignore effect traces for nondeterminism, we
observe effect traces for I/O. However, counting simulation can neither ignore
nor observe effect traces correctly. It simply compares the lengths of traces using
the length preorder Q. The second challenge is branching. It is branching effects
that counting simulation becomes unsound for.

Example 4 (unsoundness for I/O). For the pair of NAs in Fig. 5, refinement does
not hold, i.e. 1+2+in(0, 0+1) 6�io in(1+2+0, 5), because right branches have
traces τin1ττ4 6=remτ in15. However, the relation {(1 + 2 + in(0, 0 + 1), in(1 +
2+0, 5)), (X,X)} is an =-counting simulation. It only asserts that left branches
have “identical” traces (i.e. τin0τ3 and in0ττ3), and it does not inspect the right
branches with distinct traces.

This unsoundness is because counting simulation does not necessarily inspect all
possibilities of branching. Technically, this is due to the existential quantification
on x′

w
 x′′ in C-Step (2).

4 Preorder-Constrained Simulation

4.1 Definition

We present our main contribution, the notion of preorder-constrained simulation.
It generalises counting simulation from branching-free NAs to general NAs, and
hence characterises a notion of observational refinement for a wider class of
effects (Cor. 1 below). The generalisation is technically two-fold, dealing with
the two challenges we discussed in Sec. 3.

Firstly, preorder-constrained simulation is parameterised by a c-closed pre-
order Q on traces Σ∗, dubbed observation preorder, instead of the length pre-
order Q ⊆ N × N that parameterises counting simulation. Using preorders like
the filtered equality =remX , preorder-constrained simulation can flexibly observe
and compare traces, adapting to varying observations.

Example 5 (observation preorders). Note that the following preorders are all c-
closed.

1. The equality = on words.
2. Each preorder Q ⊆ N × N that is s-closed induces a preorder Q̇ on words

such that wQ̇w′ ⇐⇒ |w|Q|w′|, which is c-closed.
3. Each subset Σ′ ⊆ Σ induces the preorder =remΣ′⊆ Σ∗ × Σ∗ of filtered

equality.
4. The substring preorder ⊆sub, where w ⊆sub w

′ means that w is a substring
of w′.

5. Assume Σ is the powerset 2AP of some set AP. Let ⊆∗ be a preorder where
a1 . . . ak ⊆∗ a′1 . . . a′k′ means k = k′ and ∀i. ai ⊆ a′i.

6. Let R be the set of real numbers, and • be a binary operation on R such
as summation + and multiplication ×. When Σ = R, let ≤• be a preorder
where a1 . . . an ≤• a′1 . . . a′n′ means a1 • · · · • an ≤ a′1 • · · · • a′n′ . Its inverse
≥• is also a preorder.

Preorder-Constrained Simulations for Program Refinement with Effects 9

x

x′

y

y′

w w′R

(a) FinalM where |w| < M ∧ wQw′

x

xk

xM

y

y′w

w′R

R

(b) StepM where a1 · · · akQw′

Fig. 6: Conditions of Def. 3. Black parts are universally quantified, and magenta
parts are existentially quantified.

Secondly, preorder-constrained simulation limits the existential quantifica-
tion, namely that on x′

w
 x′′ in C-Step (2), to overcome the unsoundness due

to incomplete inspection of branching. The idea is to put the existential quan-
tification inside universal quantification, so that every branch gets inspected by
the resultant simulation notion.

Additionally, preorder-constrained simulation is parameterised by a positive
number M dubbed look-ahead bound. It determines the degree of awareness of
branching; we leave the study of the look-ahead bound to Sec. 4.3. We let Ai =
(Xi, Σ, i, Fi) (i ∈ {1, 2}) be two NAs with the same alphabet, Q ⊆ N× N be
an s-closed preorder, and Q ⊆ Σ∗ ×Σ∗ be a c-closed preorder.

Definition 3 ((M,Q)-simulations). For each M ∈ N+, a binary relation R ⊆
X1 × X2 is an M -bounded Q-constrained simulation ((M,Q)-simulation in
short) from A1 to A2 if, for any (x, y) ∈ R, the following FinalM and StepM

hold.

FinalM For each w = a1 . . . an ∈ Σ∗ and x1 . . . xn ∈ X∗1 such that n < M ,
x
a1 1 x1 · · ·

an 1 xn and xn ∈ F1, there exist w′ ∈ Σ∗ and y′ ∈ X2 such that

wQw′, y
w′

 2 y
′ and y′ ∈ F2.

StepM For each a1 . . . aM ∈ ΣM and x1 . . . xM ∈ XM
1 such that x a1 1 x1 · · ·

aM 1

xM , there exist k ∈ {1, . . . ,M}, w′ ∈ Σ∗ and y′ ∈ X2 such that a1 · · · akQw′,
y
w′

 2 y
′ and xkRy′.

When an (M,Q)-simulation relates x and y, we say x is (M,Q)-similar to y
and write x .M,Q y. When R is an (M,Q)-simulation from A to A, we say it is
on A.

Fig. 6 illustrates the conditions of Def. 3. The difference between Fig. 4c
and Fig. 6b is crucial to overcome the incomplete inspection of branching that
counting simulation suffers from. In Fig. 6b, existential quantification is limited
to xk, which is an intermediate state of the sequence x xM that is universally
quantified.

4.2 Soundness

Thanks to the observation preorder Q and the limited existential quantification,
preorder-constrained simulation can characterise notions of quantitative refine-

10 K. Muroya et al.

ment �Q for all the signatures Ω in Ex. 1. Namely, (M,Q)-simulations provide
a sufficient condition for refinement.

Corollary 1 (correctness of (M,Q)-simulations wrt. refinement).

1. For any M ∈ N+ and t, u ∈ TΩerr , t .M,Q̇ u =⇒ t �Qerr u.
2. For any M ∈ N+ and t, u ∈ TΩnd

, t .M,Q̇∩=rem{τ}∪Ωnd

u =⇒ t �Qnd u.

3. For any M ∈ N+ and t, u ∈ TΩio , t .M,Q̇∩=rem{τ}
u =⇒ t �Qio u. ut

Example 6 (Fig. 3 revisited).

1. For the NAs in Fig. 3a, {(2 × (3 + 4), 2 × 3 + 2 × 4), (14, 14)} is a (2, ≤̇)-
simulation. This simulation represents the distributive law.

2. For Fig. 3b, {(or(1, 1), or(1, 0)), (1, 1), (X,X)} is a (1, =̇∪=rem{τ}∪Ωnd
)-simula-

tion.
3. For Fig. 3c, let t1 ≡ 1 + 2 + in(0, 1) and t2 ≡ in(1 + 2 + 0, 1 + 2 + 1). The

filtered equality =rem{τ} distinguishes traces of length 1 from t1, t2, namely:
τ 6=rem{τ} ini (i ∈ {0, 1}). This leads to non-existence of any (1, =̇∩ =rem{τ})-
simulation that includes the pair (t1, t2). In contrast, the filtered equality can
identify traces of length 2 from t1, t2, namely: τini =rem{τ} iniτ (i ∈ {0, 1}).
This leads to existence of a (2, =̇∩ =rem{τ})-simulation. It can be given by
{(t1, t2), (3 + 0, 3 + 0), (3 + 1, 3 + 1), (X,X)}.

Cor. 1 is a consequence of a soundness property of preorder-constrained sim-
ulations. Namely, (M,Q)-simulations are sound with respect to a novel gen-
eralisation (Def. 4 below) of trace inclusion that is also parameterised by the
observation preorder Q.

Definition 4 (Q-trace inclusion). We write x vQ y and say Q-trace in-
clusion holds between x and y, if the following holds: ∀w ∈ L∗A1

(x). ∃w′ ∈
L∗A2

(y). wQw′.

Theorem 1 ((†) soundness). Let M ∈ N+. For any (x, y) ∈ X1×X2, it holds
that x .M,Q y =⇒ x vQ y.

The three refinement relations for specific NAs AΩerr , AΩnd
and AΩio , defined

in Sec. 2.2, are instances of the generalised trace inclusion. Cor. 1 follows from
Thm. 1 above and Prop. 2 below.

Proposition 2 (refinement as trace inclusion).

1. For AΩerr , for any t, u ∈ TΩerr , t �Qerr u ⇐⇒ t vQ̇ u.
2. For AΩnd

, for any t, u ∈ TΩnd
, t �Qnd u ⇐⇒ t vQ̇∩=rem{τ}∪Ωnd

u.

3. For AΩio , for any t, u ∈ TΩio , t �
Q
io u ⇐⇒ t vQ̇∩=rem{τ}

u. ut

The most basic instance of the Q-trace inclusion is when Q is the equality;
it coincides with the standard notion of (finite) trace inclusion. Another basic
instance is when Q is the filtered equality =rem{τ} ; it corresponds to the well-
known notion of weak trace inclusion.

