
A Graph-Rewriting Perspective of the Beta-Law

Dan R. Ghica1, Koko Muroya1,2, and Todd Waugh Ambridge1

1University of Birmingham
2RIMS, Kyoto University

This preliminary report studies a graphical version of
Plotkin’s call-by-value equational theory, in particular its
soundness with respect to operational semantics. Al-
though an equational theory is useful in safe program
transformation like compiler optimisation, proving its
soundness is not trivial, because it involves analysis of
interaction between evaluation flow and a particular sub-
program of interest. We observe that soundness can be
proved in a direct and generic way in the graphical setting,
using small-step semantics given by a graph-rewriting ab-
stract machine previously built for evaluation-cost analy-
sis. This would open up opportunities to think of a cost-
sensitive equational theory for compiler optimisation, and
to prove contextual equivalence directly in the presence of
language extensions.

1 Call-by-Value Equational The-
ory, Graphically

We first transfer Plotkin’s call-by-value equational the-
ory [5] to a graphical setting, assuming the graph repre-
sentation of terms that is inductively defined in Fig. 1.
We aim at the very basic lambda-calculus, whose terms
are defined by t, u ::= x | λx.t | t u Both variables and
abstractions are referred to as values. A term with no
free variables is said to be closed.

A graph G is directed, and may have n open incoming
edges (“input”) and m open outgoing edges (“output”),
in which case we say the graph G has interface (n,m)
and may write G(n,m). Nodes have specific degrees de-
termined by labels, of which λ and @ are taken from the
syntactical constructs (i.e. abstraction and application),
and !, ?, D and Cm are taken from the exponential frag-
ment of proof nets [1]. We use bold edges/nodes to rep-
resent a bunch of edges/nodes. A Cm-labelled node has
m inputs.

A dashed box, called !-box, delimits a graph of interface
G(1, n) and comes with one !-labelled node connected to
the unique input and n ?-labelled nodes connected to the
outputs. This !-box structure, taken from proof nets, is
used to manage duplicable sub-graphs. In particular, it
is used to represent only and all values, which captures
the fact that only a value can be substituted and hence
copied in the call-by-value evaluation.

The graph representation t† of a term t has always one
input (“root”), and each of its output corresponds to one
occurrence of a free variable of t. In the representation
(λx.t)† of abstraction, where the bound variable m ap-
pears m times in t, all m edges corresponds to occurrences
of x are connected to a Cm-labelled node.

λ

@

D

!

?

t
†

Cm

t
†

u
†

(λx. t =)†

(t u =)†

=x
†

x

x

!

?

D

Figure 1: Graph Representation of Terms

A graph-equation formula G =g H between graphs G
and H of the same interface is given by the following rules,
as well as the rules that make the graph-equation =g an
equivalence.

G ≺χ H
G =g H

(χ-rule)
G =g H

G[G] =g G[H]
(Cong)

A basic χ-rule is given by a relation ≺χ between graphs
of the same interface, parameterised by χ ∈ {λ,C,D, ?}.
All these relations are inspired by cut elimination of proof
nets [1]. The λ-rule models elimination of constructs λ
(abstraction) and @ (application), and the C-rule models
duplication of a value (i.e. a !-box). The other rules, D-
rules and ?-rules together models replacement of a single
occurrence of a variable with a value. The congruence rule
(Cong) involves a graph-context G that is a graph with
exactly one special node (“hole”) of label � and arbitrary
interface. Replacing the hole with a graph G yields a
graph G[G]. We illustrate these rules by an example, in
Appendix A.

The difference between our graphical theory and
Plotkin’s syntactical theory [5] lies in basic rules. Out
of the two syntactical basic rules, the α-rule λx.t =s

λy.(t[y/x]) (where y is not free in t) becomes trivial in
the graphical theory. Difference of variable names does
not change the shape of graph representation (recall that
variables labelling edges in Fig. 1 are auxiliary). The
other syntactical basic rule, the β-rule (λx.t) v =s t[v/x]
is now decomposed into four graphical basic rules (λ, C, D
and ?). This amounts to extend the lambda-calculus and
the syntactical theory with explicit substitutions t[x← u].
The decomposition in particular discloses duplication of
values as the C-rule.

1

2 Proving Soundness

The key property of an equational theory is soundness,
consistency with operational semantics. It ensures that
two terms equated by the theory are contextually equiva-
lent, i.e. indistinguishable in any contexts under the op-
erational semantics.

We turn the soundness theorem of the syntactical the-
ory [5, Thm. 5] graphical, by introducing a graphical ver-
sion of contextual equivalence. Like a context C is given
as a term with one “hole”, a graph-context G is defined
as a graph with exactly one special node (“hole”) of la-
bel � and arbitrary interface. Replacing the hole �(n,m)
with a graph G(n,m) of matching interface yields a graph
G[G].

