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Observational equivalence on program fragments
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“Is it safe to replace a program fragment with another?”

let x = 100 in
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Observational equivalence on program fragments
“Do two program fragments behave the same?”


“Is it safe to replace a program fragment with another?”


If YES (“Two program fragments are observationally equal.”):


• justification of compiler optimisation


• program verification

let x = 100 in

let y = 50 in

y + y

let y = 50 in

y + y  50 + 50

let x = 100 in

let y = 50 in

y + y

let x = 100 in

50 + 50  50 + 50

? ?

??
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Observational equivalence on program fragments
“Do two program fragments behave the same?”


“What program fragments behave the same?”

the beta-law

(λx . M) N ≃ M[x := N ]

a parametricity law

𝚕𝚎𝚝 a = 𝚛𝚎𝚏 1 𝚒𝚗 λx . (a := 2; !a) ≃ λx.2
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(λx.0) 100 ≄ 0
for memory 

management



Muroya (RIMS, Kyoto U.)

Robustness of observational equivalence
“Do two program fragments behave the same?”


“When do program fragments behave the same?”


Does the beta-law always hold?


No, it’s violated if program contexts use OCaml’s Gc module:


How robust is the beta-law then?

the beta-law

(λx . M) N ≃ M[x := N ]

(λx.0) 100 ≄ 0
for memory 

management
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Robustness of observational equivalence
“Do two program fragments behave the same?”


“What fragments, in which contexts, behave the same?”


… in the presence of (arbitrary) language features:


    pure vs. effectful (e.g.            vs.           )


    encoded vs. native (e.g.            vs.           )


    extrinsics (e.g.           ) 

    foreign language calls

50 + 50 ref 1

State ref

Gc.stat
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Robustness of observational equivalence
“Do two program fragments behave the same?”


“What fragments, in which contexts, behave the same?”


… in the presence of (arbitrary) language features


Our (big) goal:


analysing robustness/fragility of observational equivalence,


using a general framework
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Robustness of observational equivalence
“Do two program fragments behave the same?”


“What fragments, in which contexts, behave the same?”


… in the presence of (arbitrary) language features


Our result:


analysing robustness/fragility of observational equivalence,


using a graphical framework


• hypernet semantics: a graphical abstract machine


• local & step-wise reasoning to prove observational 

equivalence, with the concept of robustness
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Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Example: cbv linear β-law 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Hypernet semantics
● program execution by a graphical abstract machine


● programs as 

certain hierarchical hypergraphs (“hypernets”)


● execution as 

step-by-step strategical update of hypernets
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (1 + 2) * 3

1 2 3

+

*

hyperedges
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (x + y) * z

 (i + j) * k

+

*

i j k
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

  x + x

+
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

  x + x

+

sharing
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 if x > 0

 then 3

 else 4 + 5

0 5

>

if

+

43
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 if x > 0

 then 3

 else 4 + 5

0 5

>

if

+

43

hierarchical hyperedge

(hyperedge labelled with 

hypergraph)


…representing deferred 
computation
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

(λx. x + x) 3

3

λ

@

+
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 new a = 1 in

 a := 2; !a

!:=

;

2

1
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 new a = 1 in

 a := 2; !a

!:=

;

2

1

atom
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 new a = 1 in

 a := 2; !a

!:=

;

2

1

atom 
occurences
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…


• making blocks of deferred computation explicit


• accommodating atoms (reference names/locations)



Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step



Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

1 2 4

+

+

+

3

4

3

+

+

3

1 2

+

+

7

3

+

7
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Program execution, graphically
Idea: updating hypernets step-by-step

+

3

+

3 3

6

 let x = 3 in

 x + x

    3 + 3
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Program execution, graphically
Idea: updating hypernets step-by-step

3

λ

@

+

+

3

+

3 3

6

 (λx. x + x) 3  let x = 3 in

 x + x     3 + 3
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Program execution, graphically
Idea: updating hypernets step-by-step


　　  … and strategically, using focus with three modes:


• depth-first redex search


• backtracking


• triggering update of hypernet

?