Preorder-Constrained Simulations for Program Refinement with Effects 11

x

x1

x2

a

a
a

y

y2

a

a

(a) =-trace inclusion

x

x1

x2

τ

τ
a

y

y2

τ

a

(b) =rem{τ} -trace inclusion

x

x2

a

b

y

y1

y2

a

b
b

(c) ⊆sub-trace inclusion

x

x1

x2

{a}

{b}
{a}

y

y2

{a, b}

{a, b}

(d) ⊆∗-trace inclusion

x

x1

x2

1

0

2

y

y1

y2

3

1

0

(e) ≤+-trace inclusion

Fig. 7: Pairs of NAs that exhibit Q-trace inclusion

Example 7 (Q-trace inclusions for various preorders). Fig. 7 shows examples of
Q-trace inclusions for some of the preorders from Ex. 5.

1. In Fig. 7a, we have L∗(x) = aaa∗ = {an+2|n ∈ N} and L∗(y) = aa∗ =
{an+1|n ∈ N}, and therefore, L∗(x) ⊆ L∗(y). We have x v= y for the
equality =.

2. In Fig. 7b, we have L∗(x) = ττa∗ and L∗(y) = τa∗. These two sets coincide
when we ignore τ . We therefore have x v=rem{τ}

y for the filtered equality
=rem{τ} .

3. In Fig. 7c, we have L∗(x) = ab∗ and L∗(y) = abb∗. We hence have x v⊆sub
y

where ⊆sub is the substring preorder from Ex. 5(4).
4. In Fig. 7d, we have L∗(x) = {a}{b}{a}∗ and L∗(y) = {a, b}{a, b}∗. We hence

have x v⊆∗ y where ⊆∗ is from Ex. 5(5).
5. In Fig. 7e, we have L∗(x) = {1, 02} and L∗(y) = {3, 10}. It holds that 1 ≤ 3

and 0 + 2 ≤ 3. We hence have x v≤+ y where ≤+ is from Ex. 5(6).

4.3 Basic Properties

Here we investigate the look-ahead boundM of preorder-constrained simulation.
As observed in Ex. 6 (3), the look-ahead bound determines the degree of aware-
ness of branching; as M increases, (M,Q)-simulation can inspect and identify
further branches. Technically, preorder-constrained simulation has a monotonic-
ity property with respect to M .

Lemma 1 ((†) monotonicity of Final and Step). Let M,N ∈ N+ such that
M ≤ N .

1. FinalN =⇒ FinalM

2. StepM =⇒ StepN
3. StepM ∧ FinalM =⇒ FinalN

ut

Corollary 2 (monotonicity). LetM,N ∈ N+ such thatM ≤ N . Each (M,Q)-
simulation from A1 to A2 is also an (N,Q)-simulation from A1 to A2.

12 K. Muroya et al.

x0

x1

x2 x′2

a

b c

y0

y1 y′1

y2 y′2

a a

b c

(a) For M = 1

x0

x1

...

xM

xM+1 x′M+1

a

a

a

b c

y0

y1 y′1

...
...

yM y′M

yM+1 y′M+1

a a

a a

a a

b c

(b) For arbitrary M

Fig. 8: Pairs of NAs that distinguish (M,=)-similarity and (M +1,=)-similarity

When the observation preorder Q is the equality =, this monotonicity is
strict; in other words, strict inclusion .M,= (.M+1,= holds. There exists a
pair of NAs that does not have an (M,=)-simulation but has an (M + 1,=
)-simulation. Fig. 8 shows such pairs; one for M = 1, and the other for an
arbitrary M . For Fig. 8a, we have a (2,=)-simulation {(x0, y0), (x1, y1), (x1, y′1),
(x2, y2), (x

′
2, y
′
2)}. Similarly, for Fig. 8a, we have a (M+1,=)-simulation {(x0, y0),

(xM , yM), (xM , y
′
M), (xM+1, yM+1), (x

′
M+1, y

′
M+1)}.

The monotonicity is in contrast to that of nested simulations [12] which are
also parameterised by a positive number. As M increases, (M,Q)-simulations
become larger (as a relation), whileM -nested simulations become smaller. When
M = 1 (and Q is the equality), (1,=)-simulation coincides with the standard
simulation, and hence with 1-nested simulation.

Cor. 2 validates the spectrum of preorder-constrained similarities in Fig. 1,
which is governed by the look-ahead bound. Its “limit” can be given by the notion
of Q-trace inclusion, thanks to the soundness property (Thm. 1).

The spectrum in Fig. 1 is generative because, by instantiating the observation
preorder Q, we can obtain various concrete spectra, as shown in Tab. 1. For
instance, when Q is the equality = or the filtered equality =rem{τ} , the spectrum
refines a part of (the asymmetric version of) van Glabbeek’s spectrum [13,14].
The other spectra of Tab. 1 are more of our interest here, which yield simulation
notions that characterise program refinement.

Finally, while (M,Q)-simulations are closed under union, they are not closed
under the standard composition of relations.

Lemma 2 ((†) basic properties). Let M ∈ N+, and I be an arbitrary set.

1. Given a family {Ri}i∈I of (M,Q)-simulations,
⋃
i∈I Ri is an (M,Q)-simula-

tion.
2. The (M,Q)-similarity .M,Q is the largest (M,Q)-simulation.

Example 8 (no closedness under composition).

Preorder-Constrained Simulations for Program Refinement with Effects 13

x

x1

x21 x22

x32x31 x33 x34

τ

τ τ

τ τ τ τ

y

y11 y12

y22y21 y23 y24

τ τ

τ τ τ τ

z

z12z11 z13 z14
τ τ τ τ

Fig. 9: A counterexample of closedness under composition

x

x1

x2

a

b

y

y1
a

z

(a) (2,=)-simulations

x

x1

x2

a

c

y

y1

y2

b

c

z

z1
d

(b) (2,Qe)-simulations

Fig. 10: More counterexamples of closedness under composition

1. Let> = {τ}∗×{τ}∗. For the three NAs in Fig. 9, {(x, y), (x21, y11), (x22, y12),
(x31, y21), (x32, y22), (x33, y23), (x34, y24)} and {(y, z), (y21, z11), (y22, z12),
(y23, z13), (y24, z14)} are (2,>)-simulations, but their composition {(x, z),
(x31, z11), (x32, z12), (x33, z13), (x34, z14)} is not a (2,>)-simulation. The
composition is a (3,>)-simulation instead.

2. For the three NAs in Fig. 10a, {(x, y), (x1, y1)} and {(y, z)} are (2,=)-
simulations, but their composition {(x, z)} is not a (2,=)-simulation.

3. Let Qe be the reflexive and c-closed closure of {(a, bc), (b, d)}. For the three
NAs in Fig. 10b, {(x, y), (x1, y2)} and {(y, z), (y1, z1)} are (2,Qe)-simulations,
but their composition {(x, z)} is not a (2,Qe)-simulation.

5 Game-Theoretic Characterisation

Preorder-constrained simulations can be characterised by two-player reachability
games. The game is parameterised by the observation preorderQ, the look-ahead
bound M , and additionally a catch-up bound N . Both numerical bounds M,N
are now taken from N+ ∪ {∞}.

Definition 5 (GM,N,Q
A1,A2

). Let M,N ∈ N+. A two-player game GM,N,Q
A1,A2

between
Challenger and Simulator is defined by Fig. 11. Simulator wins if they reach the
state sim-win, Challenger has no possible move, or the play continues forever.

In a game GM,N,Q
A1,A2

, Challenger is in charge of A1, and Simulator is in charge
of A2. Most of the positions are of the form (w, x, y), where w ∈ Σ∗ represents
a queue of labels that Challenger has inputted into A1. The two numerical
parameters M,N both constrain Simulator’s ability to make a move. The look-
ahead bound M limits the length of the queue w, and equivalently the number

14 K. Muroya et al.

Position Player Move Guard

(w, x, y)
∈ Σ∗ ×X1 ×X2

Challenger (wa, x′, y) x
a
 1 x

′ 1
(X, w, x, y) x ∈ F1 2

(w, x′, y)
∈ Σ∗ ×X1 ×X2

Simulator (w, x′, y) |w| < M 3

(ε, x′, y′)
∃w′ ∈ Σ∗.

|w′| < N ∧ y w′
 2 y

′ ∧ wQw′
4

(X, w, x, y)
∈ {X} ×Σ∗ ×X1 ×X2

Simulator sim-win
∃w′ ∈ Σ∗.∃y′ ∈ F2.

|w′| < N ∧ y w′
 2 y

′ ∧ wQw′
5

1 Challenger chooses x a
 1 x

′ from the current state x and enqueues the label a.
2 Challenger is at an accepting state x ∈ F1. Challenger forces Simulator to check

whether an accepting state is reachable from y ∈ X2.
3 Simulator skips the turn. This move is always possible when M =∞.
4 Simulator simulates Challenger’s moves in the queue w.
5 Simulator simulates Challenger’s moves in the queue w and reaches an accepting

state.