We state soundness below with a black-box operational
semantics for now: let ⇓g be an “evaluation” relation be-
tween graphs of interface (1, 0). Recall that closed terms
are represented by graphs of this interface (1, 0).

Definition 2.1 (Graph-contextual equivalence). Two
graphs G1(n,m) and G2(n,m) are graph-contextually
equivalent, written as G1

∼=g G2, if for any graph con-
text G[�] that makes two graphs G[G1] and G[G2] of in-
terface (1, 0), G1 ⇓g H1 for some graph H1(1, 0) if and
only if G2 ⇓g H2 for some graph H2(1, 0), and moreover
H1 =g H2.

Theorem 2.2 (Soundness). For any graphs G and H of
interface (1, 0), if G =g H then G ∼=g H.

What matters in proving soundness, in particular con-
textual equivalence, is formulation of the operational se-
mantics ⇓g. In the usual syntactical setting, small-step
semantics is not preferred, because it makes control flow
of evaluation explicit by decomposing a program into a
context and a sub-term under evaluation. It tends to be
hard to analyse interaction between a particular sub-term
and the control flow. Plotkin indeed uses compositional
big-step semantics, which is proved to be equivalent to
small-step semantics.

However, our observation is that one can prove con-
textual equivalence directly using small-step semantics,
in a graphical setting. We use in particular the graph-
rewriting abstract machine, previously developed for
evaluation-cost analysis [3], as small-step semantics.1

This has a potential benefit of designing a cost-sensitive
equational theory, which could be used for compiler opti-
misation.

The graph-rewriting machine works on graph represen-
tation of a whole program, and notably models control
of evaluation as a selected edge of the graph. Evalua-
tion is modelled by two kinds of machine steps: search-
ing steps where the evaluation control is moved around
the graph to detect a redex, and rewriting steps where a
graph-rewriting rule is applied, resembling reduction of a
sub-term.

This low-level, less-structured nature of the machine
enables us to analyse the interaction between the evalu-
ation control and a particular sub-graph, and hence to
prove contextual equivalence, in a simple, step-wise way.
Namely, the interaction boils down to the following two

1The graph-rewriting abstract machine can be executed on ar-
bitrary closed terms, using our on-line visualiser: https://koko-m.
github.io/GoI-Visualiser/ .

situations. The first situation is when the evaluation con-
trol physically enters the sub-graph of interest, and the
second is when the evaluation control triggers a rewriting
that affects the sub-graph.

This proof idea is realised by the following notion of
U-simulation, a variant of simulation. We give a gen-
eral definition for a state transition system → with dis-
tinguished final states, where (·)+ denotes the transitive
closure. It is adapted from the one we used to prove a
version of beta-equivalence in the presence of an exotic
language extension [2].

Definition 2.3 (U-simulation). A binary relation R on
states is a U-simulation, if it satisfies the following two
conditions. (I) If σ1 R σ2 and a transition σ1 → σ′1 is
possible, then (i) there exists a graph state σ′2 such that
σ2 → σ′2 and σ′1 R

+ σ′2, or (ii) there exists a sequence
σ′1 →∗ σ′′1 of (possibly no) transitions such that σ′′1 R σ2.
(II) If σ1 R σ2 and no transition is possible from the graph
state σ1, no transition is possible from the graph state σ2
either. Moreover σ1 is a final state if and only if σ2 is a
final state.

Intuitively, a U-simulation R is the ordinary simulation
between two states (the condition (I-i) in the above defi-
nition), “Until” the left sequence of transitions is reduced
to the right sequence (the condition (I-ii)) up to the rela-
tion R itself. This is typically when the evaluation control
visits a sub-graph of interest. The sub-graph may not be
visited, which resembles the weak until operator of linear
temporal logic. The sub-graph may be duplicated by a
rewriting step, which is captured by the transitive closure
R+ in the condition (I-i).

Our graph-rewriting abstract machine [3] is given as
a deterministic state transition system →, whose state
σ = ((G, e), δ) consists of a graph G(1, 0), its selected
“control” edge e and additional data δ that is a few stacks
used to guide the control flow. A graph G(1, 0) induces a
unique “initial” state Init(G) and a unique “final” state
Final(G). The evaluation relation ⇓g is defined by G ⇓g
H iff there exists a sequence Init(G)→∗ Final(H).

Thanks to the following property, the soundness proof
boils down to a routine work to show that each basic rela-
tion≺χ, which gives a basic χ-rule of the graph-equational
theory, induces a U-simulation ≺χ.