✓

↯
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Program execution, graphically
Idea: updating hypernets step-by-step
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Program execution, graphically
Idea: updating hypernets step-by-step


　　  … and strategically, using focus 

1 2 4

+

+

+

3

backtracking
✓
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Program execution, graphically
Idea: updating hypernets step-by-step


　　  … and strategically, using focus 

1 2 4

+

+

+

3

?
depth-first redex search
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Program execution, graphically
Idea: updating hypernets step-by-step


　　  … and strategically, using focus 

1 2 4

+

+

+

3

✓

backtracking
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Program execution, graphically
Idea: updating hypernets step-by-step


　　  … and strategically, using focus 

1 2 4

+

+

+

3

triggering update of hypernet↯
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Program execution, graphically
Idea: updating hypernets step-by-step
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Program execution, graphically
Idea: updating hypernets step-by-step
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Program execution, graphically
Idea: updating hypernets step-by-step


　　  … and strategically, using focus 

4

3

+

+
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backtracking
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Program execution, graphically
Idea: updating hypernets step-by-step
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Program execution, graphically
Idea: updating hypernets step-by-step


　　  … and strategically, using focus 

3

+

7

?

depth-first redex search



Muroya (RIMS, Kyoto U.)
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Program execution, graphically
Idea: updating hypernets step-by-step


　　  … and strategically, using focus 
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Program execution, graphically
Idea: updating hypernets step-by-step
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Program execution, graphically
Idea: updating hypernets step-by-step
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Program execution, graphically
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Program execution, graphically
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Hypernet semantics
● program execution by a graphical abstract machine


● programs as 

certain hierarchical hypergraphs (“hypernets”)


● execution as 

step-by-step strategical update of hypernets


● state = hypernet with focus


● transition = move of focus, or update of hypernet

? ✓ ↯
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Proof of observational equivalence, using locality

“Do two program fragments behave the same?”


“Do two sub-graphs behave the same in hypernet semantics?”


★  Sub-graphs can represent parts of a program that are not 

 necessarily well-formed, 

 e.g. parts relevant to a certain reference:

  … new a = 1 in … (λx. a := 2; !a) … (λx. a := 2; !a) …

Idea of locality:


analysing behaviour of program fragments,


by tracing sub-graphs during execution
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Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.”


For any context C,


if


then

P

✓

C

G
⋯ G

⋯

G
⋯

?

C

H
⋯ H

⋯

H
⋯

?

Q

✓

⋯

⋯
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1. take contextual closure R of (G,H)


2. prove that the contextual closure R is a *-simulation
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Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.”


Proof idea (simplified):


1. take contextual closure R of (G,H)


    


2. prove that the contextual closure R is a *-simulation

R is closed under 
contexts, by definition

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

for any context C with focus
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P
f’
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P’
f’’

P
f’

n

m Q
f’’
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P
f’

n

m

C’

G
⋯

G
⋯ G

⋯f’’

G
⋯

C’

H
⋯

H
⋯ H

⋯f’’

H
⋯

 R 
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P
f’

n

m

C’

G
⋯

G
⋯ G

⋯f’’

G
⋯

C’

H
⋯

H
⋯ H

⋯f’’

H
⋯

 R 
Idea of locality:


tracing sub-graphs during each transition, by analysing


what happens around the focus during the transition
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P
f’

n

m

C’

G
⋯

G
⋯ G

⋯f’’

G
⋯

C’

H
⋯

H
⋯ H

⋯f’’

H
⋯

 R 
Idea of locality:


tracing sub-graphs during each transition, by analysing


what happens around the focus during the transition

move, or trigger update
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation


　　Case (1) move of focus      or      inside context

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

? ✓
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation


　　Case (1) move of focus      or      inside context

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

? ✓

C

G
⋯ G

⋯

G
⋯
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 R 

C

H
⋯ H

⋯

H
⋯
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation


　　Case (2) move of focus      or      , entering G? ✓
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G
⋯ G

⋯

G
⋯f

C

H
⋯ H

⋯

H
⋯f
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation


　　Case (2) move of focus      or      , entering G

 R 

C

G
⋯ G

⋯

G
⋯f

C

H
⋯ H

⋯

H
⋯f

? ✓

C

G
⋯ G

⋯
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⋯
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation


　　Case (2) move of focus      or      , entering G

 R 

C

G
⋯ G

⋯

G
⋯f

C

H
⋯ H

⋯

H
⋯f

? ✓

C

G
⋯ G

⋯

G
⋯

f’

sound condition of (G,H) identified:

“safety”
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation


　　Case (3) update of hypernet

 R 

C

G
⋯ G

⋯

G
⋯

↯

C

H
⋯ H

⋯

H
⋯

↯

P
?
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Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation


　　Case (3) update of hypernet

 R 

C

G
⋯ G

⋯

G
⋯

C

H
⋯ H

⋯

H
⋯

↯

↯

P
?



Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):


2. prove that the contextual closure R is a *-simulation


　　Case (3) update of hypernet

 R 

C

G
⋯ G

⋯

G
⋯

C

H
⋯ H

⋯

H
⋯

↯

↯

P
?

sound condition of (G,H) identified:

“robustness”


relative to all possible rewrites



Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.”


Proof idea (simplified):


1. take contextual closure R of (G,H)


2. prove that the contextual closure R is a *-simulation


    by case analysis
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Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.”


Proof idea (simplified):


1. take contextual closure R of (G,H)


2. prove that the contextual closure R is a *-simulation


    by case analysis


  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)
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Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Example: cbv linear β-law 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Example: cbv linear β-law
Proof methodology:


1. prepare a template {(G,H)}


2. prove that the template {(G,H)} is robust and safe


3. apply the Partial Characterisation Theorem

  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)
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Example: cbv linear β-law
Proof methodology:


1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value


2. prove that the cbv linear β-template is robust and safe

  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)

{(      ,      )}λ

@

H
⋯

G
⋯
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⋯
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Example: cbv linear β-law
Proof methodology:


1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value


2. prove that the cbv linear β-template is robust and safe

  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)

{(      ,      )}λ

@

H
⋯

G
⋯

H
⋯

G
⋯



Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Aim: when focus      or      enters Gj,


 R 

1 P
f’

n

m

? ✓

 R 

C

f

C

f

P’
f’’

Q
f’’
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Safety of cbv linear β-template
Key scenario: when focus      enters Gj,
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Safety of cbv linear β-template
Key scenario: when focus      enters Gj,
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Safety of cbv linear β-template
Key scenario: when focus      enters Gj,
?
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1

C

?

C

?

C

2

C
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Safety of cbv linear β-template
Key scenario: when focus      enters Gj,


because Hj represents a value,

?
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C

?
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C
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Safety of cbv linear β-template
Key scenario: when focus      enters Gj,


because Hj represents a value,

?

 R 

1

C

?
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?

C

n’+3

C

↯
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Safety of cbv linear β-template
Key scenario: when focus      enters Gj,


because Hj represents a value,

?
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Safety of cbv linear β-template
Key scenario: when focus      enters Gj,


because Hj represents a value,
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Safety of cbv linear β-template
Key scenario: when focus      enters Gj,


because Hj represents a value,

?

 R 

1

C

?

C

?

C

n’+4

C’

?

0

C’

?

 R 
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Example: cbv linear β-law
Proof methodology:


1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value


2. prove that the cbv linear β-template is robust and safe

  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)
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Example: cbv linear β-law
Proof methodology:


1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value


2. prove that the cbv linear β-template is robust and safe

  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)

{(      ,      )}λ
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⋯

G
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H
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⋯
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Aim: for any possible rewrite triggered by focus      ,


 R 

1 P
?

n

m

 R 

C

↯

C

↯

P’
f’’

Q
f’’

Robustness of cbv linear β-template
↯
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Robustness of cbv linear β-template
Example (1) arithmetic rewrite


 R 

1 P
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Robustness of cbv linear β-template
Example (1) arithmetic rewrite
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Q: How can the redex overlap with the template?
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Robustness of cbv linear β-template
Example (1) arithmetic rewrite


 R 

1 P
?C

C

Q: How can the redex overlap with the template?


A: No overlap is possible!


• {Hi}i represent values.


• The redex is always outside a  box  .
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Robustness of cbv linear β-template
Example (1) arithmetic rewrite


 R 

1

C

C

Q: How can the redex overlap with the template?


A: No overlap is possible!


• {Hi}i represent values.


• The redex is always outside a  box  .