Fig. 11: Two-player game GM,N,Q
A1,A2

characterising (M -bounded) Q-constrained
simulation.

of turns that Simulator can skip consecutively. The catch-up bound N limits the
number of transitions Simulator can make in A2 to dequeue w.

The games GM,N,Q
A1,A2

satisfy two expected properties: monotonicity with re-
spect to both M and N (Lem. 3 below), and correspondence with (M,Q)-
similarity (Prop. 3 below). These results validate a generative (two-dimensional)
spectrum of games and preorder-constrained simulations shown in Fig. 12.

Lemma 3 (monotonicity). Let M,M ′ ∈ N+ such that M ≤ M ′, and let
N,N ′ ∈ N+ such that N ≤ N ′. If Simulator is winning from a state (w, x, y) in
GM,N,Q
A1,A2

, Simulator is also winning from the state in GM
′,N ′,Q

A1,A2
. ut

Proposition 3 (correctness). LetM ∈ N+. Simulator is winning from a state
(ε, x, y) in GM,∞,Q

A1,A2
, if and only if x .M,Q y. ut

We conclude this section with complexity analysis of determining winning
positions in GM,N,Q

A1,A2
, and hence of determining (M,Q)-similarity .M,Q.

Proposition 4 (complexity). Assume that wQw′ can be checked in linear
time to the lengths of w and w′. For M,N ∈ N+, whether Simulator is winning
from a state (ε, x, y) in GM,N,Q

A1,A2
can be checked in O(|Σ|M+N × |X1| × |X2|2)

time.

Proof. For a set X and for k, l ∈ N such that k ≤ l, let X [k,l] denote the set
{x1x2 . . . xn | k ≤ n ≤ l;x1, . . . , xn ∈ X}.

We first approximate the complexity to construct the game GM,N,Q
A1,A2

, assuming
that the membership to F1, F2, 1 and 2 can be checked in constant time. The

Preorder-Constrained Simulations for Program Refinement with Effects 15

.1,Q −→ .2,Q −→ · · · −→ Q-trace inclusion vQ

↑ ↑
...

...
↑ ↑

G1,2,QA1,A2
−→ G2,2,QA1,A2

−→ · · · −→ Q-trace inclusion vQ

↑ ↑

G1,1,QA1,A2
−→ G2,1,QA1,A2

−→ · · · −→ Q-trace inclusion vQ

Fig. 12: A generative spectrum of games GM,N,Q
A1,A2

and similarities .M,Q

number of positions of the game is O(|Σ|M × |X1| × |X2|), because Challenger’s
positions are elements of Σ[0,M−1] × X1 × X2, and Simulator’s positions are
elements of Σ[0,M] ×X1 ×X2 or {X} ×Σ[0,M] ×X1 ×X2.

For each pair (p, q) of positions, we approximate the complexity to determine
if a move is possible from p to q, by case analysis on the possible moves (see
Fig. 11).

– Case 1 . It suffices to check x a
 1 x

′, which can be done in constant time.
– Case 2 . It suffices to check x ∈ F1, which can be done in constant time.
– Case 3 . It suffices to check |w| < M , which can be done in constant time,

because M is a constant here.
– Case 4 . By the condition |w′| < N , w′ can be chosen from Σ[0,N−1]. Check-

ing y
w′

 2 y
′ is O(N − 1) time and hence constant time, and checking wQw′

is also constant time, because both M and N are constants here. Overall,
this move can be determined in O(|Σ|N) time.

– Case 5 . This case is similar to the case 4 , with extra choice of y′ from
F2 ⊆ X2. This move can be determined in O(|Σ|N × |X2|) time.

Once the game is constructed, its winning region (i.e. the positions from
which Simulator is winning) can be determined in O(|Σ|M × |X1| × |X2|) time
multiplied by O(|Σ|N × |X2|) time, because the game is a reachability game.
Consequently, whether Simulator is winning from a state (ε, x, y) in GM,N,Q

A1,A2
can

be checked in O(|Σ|M+N × |X1| × |X2|2) time. ut

6 Preorder-Constrained Simulation Up-To

We here integrate the up-to technique [32] into preorder-constrained simulation.
The technique is widely used for enhancing (bi-)simulation notions. It allows
a smaller relation, which is not necessarily a simulation itself, to witness trace
inclusion. The up-to version of preorder-constrained simulation is additionally
parameterised by a pair of binary relations (R1, R2) on state spaces. The follow-
ing definition is obtained by simply replacing R in Def. 3 with R1;R;R2, where
; is the composition of binary relations.

16 K. Muroya et al.

x x11

x12x2

0 −1 −1

−130

y

y1

y2

0

0

Fig. 13: A (1,≥+)-simulation up-to

x

x1x2

0 0

0

y

0

Fig. 14: An unsound (1,≥+)-simulation
up-to

Definition 6 ((M,Q)-simulations up to (R1, R2)). Let R1 ⊆ X1 × X1 and
R2 ⊆ X2×X2. For each M ∈ N+, a binary relation R ⊆ X1×X2 is an (M,Q)-
simulation up to (R1, R2) from A1 to A2 if, for any (x, y) ∈ R, FinalM (see
Def. 3) and U-StepM below hold.

U-StepM For each w = a1 . . . aM ∈ ΣM and x1 . . . xM ∈ XM
1 such that x a1 1

x1
a2 1 · · ·

aM 1 xM , there exist k ∈ {1, . . . ,M}, w′ ∈ Σ∗ and y′ ∈ X2 such

that a1 · · · akQw′, y
w′

 2 y
′ and xk(R1;R;R2)y

′.

The question now is when a preorder-constrained simulation up to (R1, R2)
is sound with respect to Q-trace inclusion. The relations R1 and R2 cannot be
arbitrary, and they should be consistent to the Q-trace inclusion vQ. Formally,
they should satisfy R1 ⊆ vQ1

and R2 ⊆ vQ2
for some preorders Q1,Q2 ⊆

Σ∗ ×Σ∗ such that (Q1;Q;Q2) ⊆ Q.

Example 9 ((M,≥+)-constrained simulation up to (v≥+
,v≥+

)). Recall the pre-
order ≥+ from Ex. 5(6). It is feasible to use a ≥+-constrained simulation up to
(v≥+

,v≥+
). The first reason is that the consistence property is satisfied, thanks

to transitivity of the preorder ≥+. The second reason is that the ≥+-trace in-
clusion v≥+ between two states of the same NA can be checked efficiently with
a graph algorithm. Specifically, for two states x, x′ of the same NA, x v≥+

x′

holds if the summation of weights on each path from x to x′ is non-negative.

Example 10 ((1,≥+)-simulation up-to). For a pair of NAs shown in Fig. 13,
x v≥+

y holds, but there exists no (1,≥+)-simulation that relates x with y. In
contrast, a relation R = {(x, y), (x12, y1), (x2, y2)} is a (1,≥+)-simulation up to
(v≥+

,v≥+
). The pair (x, y) satisfies the condition U-Step1 of Def. 6, because we

have x11 v≥+ x12 R y1 v≥+ y1. The up-to allows us to move U-Step1 towards
the accepting state x2, that is, it allows us to deal with U-Step1 of (x12, y1)
instead of (x11, y1).

However, the consistence property (Q1;Q;Q2) ⊆ Q is not enough to achieve
soundness. A naive combination of the weak simulation notion, which coincides
with our similarity .1,=rem{τ}

, and an up-to technique is known to be unsound,
and requires special care [30,31]. The following counterexample is inspired by
the one for weak simulation from the literature [30,31].

Example 11 (unsound (1,≥+)-simulation up-to). For a pair of NAs shown in
Fig. 14, x v≥+ y does not hold, because no accepting state is reachable from y.

Preorder-Constrained Simulations for Program Refinement with Effects 17

However, a relation {(x, y)} is a (1,≥+)-simulation up to (v≥+
,v≥+

). The pair
(x, y) indeed satisfies U-Step1, because x1 v≥+ x R y v≥+ y. Here, the up-to
allows us to move U-Step1 away from the accepting state x2: namely, it allows
us to deal with U-Step1 of (x, y) instead of (x1, y).

