
Local reasoning for

robust observational equivalence

Koko Muroya

(RIMS, Kyoto University)

LFCS Seminar (online), 04 December 2020

joint work with

Dan R. Ghica & Todd Waugh Ambridge

(University of Birmingham)

Muroya (RIMS, Kyoto U.)

Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Example: cbv linear β-law 

Muroya (RIMS, Kyoto U.)

Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Example: cbv linear β-law 

Muroya (RIMS, Kyoto U.)

Observational equivalence on program fragments
“Do two program fragments behave the same?”

“Is it safe to replace a program fragment with another?”

let x = 100 in

let y = 50 in

y + y

Muroya (RIMS, Kyoto U.)

Observational equivalence on program fragments
“Do two program fragments behave the same?”

“Is it safe to replace a program fragment with another?”

let x = 100 in

let y = 50 in

y + y

Muroya (RIMS, Kyoto U.)

Observational equivalence on program fragments
“Do two program fragments behave the same?”

“Is it safe to replace a program fragment with another?”

let x = 100 in

let y = 50 in

y + y

let y = 50 in

y + y

Muroya (RIMS, Kyoto U.)

Observational equivalence on program fragments
“Do two program fragments behave the same?”

“Is it safe to replace a program fragment with another?”

let x = 100 in

let y = 50 in

y + y

let y = 50 in

y + y 50 + 50

Muroya (RIMS, Kyoto U.)

Observational equivalence on program fragments
“Do two program fragments behave the same?”

“Is it safe to replace a program fragment with another?”

let x = 100 in

let y = 50 in

y + y

let y = 50 in

y + y 50 + 50

let x = 100 in

let y = 50 in

y + y

let x = 100 in

50 + 50 50 + 50

Muroya (RIMS, Kyoto U.)

Observational equivalence on program fragments
“Do two program fragments behave the same?”

“Is it safe to replace a program fragment with another?”

let x = 100 in

let y = 50 in

y + y

let y = 50 in

y + y 50 + 50

let x = 100 in

let y = 50 in

y + y

let x = 100 in

50 + 50 50 + 50

? ?

??

Muroya (RIMS, Kyoto U.)

Observational equivalence on program fragments
“Do two program fragments behave the same?”

“Is it safe to replace a program fragment with another?”

If YES (“Two program fragments are observationally equal.”):

• justification of compiler optimisation

• program verification

let x = 100 in

let y = 50 in

y + y

let y = 50 in

y + y 50 + 50

let x = 100 in

let y = 50 in

y + y

let x = 100 in

50 + 50 50 + 50

? ?

??

Muroya (RIMS, Kyoto U.)

Observational equivalence on program fragments
“Do two program fragments behave the same?”

Muroya (RIMS, Kyoto U.)

Observational equivalence on program fragments
“Do two program fragments behave the same?”

“What program fragments behave the same?”

the beta-law

(λx . M) N ≃ M[x := N]

a parametricity law

𝚕𝚎𝚝 a = 𝚛𝚎𝚏 1 𝚒𝚗 λx . (a := 2; !a) ≃ λx.2

Muroya (RIMS, Kyoto U.)

Robustness of observational equivalence
“Do two program fragments behave the same?”

“When do program fragments behave the same?”

Does the beta-law always hold?

the beta-law

(λx . M) N ≃ M[x := N]

Muroya (RIMS, Kyoto U.)

Robustness of observational equivalence
“Do two program fragments behave the same?”

“When do program fragments behave the same?”

Does the beta-law always hold?

No, it’s violated if program contexts use OCaml’s Gc module:

the beta-law

(λx . M) N ≃ M[x := N]

(λx.0) 100 ≄ 0
for memory

management

Muroya (RIMS, Kyoto U.)

Robustness of observational equivalence
“Do two program fragments behave the same?”

“When do program fragments behave the same?”

Does the beta-law always hold?

No, it’s violated if program contexts use OCaml’s Gc module:

How robust is the beta-law then?

the beta-law

(λx . M) N ≃ M[x := N]

(λx.0) 100 ≄ 0
for memory

management

Muroya (RIMS, Kyoto U.)

Robustness of observational equivalence
“Do two program fragments behave the same?”