Proposition 2.4. Let ≺ be a binary relation on graphs
with the same interface, and its lifting ≺ on graph states
be defined as follows: ((G[G1], `), δ) ≺ ((G[G2], `), δ) iff
G1 ≺ G2 and the position ` is in the graph-context G[�].
If the lifting ≺ is a U-simulation, the binary relation ≺
implies the graph-contextual equivalence ∼=, i.e. G ≺ H ⇒
G ∼= H for any graphs G and H.

Using the graph-rewriting abstract machine, contextual
equivalence can be proved not only directly but also in a
generic way using U-simulations. We expect the graph-
ical perspective would also be useful in the presence of
language extensions like ground-type operations, condi-
tional statements and effects. In situations with various
effects, contextual equivalence is commonly proved via a
sound and complete method, e.g. logical relation [4] and
environmental bisimulation [6]. We have seen our method
applies to a version of the beta-law for a particular in-
stance of language extension [2].

2

References

[1] Jean-Yves Girard. Linear logic. Theor. Comp. Sci.,
50:1–102, 1987.

[2] Koko Muroya, Steven Cheung, and Dan R. Ghica. The
geometry of computation-graph abstraction. In LICS
2018, 2018. To appear.

[3] Koko Muroya and Dan R. Ghica. Efficient implemen-
tation of evaluation strategies via token-guided graph
rewriting. In WPTE 2017, 2017.

[4] Andrew M. Pitts. Reasoning about local variables
with operationally-based logical relations. In LICS
1996, pages 152–163. IEEE Computer Society, 1996.

[5] Gordon Plotkin. Call-by-name, call-by-value and the
lambda-calculus. Theor. Comp. Sci., 1(2):125–259,
1975.

[6] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii.
Environmental bisimulations for higher-order lan-
guages. In LICS 2007, pages 293–302. IEEE Computer
Society, 2007.

A Example of Graphical Equation

To illustrate the four kinds of basic rules (λ, C, D and ?),
we take as an example two terms T1 and T2 below,

T1 = (λx.(λu.u x) (λu.u x)) (λy.y)

T2 = (λu.u (λy.y)) (λu.u (λy.y))

which are beta-equivalent in Plotkin’s call-by-value equa-
tional theory. Given a basic relation ≺χ (χ ∈
{λ,C,D, ?}), let a relation 4χ between graphs of the same
interface be defined by G[G1] 4χ G[G2] iff G1 ≺χ G2.
There exists the following chain of relations between
graph representations (T1)† and (T2)† of the two terms:

(T1)† = G0 4D G1 4λ G2 4C G3

(4?)
2 G4 (4?)

2 G5 (4D)2 G6 = (T2)†,

as shown in Fig. 2. First, the basic relation ≺D eliminates
a !-box structure with a D-labelled node connected to its
input (i.e. to a !-labelled node), which amounts to detect
an abstraction in the function part of an application. Sec-
ond, the basic relation ≺λ eliminates a connected pair of
a λ-labelled node and an @-labelled node. The rest of
the chain models substitution. The basic relation ≺C du-
plicates a !-box, i.e. representation of a value. The basic
relation ≺? lets one !-box absorb another !-box connected
to one of its output (i.e. to a ?-labelled node), which mod-
els replacement of a variable with a value, together with
the basic relation ≺D. The formula (T1)† =g (T2)† can
be proved using the basic rules and the congruence rule
accordingly, together with transitivity.

3

(T1)† =

@

D

λ

!

@

D

C2

λ

!

@

D

!

?

D

λ

!

?

!

D

?

?

!

D

!

?

C1C1

λ

@

D

!

?

D

?

!

D

C1

4D

@

λ

@

D

C2

λ

!

@

D

!

?

D

λ

!

?

!

D

?

?

!

D

!

?

C1

C1

λ

@

D

!

?

D

?

!

D

C1

4λ

@

D

C2

λ

!

@

D

!

?

D

λ

!

?

!

D

?

?

!

D

!

?

C1

C1
λ

@

D

!

?

D

?

!

D

C1

4C

@

D

λ

!

@

D

!

?

D

λ

!

?

!

D

?

?

!

D

!

?

C1

C1

λ

@

D

!

?

D

?

!

D

C1

λ

!

?

!

D

C1

(4?)
2

@

D

λ

!

@

D

!

?

D

λ

!

?

!

D

?

!

D

C1

C1
λ

!

@

D

!

?

D

λ

!

?

!

D

?

!

D

C1

C1

(4?)
2

@

D

λ

!

@

D

!

?

D

λ

!

?

!

D

!

D

C1

C1

!

λ

@

D

!

?

D

λ

!

?

!

D

!

D

C1

C1

(4D)2

@

D

! !

λ

@

D

!

?

D

λ

?

!

D

!

C1

C1

λ

@

D

!

?

D

λ

?

!

D

!

C1

C1

= (T2)†

Figure 2: A Chain of Relations that Witnesses (T1)† =g (T2)†

4