From the two examples above, we can extract an additional condition on the
preorders Q,Q1,Q2, namely on Q1. We can observe that, while it is safe to move
U-StepM toward an accepting state (Ex. 10), it is unsafe to move it away from
an accepting state (Ex. 11), for the sake of soundness. To prohibit the unsafe
move, the additional condition is required, namely wQ1w

′ =⇒ |w| ≥ |w′|.
Examples of such Q1 are the equality =, the preorder ≥̇ induced by ≥ ⊆ N×N,
the inverse (⊆sub)

−1, and ⊆∗ (see Ex. 5).
The condition is inspired by a soundness criterion for counting simulation

up-to [27, Def. 4.3.13]. A similar idea can be found in Pous’ work [30,31] on
weak simulation up-to.

Theorem 2 ((†) soundness). Let M ∈ N+. Let R ⊆ X1×X2, R1 ⊆ vQ1
and

R2 ⊆ vQ2 be binary relations, for preorders Q1,Q2 ⊆ Σ∗ × Σ∗ such that (i)
(Q1;Q;Q2) ⊆ Q and (ii) wQ1w

′ =⇒ |w| ≥ |w′|. If R is an (M,Q)-simulation
up to (R1, R2), it holds that xRy =⇒ x vQ y for any (x, y) ∈ X1 ×X2.

Example 12 (weak simulation up to “expansion/contraction”). Let Qe be a pre-
order =rem{τ} ∩ ≥̇. The (1,Qe)-similarity .1,Qe

is akin to expansion [34] and
contraction [33] that have been used with an up-to technique. It is indeed valid
to have the weak simulation up to the similarity .1,Qe . More precisely, we can
have a (1,=rem{τ})-simulation, which is the weak simulation, up to (.1,Qe

,=).
The three preorders =rem{τ} , Qe and = satisfy the two conditions in Thm. 2;
we have (Qe; =rem{τ} ; =) ⊆ =rem{τ} , and the preorder Qe satisfies Qe ⊆ ≥̇. We
also have .1,Qe

⊆ vQe
by soundness (Thm. 1), and = ⊆ v=.

7 Related Work

Our two-player game GM,N,Q
A1,A2

is similar to buffered simulation game [17,16].
While ours is for NAs with finite languages, the latter is for Büchi automata.
We contribute to coinductively defining the simulations and investigating the
generative spectrum.

Quantitative simulation notions are known for weighted automata: many are
for probabilistic systems [24,19,15]; a general simulation notion for automata
weighted with semirings (e.g. R with + and ×, and R with max and + a.k.a.
tropical semiring) was introduced as a matrix over real numbers [37].

Preorder-constrained simulations are defined for NAs, but can be quantita-
tive, in the sense that they can compare lengths of accepted runs (e.g. using
the preorder ≥̇). Known (bi-)simulation notions such as expansion [34] and con-
traction [33] are also capable of such quantitative comparison. As mentioned in
Ex. 12, the (1,=rem{τ} ∩ ≥̇)-similarity is akin to these (bi-)simulation notions
seen as simulation notions.

18 K. Muroya et al.

Prop. 4 suggests that we can reduce the problem of checking refinement
between programs to determining a winning region of the reachability game
GM,N,Q
A1,A2

. Algorithmic game semantics [2,20] is another approach to reduce pro-
gram refinement to solving games. A notable difference is that algorithmic game
semantics restricts types of programs, while our approach would require a pro-
gram t to induce a finite automaton AΩ(t).

Our work is not the first to characterise or refine the LT–BT spectrum using
a simulation notion or a game. It would be interesting to compare existing work,
e.g. [10,8], to ours in details. Ordered words are not a new research topic either,
but the literature seems to focus on decidability of their theory, e.g. [22,23].

8 Conclusion and Future Work

We proposed a notion of preorder-constrained simulation. Being parameterised
by the observation preorder on traces, it can uniformly characterise quantita-
tive notions of observational refinement for different algebraic effects: exception,
nondeterminism and I/O. We demonstrated this using reduction semantics for
the LSC.

Being additionally parameterised by the look-ahead bound, preorder-const-
rained simulations form a generative spectrum. Its “limit” is given by a novel
generalisation of trace inclusion. The spectrum is generative in the sense that it
can be instantiated variously according to the observation preorder.

We additionally presented a characterisation of preorder-constrained simu-
lation as a two-player reachability game, and showed that preorder-constrained
similarity can be determined in polynomial time in the finite setting. Finally, we
studied enhancement of preorder-constrained simulation, showing how to inte-
grate an up-to technique, in terms of observation preorders.

One direction of future work is to extend the characterisation of program
refinement to probabilistic choice. This would require preorder-constrained sim-
ulation to work on weighted automata instead of NAs. One can try to ac-
commodate probabilistic choice into the current work, using the preorder ≤+,
but a naive approach does not work. It results in a false refinement such as
or0.5(1, 1) v≤+

or0.5(0, 1), where or0.5 is an operation that chooses either ar-
gument with probability 0.5. It would also be interesting to connect preorder-
constrained simulation to a generic metatheory of algebraic effects [18,35].

Another future work is to develop a methodology to constructing a preorder-
constrained simulation. For the automaton AΩ induced by a signature Ω, it
would be particularly important to construct a preorder-constrained simulation
that is closed under term construction. Such a simulation would characterise con-
textual refinement, which asserts refinement between two terms in an arbitrary
context. Counting simulation was originally used in this way [27].

Acknowledgments. We are grateful to Ichiro Hasuo and Shigeru Chiba for insightful
comments. The first and second authors are supported by JST, ACT-X Grant No.
JPMJAX190U, Japan, and JSPS, KAKENHI Project No. 22K17850, Japan. The third

Preorder-Constrained Simulations for Program Refinement with Effects 19

author is supported by JST ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603).

References

1. Abramsky, S.: The lazy lambda-calculus, p. 65–117. Addison Wesley (1990)
2. Abramsky, S.: Algorithmic Game Semantics, NATO Science Series, vol. 62,

pp. 21–47. Springer Netherlands, Dordrecht (2002). https://doi.org/10.1007/
978-94-010-0413-8_2, https://_doi.org/10.1007/978-94-010-0413-8_2

3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: ICFP
2014. pp. 363–376. ACM (2014). https://doi.org/10.1145/2628136.2628154

4. Accattoli, B., Dal Lago, U., Vanoni, G.: The machinery of interaction. In: PPDP
’20: 22nd International Symposium on Principles and Practice of Declarative
Programming, Bologna, Italy, 9-10 September, 2020. pp. 4:1–4:15. ACM (2020),
https://doi.org/10.1145/3414080.3414108

5. Accattoli, B., Kesner, D.: The structural lambda-calculus. In: CSL 2010. vol. 6247,
pp. 381–395. Springer (2010). https://doi.org/10.1007/978-3-642-15205-4_30

6. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
7. Banerjee, A., Pal, B., Das, S., Kumar, A., Dasgupta, P.: Test generation games

from formal specifications. In: Sentovich, E. (ed.) Proceedings of the 43rd Design
Automation Conference, DAC 2006, San Francisco, CA, USA, July 24-28, 2006.
pp. 827–832. ACM (2006), https://doi.org/10.1145/1146909.1147120

8. Bisping, B., Jansen, D.N., Nestmann, U.: Deciding all behavioral equivalences at
once: A game for linear-time-branching-time spectroscopy. Log. Methods Comput.
Sci. 18(3) (2022), https://doi.org/10.46298/lmcs-18(3:19)2022

9. Cormie-Bowins, E., van Breugel, F.: Measuring progress of probabilistic LTL
model checking. In: Wiklicky, H., Massink, M. (eds.) Proceedings 10th Workshop
on Quantitative Aspects of Programming Languages and Systems, QAPL 2012,
Tallinn, Estonia, 31 March and 1 April 2012. EPTCS, vol. 85, pp. 33–47 (2012),
https://doi.org/10.4204/EPTCS.85.3

10. de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M., Romero-Hernández,
D.: Unifying the linear time-branching time spectrum of process semantics. Log.
Methods Comput. Sci. 9(2) (2013), https://doi.org/10.2168/LMCS-9(2:11)2013

11. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence, Beijing, China, August 3-
9, 2013. pp. 854–860. IJCAI/AAAI (2013), http://www.aaai.org/ocs/index.php/
IJCAI/IJCAI13/paper/view/6997

12. de Frutos-Escrig, D., Gregorio-Rodríguez, C.: Constrained simulations, nested sim-
ulation semantics and counting bisimulations. In: Pimentel, E. (ed.) Proceed-
ings of the Seventh Spanish Conference on Programming and Computer Lan-
guages, PROLE 2007, Zaragoza, Spain, September 12-14, 2007. Electronic Notes
in Theoretical Computer Science, vol. 206, pp. 41–58. Elsevier (2007), https:
//doi.org/10.1016/j.entcs.2008.03.074