C’
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Robustness of cbv linear β-template
Example (1) arithmetic rewrite


 R 

1

C

C

C’

C’

1

 R 
robustness relative to 

arithmetic rewrite
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Robustness of cbv linear β-template
Example (2) cbv linear β-reduction
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Robustness of cbv linear β-template
Example (2) cbv linear β-reduction
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Q: How can the redex overlap with the template?
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Robustness of cbv linear β-template
Example (2) cbv linear β-reduction


 R 

1 P
?C

C

Q: How can the redex overlap with the template?

A: Overlaps can only be inside  boxes  of the redex.


• {Hi}i represent values.

• The redex is always outside a  box  .

• No overlap can cross the boundary of a  box  .
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Robustness of cbv linear β-template
Example (2) cbv linear β-reduction


 R 

1

C

C

Q: How can the redex overlap with the template?

A: Overlaps can only be inside  boxes  of the redex.


• {Hi}i represent values.

• The redex is always outside a  box  .

• No overlap can cross the boundary of a  box  .

C’
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Robustness of cbv linear β-template
Example (2) cbv linear β-reduction
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1

C

C

C’

robustness relative to 

arithmetic rewrite

C’

1

 R 
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Robustness of cbv linear β-template
Example (3) measurement of space usage
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k is the size of a whole graph
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Robustness of cbv linear β-template
Example (3) measurement of space usage
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Robustness of cbv linear β-template
Example (3) measurement of space usage
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Robustness of cbv linear β-template
Example (3) measurement of space usage
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1

C

C

k is the size of a whole graph

C’
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Robustness of cbv linear β-template
Example (3) measurement of space usage


 R 

1

C

C

k is the size of a whole graph

C’
robustness relative to 

`stat`


due to       and       ,


k ≥ h


and hence possibly


C’ ≠ C’’

λ @

C’’

1
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Example: cbv linear β-law
Proof methodology:


1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value


2. prove that the cbv linear β-template is robust and safe


    … relative to arithmetic and cbv linear β-reduction
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Example: cbv linear β-law
Proof methodology:


2. prove that the cbv linear β-template is robust and safe


    … relative to arithmetic and cbv linear β-reduction


3. apply the Partial Characterisation Theorem

  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)
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Example: cbv linear β-law
Proof methodology:


2. prove that the cbv linear β-template is robust and safe


    … relative to arithmetic and cbv linear β-reduction


3. apply the Partial Characterisation Theorem

  Proposition (cbv linear β-law)

  The cbv linear β-template induces observational equivalence,

  if arithmetic and cbv linear β-reduction are the only computation 

  allowed.
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Partiality

● The cbv linear β-template is not robust relative to `stat` 

(measurement of space usage).


● What can we say about the cbv linear β-law, in the presence of `stat`?


●

  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)
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Partiality

● The cbv linear β-template is not robust relative to `stat` 

(measurement of space usage).


● What can we say about the cbv linear β-law, in the presence of `stat`?


● The counterexample of robustness would provide a 

counterexample of the law, in the presence of conditional 

statements (e.g. `if`).


● The template can be extended so it is robust relative to `stat`, 

if a language allows no computation to distinguish numbers.

  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)
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Partiality

If a template is safe but fails to be robust, either:


(1) The intended observational equivalence fails too.


• Counterexamples of robustness would suggest how the 

observational equivalence could be violated.


(2) The intended observational equivalence actually holds.


• There may be a bigger, robust, template.


• Counterexamples of robustness would suggest how the template 

could be extended.

  Partial Characterisation Theorem

  Robust and safe templates induce observational equivalences.


(for deterministic & “reasonable” languages)
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Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Example: cbv linear β-law 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Conclusion
● a (general) framework for analysing and proving 

robustness of observational equivalence


● current key limitation: determinism

• hypernet semantics: a graphical abstract machine


• local & step-wise reasoning to prove observational 

equivalence, with the concept of robustness
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Future directions
● dealing with nondeterminism


● overcoming unsoundness of *-simulation


● Sand’s improvement theory


● incorporating cost reduction in observational 

equivalence


● introducing quantitative restrictions on *-simulation


● (semi-)automating robustness & safety check


● exploiting techniques of critical pair analysis