13. van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract).
In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR ’90, Theories of Concurrency:
Unification and Extension, Amsterdam, The Netherlands, August 27-30, 1990,
Proceedings. Lecture Notes in Computer Science, vol. 458, pp. 278–297. Springer
(1990), https://doi.org/10.1007/BFb0039066

https://doi.org/10.1007/978-94-010-0413-8_2
https://doi.org/10.1007/978-94-010-0413-8_2
https://doi.org/10.1007/978-94-010-0413-8_2
https://doi.org/10.1007/978-94-010-0413-8_2
https://_doi.org/10.1007/978-94-010-0413-8_2
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1145/3414080.3414108
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1145/1146909.1147120
https://doi.org/10.46298/lmcs-18(3:19)2022
https://doi.org/10.4204/EPTCS.85.3
https://doi.org/10.2168/LMCS-9(2:11)2013
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1016/j.entcs.2008.03.074
https://doi.org/10.1016/j.entcs.2008.03.074
https://doi.org/10.1007/BFb0039066

20 K. Muroya et al.

14. van Glabbeek, R.J.: The linear time - branching time spectrum II. In: Best, E. (ed.)
CONCUR ’93, 4th International Conference on Concurrency Theory, Hildesheim,
Germany, August 23-26, 1993, Proceedings. Lecture Notes in Computer Science,
vol. 715, pp. 66–81. Springer (1993), https://doi.org/10.1007/3-540-57208-2_6

15. Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327(1-2),
71–108 (2004), https://doi.org/10.1016/j.tcs.2004.07.022

16. Hutagalung, M.: Buffered Simulation for Büchi Automata. Ph.D. thesis, Uni-
versity of Kassel, Germany (2019), https://kobra.uni-kassel.de/bitstream/handle/
123456789/11329/DissertationMilkaHutagalung.pdf?sequence=7&isAllowed=y

17. Hutagalung, M., Lange, M., Lozes, É.: Buffered simulation games for büchi au-
tomata. In: Ésik, Z., Fülöp, Z. (eds.) Proceedings 14th International Conference on
Automata and Formal Languages, AFL 2014, Szeged, Hungary, May 27-29, 2014.
EPTCS, vol. 151, pp. 286–300 (2014), https://doi.org/10.4204/EPTCS.151.20

18. Johann, P., Simpson, A., Voigtländer, J.: A generic operational metatheory for
algebraic effects. In: Proceedings of the 25th Annual IEEE Symposium on Logic in
Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom. pp.
209–218. IEEE Computer Society (2010), https://doi.org/10.1109/LICS.2010.29

19. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proceedings of the Sixth Annual Symposium on Logic in Computer Science
(LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991. pp. 266–277. IEEE
Computer Society (1991), https://doi.org/10.1109/LICS.1991.151651

20. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Algorithmic
probabilistic game semantics - playing games with automata. Formal Methods
Syst. Des. 43(2), 285–312 (2013), https://doi.org/10.1007/s10703-012-0173-1

21. Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental bisimu-
lation. In: Mislove, M.W., Ouaknine, J. (eds.) Twenty-seventh Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2011, Pittsburgh,
PA, USA, May 25-28, 2011. Electronic Notes in Theoretical Computer Science,
vol. 276, pp. 215–235. Elsevier (2011), https://doi.org/10.1016/j.entcs.2011.09.023

22. Kuske, D.: Theories of orders on the set of words. RAIRO Theor. Informatics Appl.
40(1), 53–74 (2006), https://doi.org/10.1051/ita:2005039

23. Kuske, D., Zetzsche, G.: Languages ordered by the subword order. In: Bojanczyk,
M., Simpson, A. (eds.) Foundations of Software Science and Computation Struc-
tures - 22nd International Conference, FOSSACS 2019, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings. Lecture Notes in Com-
puter Science, vol. 11425, pp. 348–364. Springer (2019), https://doi.org/10.1007/
978-3-030-17127-8_20

24. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991), https://doi.org/10.1016/0890-5401(91)90030-6

25. Morgenstern, A., Schneider, K.: A LTL fragment for GR(1)-synthesis. In: Reich, J.,
Finkbeiner, B. (eds.) Proceedings International Workshop on Interactions, Games
and Protocols, iWIGP 2011, Saarbrücken, Germany, 27th March 2011. EPTCS,
vol. 50, pp. 33–45 (2011), https://doi.org/10.4204/EPTCS.50.3

26. Morris Jr, J.H.: Lambda-calculus models of programming languages. Ph.D. the-
sis, Massachusetts Institute of Technology (1969), https://dspace.mit.edu/handle/
1721.1/64850

27. Muroya, K.: Hypernet semantics of programming languages. Ph.D. thesis, Uni-
versity of Birmingham, UK (2020), http://ethos.bl.uk/OrderDetails.do?uin=uk.
bl.ethos.817915

https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/j.tcs.2004.07.022
https://kobra.uni-kassel.de/bitstream/handle/123456789/11329/DissertationMilkaHutagalung.pdf?sequence=7&isAllowed=y
https://kobra.uni-kassel.de/bitstream/handle/123456789/11329/DissertationMilkaHutagalung.pdf?sequence=7&isAllowed=y
https://doi.org/10.4204/EPTCS.151.20
https://doi.org/10.1109/LICS.2010.29
https://doi.org/10.1109/LICS.1991.151651
https://doi.org/10.1007/s10703-012-0173-1
https://doi.org/10.1016/j.entcs.2011.09.023
https://doi.org/10.1051/ita:2005039
https://doi.org/10.1007/978-3-030-17127-8_20
https://doi.org/10.1007/978-3-030-17127-8_20
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.4204/EPTCS.50.3
https://dspace.mit.edu/handle/1721.1/64850
https://dspace.mit.edu/handle/1721.1/64850
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.817915
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.817915

Preorder-Constrained Simulations for Program Refinement with Effects 21

28. Muscholl, A., Walukiewicz, I.: An NP-complete fragment of LTL. In: Calude, C.,
Calude, E., Dinneen, M.J. (eds.) Developments in Language Theory, 8th Inter-
national Conference, DLT 2004, Auckland, New Zealand, December 13-17, 2004,
Proceedings. Lecture Notes in Computer Science, vol. 3340, pp. 334–344. Springer
(2004), https://doi.org/10.1007/978-3-540-30550-7_28

29. Plotkin, G.D., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan,
M. (eds.) Foundations of Software Science and Computation Structures, 4th In-
ternational Conference, FOSSACS 2001 Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April
2-6, 2001, Proceedings. Lecture Notes in Computer Science, vol. 2030, pp. 1–24.
Springer (2001), https://doi.org/10.1007/3-540-45315-6_1

30. Pous, D.: Up-to techniques for weak bisimulation. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata, Languages and Pro-
gramming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July
11-15, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3580, pp. 730–
741. Springer (2005), https://doi.org/10.1007/11523468_59

31. Pous, D.: New up-to techniques for weak bisimulation. Theor. Comput. Sci. 380(1-
2), 164–180 (2007), https://doi.org/10.1016/j.tcs.2007.02.060

32. Sangiorgi, D.: On the bisimulation proof method. Mathematical Structures in Com-
puter Science 8(5), 447–479 (1998). https://doi.org/10.1017/S0960129598002527

33. Sangiorgi, D.: Equations, contractions, and unique solutions. ACM Trans. Comput.
Log. 18(1), 4:1–4:30 (2017), https://doi.org/10.1145/2971339

34. Sangiorgi, D., Milner, R.: The problem of "weak bisimulation up to". In: Cleave-
land, R. (ed.) CONCUR ’92, Third International Conference on Concurrency The-
ory, Stony Brook, NY, USA, August 24-27, 1992, Proceedings. Lecture Notes in
Computer Science, vol. 630, pp. 32–46. Springer (1992), https://doi.org/10.1007/
BFb0084781

35. Simpson, A., Voorneveld, N.F.W.: Behavioural equivalence via modalities for al-
gebraic effects. In: Ahmed, A. (ed.) Programming Languages and Systems - 27th
European Symposium on Programming, ESOP 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10801, pp. 300–326. Springer (2018), https://doi.org/10.1007/978-3-319-89884-1_
11

36. Tiuryn, J., Wand, M.: Untyped lambda-calculus with input-output. In: Kirchner,
H. (ed.) Trees in Algebra and Programming - CAAP’96, 21st International Col-
loquium, Linköping, Sweden, April, 22-24, 1996, Proceedings. Lecture Notes in
Computer Science, vol. 1059, pp. 317–329. Springer (1996), https://doi.org/10.
1007/3-540-61064-2_46

37. Urabe, N., Hasuo, I.: Generic forward and backward simulations III: quantitative
simulations by matrices. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014 - Con-
currency Theory - 25th International Conference, CONCUR 2014, Rome, Italy,
September 2-5, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8704,
pp. 451–466. Springer (2014), https://doi.org/10.1007/978-3-662-44584-6_31

38. Yachi, T., Sumii, E.: A sound and complete bisimulation for contextual equivalence
in λ-calculus with call/cc. In: Igarashi, A. (ed.) Programming Languages and Sys-
tems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21-23,
2016, Proceedings. Lecture Notes in Computer Science, vol. 10017, pp. 171–186
(2016), https://doi.org/10.1007/978-3-319-47958-3_10

https://doi.org/10.1007/978-3-540-30550-7_28
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/11523468_59
https://doi.org/10.1016/j.tcs.2007.02.060
https://doi.org/10.1017/S0960129598002527
https://doi.org/10.1017/S0960129598002527
https://doi.org/10.1145/2971339
https://doi.org/10.1007/BFb0084781
https://doi.org/10.1007/BFb0084781
https://doi.org/10.1007/978-3-319-89884-1_11
https://doi.org/10.1007/978-3-319-89884-1_11
https://doi.org/10.1007/3-540-61064-2_46
https://doi.org/10.1007/3-540-61064-2_46
https://doi.org/10.1007/978-3-662-44584-6_31
https://doi.org/10.1007/978-3-319-47958-3_10

22 K. Muroya et al.

x y

y′

w′R

(a) Final 1

where εQw′
x

xk

xn

y

y′w

w′R

R

(b) Step∞ (i) where a1 · · · akQw′
x

xn

y

y′

w w′R

(c) Step∞ (ii) where wQw′

Fig. 15: Conditions of Def. 7. Black parts are universally quantified, and magenta
parts are existentially quantified.

A Completeness

It is possible to adjust the definition of preorder-constrained simulation (Def. 3)
and obtain a complete simulation notion with respect to Q-trace inclusion.

Definition 7. A binary relation R ⊆ X1 × X2 is a Q-constrained simulation
(Q-simulation in short) from A1 to A2 if, for any (x, y) ∈ R, Final1 and the
following Step∞ hold.

Step∞ For each a1 . . . an ∈ Σ+ and x1 . . . xn ∈ X+
1 such that x a1 1 x1

a2 1

· · · an 1 xn and xn ∈ F1, there exist k ∈ {1, . . . , n}, w′ ∈ Σ∗ and y′ ∈ X2

such that (1) a1 · · · akQw′; (2) y
w′

 2 y
′; and (3-i) xkRy′, or (3-ii) k = n

and y′ ∈ F2.

Fig. 15 illustrates the conditions of Def. 7. The condition Final 1 is an instance
of FinalM (see also Fig. 6). The condition Step∞ has two possibilities (i) and
(ii), due to the clauses (3-i) and (3-ii). Note that Step∞ is not quite a limit of
StepM . While the length of the sequence x w

 xM is restricted to M in StepM ,
the length n of the sequence x

w
 xn in Step∞ can be an arbitrary positive

number. Additionally, the last state xn is required to be accepting, i.e. xn ∈ F1.

Theorem 3 ((†) soundness and completeness). For any (x, y) ∈ X1 ×X2,
x vQ y ⇐⇒ x .Q y. ut

We note that it is the extra clause of the definition of Q-simulations, namely
(3-ii) of Step∞, that makes the completeness possible.

Corollary 3 (correctness of Q-simulations wrt. refinement).

1. For any t, u ∈ TΩerr , t .Q̇ u ⇐⇒ t �Qerr u.
2. For any t, u ∈ TΩnd

, t .Q̇∩=rem{τ}∪Ωnd

u ⇐⇒ t �Qnd u.

3. For any t, u ∈ TΩio , t .Q̇∩=rem{τ}
u ⇐⇒ t �Qio u. ut

Whereas Q-counting simulation (for Q ⊆ N × N) is defined for NAs (see
Def. 2), the definition is tailored to branching-free NAs all whose accepting states
are stuck states. The NA AΩerr is an example. For these automata, preorder-
constrained simulation indeed generalises counting simulation. However, the op-
posite does not hold.

Preorder-Constrained Simulations for Program Refinement with Effects 23

x

x1

x2

a

a
a

y

y1
a

Fig. 16: Branching-free NAs with a trivial =̇-simulation

Proposition 5 (Q-counting simulation being Q̇-simulation). If A1 is branching-
free and all its accepting states are stuck states, then each Q-counting simulation
from A1 to A2 is also a Q̇-simulation from A1 to A2. ut

Example 13 (Q̇-simulation not being Q-counting simulation). For the pair of
branching-free NAs shown in Fig. 16, {(x, y)} is a =̇-simulation, because these
NAs have no accepting states. However, there exists no =-counting simulation
that includes (x, y). If such a simulation R exists, (x1, y1) ∈ R must hold by
C-Step, but (x1, y1) does not satisfy C-Step.

The monotonicity property satisfied by (M,Q)-simulations can be extended
to Q-simulations.

Lemma 4 ((†) monotonicity of Step). Let M ∈ N+.

1. StepM ∧ FinalM =⇒ Step∞

Corollary 4 (monotonicity). Let M ∈ N+. Each (M,Q)-simulation from A1

to A2 is also a Q-simulation from A1 to A2. ut

Notably, we do not need to modify the definition of two-player games GM,N,Q
A1,A2

;
we can simply set M = N = ∞ to achieve games that correspond with Q-
simulations. We can extend the spectrum in Fig. 12 and obtain a generative
spectrum shown in Fig. 17.

Lemma 5 (monotonicity). Let M,N ∈ N+. If Simulator is winning from a
state (w, x, y) in GM,N,Q

A1,A2
, Simulator is also winning from the state in G∞,∞,QA1,A2

.
ut

Proposition 6 (correctness). Simulator is winning from a state (ε, x, y) in
G∞,∞,QA1,A2

, if and only if x .Q y. ut

B Connection to Logical Implication

We briefly investigate the relationship between Q-trace inclusion and logics,
namely fragments of the linear temporal logic (LTL), aiming at a potential ap-
plication to model checking.

24 K. Muroya et al.

.1,Q −→ .2,Q −→ · · · −→ .Q ←→ Q-trace inclusion vQ

l l l

G1,∞,QA1,A2
−→ G2,∞,QA1,A2

−→ · · · −→ G∞,∞,QA1,A2

↑ ↑ ↑
...

...
...

↑ ↑ ↑

G1,2,QA1,A2
−→ G2,2,QA1,A2

−→ · · · −→ G∞,2,QA1,A2

↑ ↑ ↑

G1,1,QA1,A2
−→ G2,1,QA1,A2

−→ · · · −→ G∞,1,QA1,A2

Fig. 17: A generative spectrum of games GM,N,Q
A1,A2

and similarities .M,Q,.Q

Definition 8 (LTL, see e.g. [6]). A linear temporal logic formula (LTL for-
mula) over a set AP is given by the following BNF notation where p ∈ AP.

ϕ ::= true | false | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ (1)

The semantics of an LTL formula ϕ is usually defined as a subset JϕK ⊆
(2AP)ω of infinite words over 2AP. We use its finitary variant here, as we are
focusing on finite traces.

Definition 9 (LTL semantics on finite traces, cf. [11]). For an LTL for-
mula ϕ, we inductively define JϕKfin ⊆ (2AP)∗ as follows:
– JtrueKfin := (2AP)∗

– JpKfin := {a1 . . . an | n > 0, p ∈ a1}
– Jϕ1 ∨ ϕ2Kfin := Jϕ1Kfin ∪ Jϕ2Kfin

– JfalseKfin := ∅
– J¬pKfin := {a1 . . . an | n > 0, p /∈ a1}
– Jϕ1 ∧ ϕ2Kfin := Jϕ1Kfin ∩ Jϕ2Kfin

– JXϕKfin := {a1 . . . an | n > 0, a2 . . . an ∈ JϕKfin}

– Jϕ1 U ϕ2Kfin :=

{
a1 . . . an

∣∣∣∣∣ ∃i ∈ {1, . . . , n}.
(
(∀j < i. aj . . . an ∈ Jϕ1Kfin)

∧ ai . . . an ∈ Jϕ2Kfin

)}

– Jϕ1 R ϕ2Kfin :=

{
a1 . . . an

∣∣∣∣∣ ∀i ∈ {1, . . . , n}.
(
(∃j < i. aj . . . an ∈ Jϕ1Kfin)

∨ ai . . . an ∈ Jϕ2Kfin

)}
Let A = (X,Σ, , F) be a (2AP)-labelled NA. For x ∈ X, we write x |=fin ϕ
when L∗(x) ⊆ JϕKfin. We also use the following syntactic sugar: Fϕ := true U ϕ
and Gϕ := false R ϕ.

For a state x of an NA A, we write x |=fin ϕ when L∗A(x) ⊆ JϕKfin. Then finite
trace inclusion L∗A1

(x) ⊆ L∗A2
(y) implies y |=fin ϕ =⇒ x |=fin ϕ for each LTL

formula ϕ. If we replace L∗A1
(x) ⊆ L∗A2

(y) with x vQ y, what happens to ϕ? We
attempt to answer this question, using preorders from Ex. 5 and fragments of
LTL found in the literature [28,25,7].

The ⊆∗-trace inclusion implies implication of a fragment of LTL “without”
negation.

Preorder-Constrained Simulations for Program Refinement with Effects 25

Proposition 7. If x v⊆∗ y then y |=fin ϕ =⇒ x |=fin ϕ for each ϕ given by:

ϕ ::= true | false | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ . (2)

We can consider the dual. If we replace ⊆∗ with its inverse ⊇∗, then ¬p in
(2) becomes p. This fragment is known as a positive fragment (LTL+) [9].

Next, the ⊆sub-trace inclusion implies implication of safety properties guarded
by G.

Proposition 8. If x v⊆sub
y then y |=fin ϕ⇒ x |=fin ϕ for each ϕ given by:

ϕ ::= true | false | ϕ ∨ ϕ | ϕ ∧ ϕ | Gψ , ψ ::= p | ¬p | ψ ∨ ψ | ψ ∧ ψ | ϕ . (3)

We can again consider the dual. Let ⊇sup be the superstring relation defined
by w ⊇sup w′

def⇔ w′ ⊆sub w. Then ⊇sup-trace inclusion implies implication of
liveness properties guarded by F: namely, Gψ in Prop. 8 is replaced by Fψ.

Finally, we can combine Ex. 5(4) with Ex. 5(5), and define Q so that
a1 . . . akQa

′
1 . . . a

′
k′ means k ≤ k′ and existence of j1 < · · · < jk such that

ai ⊆ a′ji for each i ∈ {1, . . . , k}. Then Q-trace inclusion implies implication of
ϕ’s which are given by removing p from (3).

C Omitted Proofs

C.1 Proof of Prop. 1

Proof. This is a consequence of Cor. 3 and Prop. 5.

C.2 Proof of Prop. 5

Proof. Let R ⊆ X1×X2 be a Q-counting simulation, and take an arbitrary pair
(x, y) ∈ R. When x ∈ F1, because the pair satisfies C-Final , y ∈ F1 follows.
Therefore (x, y) ∈ R also satisfies Final 1.

When (x, y) ∈ R satisfies C-Step, let a1 · · · an ∈ Σ+ and x1 · · ·xn ∈ X+
1

satisfy x a1 1 x1
a2 1 · · ·

an 1 xn and xn ∈ F1. There are two possibilities.

– When the condition (1) holds, there exist x′′ ∈ X1 and w ∈ Σ∗ such that
x1

w
 1 x

′′ 6 1 and x′′ 6∈ F1. Because A1 is branching-free and its accepting
states are stuck states, xn 6 1 and xn = x′′ must hold. We have xn ∈ F1

and x′′ 6∈ F1, which is contradiction.
– When the condition (2) holds, there exist x′′ ∈ X1, y′ ∈ X2 and w,w′ ∈
Σ∗, such that x1

w
 1 x

′′, y
w′

 2 y
′, |a1w|Q|w′|, and x′′Ry′. Because A1 is

branching-free and its accepting states are stuck states, xn 6 1 holds and
there exists k ∈ {1, . . . , n} such that x′′ = xk and w = a2 · · · ak. Therefore,
the conditions (1), (2) and (3-i) of Step∞ holds.

26 K. Muroya et al.

C.3 Proof of Prop. 2

Proof. The proof is straightforward by definitions (i.e. Def. 1 and Def. 4).

C.4 Proof of Prop. 7

Proof. It suffices to prove the following:

∀ϕ : generated by the BNF in Prop. 7. ∀w ∈ Σ∗. ∀w′ ∈ Σ∗.
w ⊆∗ w′ ∧ w′ ∈ JϕKfin =⇒ w ∈ JϕKfin . (4)

We prove it by the induction on the structure of ϕ. Without loss of generality,
we can assume |w| = |w′|. Let w = a1, . . . , an and w′ = a′1 . . . a

′
n.

(When ϕ = tt) We always have a1 . . . an ∈ JϕKfin.
(When ϕ = ff) It contradicts to a′1 . . . a′n ∈ JϕKfin.
(When ϕ = ¬p) As p /∈ a′1, we have p /∈ a1.
(When ϕ = ϕ1 ∨ ϕ2) By a′1 . . . a′n ∈ Jϕ1Kfin ∪ Jϕ2Kfin and the induction hypoth-

esis, we have a1 . . . an ∈ Jϕ1Kfin ∪ Jϕ2Kfin.
(When ϕ = ϕ1 ∧ ϕ2) Similar to the above.
(When ϕ = Xϕ′) By a′2 . . . a

′
n ∈ Jϕ′K and the induction hypothesis, we have

a2 . . . an ∈ Jϕ′K .
(When ϕ = ϕ1 U ϕ2) By ∃i ∈ {1, . . . , n}. ∀j < i. a′j . . . a

′
n ∈ Jϕ1Kfin and a′i . . . a′n ∈

Jϕ2Kfin and the induction hypothesis, we have ∃i ∈ {1, . . . , n}. ∀j < i. aj . . . an ∈
Jϕ1Kfin and ai . . . an ∈ Jϕ2Kfin .

(When ϕ = ϕ1 R ϕ2) Similar to the above.

C.5 Proof of Prop. 8

Proof. It suffices to prove the following two.

∀ϕ : generated by the BNF in Prop. 8.
∀w = a1 . . . an ∈ Σ∗. ∀w′ = a′1 . . . a

′
n′ ∈ Σ∗.

w ⊆sub w
′ ∧ w′ ∈ JϕKfin =⇒ w ∈ JϕKfin (5)

∀ψ : generated by the BNF in Prop. 8.

∀w = a1 . . . an ∈ Σ+. ∀w′ = a′1 . . . a
′
n′ ∈ Σ+.

w ⊆sub w
′ ∧ w′ ∈ JϕKfin ∧ a1 = a′1 =⇒ w ∈ JϕKfin (6)

We prove it by the mutual induction on the structures of ϕ and ψ.

(When ϕ = tt, ff, ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2) Similar to the proof of Prop. 7.
(When ϕ = Gψ) In this case, we have a′i . . . a′n′ ∈ JψKfin for each i ∈ {1, . . . , n′}.

By a1 . . . an ⊆sub a
′
1 . . . a

′
n′ and the induction hypothesis, we have aj . . . an ∈

JψKfin for each j ∈ {1, . . . , n}.
(When ψ = p or ¬p) Immediate by a1 = a′1 .
(When ψ = ψ1 ∨ ψ2 or ψ1 ∧ ψ2) Similar to the proof of Prop. 7.
(When ψ = ϕ) Immediate.

Preorder-Constrained Simulations for Program Refinement with Effects 27

C.6 Proof of Lem. 3

Proof. The parameters M and N constrain Simulator’s moves only. The bigger
M or N is, the more moves Simulator can make, and hence the more positions
Simulator can be winning from.

C.7 Proof of Prop. 3

Proof. We first prove the ⇐= direction, i.e. the “if” part, assuming the exis-
tence of an (M,Q)-simulation R such that xRy. We fix Simulator’s strategy so
that Simulator chooses 4 and moves to (ε, x′, y′) if that is possible and x′Ry′,
and chooses 3 or 5 otherwise. For an arbitrary strategy of Challenger, our
goal is to show that Simulator is winning from (ε, x, y). Specifically, we prove
the following (?): from each position (ε, x0, y0) such that x0Ry0, either another
position (ε, x′0, y

′
0) such that x′0Ry′0 is reachable or Simulator wins.

We let the players play the game GM,∞,Q
A1,A2

from (ε, x0, y0), and pause the play
when Challenger makes a move 2 or Simulator makes a move 4 .

– If the play never ceases, Challenger keeps choosing 1 and Simulator only
chooses 3 .
• If Challenger gets stuck before making M moves, Simulator wins the

play.
• Otherwise, Challenger can make M moves of 1 . After the M moves

of Challenger, the position is necessarily (a1 · · · aM , xM , y0) such that
x0

a1···aM
 1 xM , since Simulator has only chosen 3 . Because R is an

(M,Q)-simulation, by StepM , there exist k ∈ {1, . . . ,M}, w′ ∈ Σ∗ and
y′0 ∈ X2 such that a1 · · · akQw′, x0

a1···ak
 1 xk

ak+1···aM
 1 xM , and xkRy′0.

∗ If k < M , Simulator should have chosen 4 after the k-th move of
Challenger, according to the strategy. This leads to a contradiction.

∗ Otherwise, k = M . This means that after the M -th move of Chal-
lenger, Simulator can (and has to, according to the strategy) choose
4 . This also leads to a contradiction.

– If the play ceases with Challenger choosing 2 , after the first choice of 2 ,
we are at a position (X, w, x′0, y0) such that x0

w
 1 x

′
0 ∈ F1 and |w| < M .

We have |w| < M because Simulator has only made moves 3 , if any. Since
R is an (M,Q)-simulation, by FinalM , there exist w′ ∈ Σ∗ and y′0 ∈ X2

such that wQw′ and y0
w′

 2 y
′
0 ∈ F2. Therefore Simulator can choose 5 and

win.
– If the play ceases with Simulator choosing 4 , the first choice of 4 changes

a position (w, x′0, y0) to (ε, x′0, y
′
0) for some y′0 ∈ X2 such that x′0Ry′0.

As a result, (?) holds. Consequently, from (ε, x, y), Simulator can either win or
infinitely continue a play (and win).

We next prove the =⇒ direction, i.e. the “only if” part, assuming that
Simulator is winning from the position (ε, x, y). We define R ⊆ X1 × X2 by
R := {(x′, y′) | Simulator is winning from (ε, x′, y′)}. It holds that xRy. For an
arbitrary pair (x′, y′) ∈ R, we prove that it satisfies FinalM and StepM .

28 K. Muroya et al.

FinalM We assume a sequence x′
w
 1 x

′′ ∈ F1 such that |w| < M .
– If |w| = 0, we have x′ = x′′ ∈ F1. From a position (ε, x′, y′), we let

Challenger choose 2 and move to (X, ε, x′, y′). Simulator is necessar-
ily winning from this position, and hence Simulator can choose 5 at
(X, ε, x′, y′). This means that there exist w′ ∈ Σ∗ and y′′ ∈ X2 such

that y′
w′

 2 y
′′ ∈ F2 and εQw′. Therefore (x′, y′) satisfies FinalM .

– Otherwise, i.e. if |w| > 0, from a position (ε, x′, y′), we let Challenger
choose 1 for |w| times along x′

w
 1 x

′′ and then choose 2 . Because
Simulator is winning from (ε, x′, y′), Simulator has a winning strategy
for the |w|+ 1 moves of Challenger.
• If the first |w|moves of Simulator according to the strategy are 3 , af-

ter Challenger’s |w|+1moves, we are at a position (X, w, x′′, y′). Sim-
ulator is winning from (ε, x′, y′) and necessarily from (X, w, x′′, y′).
Therefore, the strategy must let Simulator choose 5 at the position
(X, w, x′′, y′).

• Otherwise, i.e. if the first |w| moves of Simulator according to the
strategy are 3 interleaved with 4 , after Challenger’s |w|+1 moves,
we are at a position (X, w2, x

′′, y′′) for some w2 ∈ Σ∗ and y′′ ∈ X2

such that: there exist w1, w
′′ ∈ Σ∗ such that x′

w1
 1

w2
 1 x

′′ ∈ F1,

y′
w′′

 2 y′′ and w1Qw
′′. Simulator is necessarily winning from the

position (X, w2, x
′′, y′′). Therefore, the strategy must let Simulator

choose 5 at this position.
As a result, (x′, y′) satisfies FinalM . Note that Q is closed under con-
catenation.

StepM We assume a sequence x′
a1···aM
 1 xM . We let Challenger choose 1 forM

times. Because Simulator is winning from (ε, x′, y′), Simulator has a winning
strategy for the M moves of Challenger.
– If Simulator’s first move is 4 , the move changes a position (a1, x1, y

′)
to (ε, x1, y

′′) for some x1 ∈ X1 and y′′ ∈ X2. Simulator must be winning
from the position (ε, x1, y

′′), which means x1Ry′′.
– Otherwise, i.e. if the first 0 < k < M moves of Simulator are 3 and Sim-

ulator’s next move is 4 according to the strategy, the move 4 changes
a position (a1 · · · ak, xk, y′) to (ε, xk, y

′′) for some xk ∈ X1 and y′′ ∈ X2.

There exists w′ ∈ Σ∗ and we have a1 · · · akQw′ and y′
w′

 2 y
′′. Simulator

must be winning from the position (ε, xk, y
′′), which means xkRy′′.

As a result, (x′, y′) satisfies StepM .

Consequently, R is an (M,Q)-simulation.

C.8 Proof of Prop. 6

Proof. We first prove the ⇐= direction, i.e. the “if” part, assuming the existence
of aQ-simulation R such that xRy. We fix Simulator’s strategy so that Simulator
chooses 4 and moves to (ε, x′, y′) if that is possible and x′Ry′, and chooses 3
or 5 otherwise. For an arbitrary strategy of Challenger, our goal is to show that

Preorder-Constrained Simulations for Program Refinement with Effects 29

Simulator is winning from (ε, x, y). Specifically, we prove the following (?): from
each position (ε, x0, y0) such that x0Ry0, either another position (ε, x′0, y

′
0) such

that x′0Ry′0 is reachable or Simulator wins.
We let the players play the game G∞,∞,QA1,A2

from (ε, x0, y0), and pause the play
when Challenger makes a move 2 or Simulator makes a move 4 .

– If the play never ceases, Challenger keeps choosing 1 and Simulator only
chooses 3 .
• If Challenger gets stuck, Simulator wins the play.
• Otherwise, Simulator can win the infinite play by keep choosing 3 .

– If the play ceases with Challenger choosing 2 , after the first choice of 2 ,
we are at a position (X, w, x′0, y0) such that x0

w
 1 x

′
0 ∈ F1.

• If |w| = 0, i.e. w = ε, we have x0 = x′0 ∈ F1. By Final 1, there exist

w′ ∈ Σ∗ and y′0 ∈ X2 such that εQw′ and y0
w′

 2 y
′
0 ∈ F2. This means

that Simulator can choose 5 and win.
• Otherwise, |w| > 0. Because Simulator has only chosen 3 , by Step∞,

there exist w′ ∈ Σ∗ and y′0 ∈ X2 such that wQw′ and y0
w′

 2 y
′
0 ∈ F2.

This means that Simulator can choose 5 and win.
– If the play ceases with Simulator choosing 4 , the first choice of 4 changes

a position (w, x′0, y0) to (ε, x′0, y
′
0) for some y′0 ∈ X2 such that x′0Ry′0.

As a result, (?) holds. Consequently, from (ε, x, y), Simulator can either win or
infinitely continue a play (and win).

We next prove the =⇒ direction, i.e. the “only if” part, assuming that
Simulator is winning from the position (ε, x, y). We define R ⊆ X1 × X2 by
R := {(x′, y′) | Simulator is winning from (ε, x′, y′)}. It holds that xRy. For an
arbitrary pair (x′, y′) ∈ R, we prove that it satisfies Final 1 and Step∞.

Final 1 We assume that x′ ∈ F1. From a position (ε, x′, y′), we let Challenger
choose 2 and move to (X, ε, x′, y′). Simulator is necessarily winning from
this position, and hence Simulator can choose 5 at (X, ε, x′, y′). This means

that there exist w′ ∈ Σ∗ and y′′ ∈ X2 such that y′
w′

 2 y
′′ ∈ F2 and εQw′.

Therefore (x′, y′) satisfies Final 1.
Step∞ We assume a sequence x′

a1···an
 1 xn ∈ F1. We let Challenger choose 1

for n times, and then choose 2 , moving to a position (X, a1 · · · an, xn, y′).
Simulator must be winning from this position, which means that Simulator
can choose 5 . This means that there exist y′′ ∈ F2 and w′ ∈ Σ∗ such that

a1 · · · anQw′ and y′
w′

 2 y
′′. Therefore (x′, y′) satisfies Step∞.

Consequently, R is a Q-simulation.

	Preorder-Constrained Simulations for Program Refinement with Effects
	Introduction
	Preliminaries
	Nondeterministic Automata
	A Linear Substitution Calculus with Algebraic Effects

	Counting Simulation and its Deficiencies
	Preorder-Constrained Simulation
	Definition
	Soundness
	Basic Properties

	Game-Theoretic Characterisation
	Preorder-Constrained Simulation Up-To
	Related Work
	Conclusion and Future Work
	Completeness
	Connection to Logical Implication
	Omitted Proofs
	Proof of Prop. 1
	Proof of Prop. 5
	Proof of Prop. 2
	Proof of Prop. 7
	Proof of Prop. 8
	Proof of Lem. 3
	Proof of Prop. 3
	Proof of Prop. 6