“What fragments, in which contexts, behave the same?”

Muroya (RIMS, Kyoto U.)

Robustness of observational equivalence
“Do two program fragments behave the same?”

“What fragments, in which contexts, behave the same?”

… in the presence of (arbitrary) language features:

 pure vs. effectful (e.g. vs.)

 encoded vs. native (e.g. vs.)

 extrinsics (e.g.) 

 foreign language calls

50 + 50 ref 1

State ref

Gc.stat

Muroya (RIMS, Kyoto U.)

Robustness of observational equivalence
“Do two program fragments behave the same?”

“What fragments, in which contexts, behave the same?”

… in the presence of (arbitrary) language features

Our (big) goal:

analysing robustness/fragility of observational equivalence,

using a general framework

Muroya (RIMS, Kyoto U.)

Robustness of observational equivalence
“Do two program fragments behave the same?”

“What fragments, in which contexts, behave the same?”

… in the presence of (arbitrary) language features

Our result:

analysing robustness/fragility of observational equivalence,

using a graphical framework

• hypernet semantics: a graphical abstract machine

• local & step-wise reasoning to prove observational

equivalence, with the concept of robustness

Muroya (RIMS, Kyoto U.)

Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Example: cbv linear β-law 

Muroya (RIMS, Kyoto U.)

Hypernet semantics
● program execution by a graphical abstract machine

● programs as 

certain hierarchical hypergraphs (“hypernets”)

● execution as 

step-by-step strategical update of hypernets

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (1 + 2) * 3

1 2 3

+

*

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (1 + 2) * 3

1 2 3

+

*

nodes

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (1 + 2) * 3

1 2 3

+

*

hyperedges

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (x + y) * z

 (i + j) * k

+

*

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (x + y) * z

 (i + j) * k

+

*

x y z

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (x + y) * z

 (i + j) * k

+

*

i j k

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 x + x

+

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 x + x

+

sharing

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 if x > 0

 then 3

 else 4 + 5

0 5

>

if

+

43

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 if x > 0

 then 3

 else 4 + 5

0 5

>

if

+

43

hierarchical hyperedge

(hyperedge labelled with

hypergraph)

…representing deferred
computation

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

(λx. x + x) 3

3

λ

@

+

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 new a = 1 in

 a := 2; !a

!:=

;

2

1

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 new a = 1 in

 a := 2; !a

!:=

;

2

1

atom

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 new a = 1 in

 a := 2; !a

!:=

;

2

1

atom
occurences

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

Muroya (RIMS, Kyoto U.)

Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

• making blocks of deferred computation explicit

• accommodating atoms (reference names/locations)

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

1 2 4

+

+

+

3

4

3

+

+

3

1 2

+

+

7

3

+

7

10

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

+

3

+

3 3

6

 let x = 3 in

 x + x

 3 + 3

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

3

λ

@

+

+

3

+

3 3

6

 (λx. x + x) 3 let x = 3 in

 x + x 3 + 3

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus with three modes:

• depth-first redex search

• backtracking

• triggering update of hypernet

?

✓

↯

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

1 2 4

+

+

+

3

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

1 2 4

+

+

+

3 depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

1 2 4

+

+

+

3 depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

1 2 4

+

+

+

3 depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

1 2 4

+

+

+

3

backtracking
✓

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

1 2 4

+

+

+

3

?
depth-first redex search

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

1 2 4

+

+

+

3

✓

backtracking

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

1 2 4

+

+

+

3

triggering update of hypernet↯

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

4

3

+

+

3

?

depth-first redex search

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

4

3

+

+

3

backtracking

✓

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

4

3

+

+

3

depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

4

3

+

+

3

depth-first redex search
?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

4

3

+

+

3

backtracking

✓

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

4

3

+

+

3

?

depth-first redex search

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

4

3

+

+

3

✓

backtracking

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

4

3

+

+

3

triggering update of hypernet

↯

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

7

?

depth-first redex search

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

7

backtracking

✓

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

7

triggering update of hypernet

↯

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

10

?

depth-first redex search

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

10

✓

backtracking

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

λ

@

+

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

λ

@

+

depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

λ

@

+

depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

λ

@

+

backtracking

✓

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

λ

@

+
?

depth-first redex search

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

λ

@

+

✓
backtracking

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

λ

@

+

triggering update of hypernet

↯

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

triggering update of hypernet
↯

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

3 depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

3

backtracking✓

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

3

?

depth-first redex search

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

3

✓

backtracking

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

3

+

3

triggering update of hypernet
↯

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

6

depth-first redex search

?

Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step

　　 … and strategically, using focus

6

backtracking

✓

Muroya (RIMS, Kyoto U.)

Hypernet semantics
● program execution by a graphical abstract machine

● programs as 

certain hierarchical hypergraphs (“hypernets”)

● execution as 

step-by-step strategical update of hypernets

Muroya (RIMS, Kyoto U.)

Hypernet semantics
● program execution by a graphical abstract machine

● programs as 

certain hierarchical hypergraphs (“hypernets”)

● execution as 

step-by-step strategical update of hypernets

● state = hypernet with focus

● transition = move of focus, or update of hypernet

? ✓ ↯

Muroya (RIMS, Kyoto U.)

Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Example: cbv linear β-law 

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

“Do two program fragments behave the same?”

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

“Do two program fragments behave the same?”

“Do two sub-graphs behave the same in hypernet semantics?”

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

“Do two program fragments behave the same?”

“Do two sub-graphs behave the same in hypernet semantics?”

★ Sub-graphs can represent parts of a program that are not 

 necessarily well-formed, 

 e.g. parts relevant to a certain reference:

 … new a = 1 in … (λx. a := 2; !a) … (λx. a := 2; !a) …

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

“Do two program fragments behave the same?”

“Do two sub-graphs behave the same in hypernet semantics?”

★ Sub-graphs can represent parts of a program that are not 

 necessarily well-formed, 

 e.g. parts relevant to a certain reference:

 … new a = 1 in … (λx. a := 2; !a) … (λx. a := 2; !a) …

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

“Do two program fragments behave the same?”

“Do two sub-graphs behave the same in hypernet semantics?”

★ Sub-graphs can represent parts of a program that are not 

 necessarily well-formed, 

 e.g. parts relevant to a certain reference:

 … new a = 1 in … (λx. a := 2; !a) … (λx. a := 2; !a) …

Idea of locality:

analysing behaviour of program fragments,

by tracing sub-graphs during execution

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by

behaviour of a sub-graph H.”

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by

behaviour of a sub-graph H.”

For any context C,

if

then

P

✓

C

G
⋯ G

⋯

G
⋯

?

C

H
⋯ H

⋯

H
⋯

?

Q

✓

⋯

⋯

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by

behaviour of a sub-graph H.”

Proof idea (simplified):

1. take contextual closure R of (G,H)

2. prove that the contextual closure R is a *-simulation

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by

behaviour of a sub-graph H.”

Proof idea (simplified):

1. take contextual closure R of (G,H)

2. prove that the contextual closure R is a *-simulation

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

for any context C with focus

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by

behaviour of a sub-graph H.”

Proof idea (simplified):

1. take contextual closure R of (G,H)

2. prove that the contextual closure R is a *-simulation

R is closed under
contexts, by definition

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

for any context C with focus

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P
f’

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P’
f’’

P
f’

n

m Q
f’’

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P
f’

n

m

C’

G
⋯

G
⋯ G

⋯f’’

G
⋯

C’

H
⋯

H
⋯ H

⋯f’’

H
⋯

 R

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P
f’

n

m

C’

G
⋯

G
⋯ G

⋯f’’

G
⋯

C’

H
⋯

H
⋯ H

⋯f’’

H
⋯

 R
Idea of locality:

tracing sub-graphs during each transition, by analysing

what happens around the focus during the transition

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

1 P
f’

n

m

C’

G
⋯

G
⋯ G

⋯f’’

G
⋯

C’

H
⋯

H
⋯ H

⋯f’’

H
⋯

 R
Idea of locality:

tracing sub-graphs during each transition, by analysing

what happens around the focus during the transition

move, or trigger update

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

　　Case (1) move of focus or inside context

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

? ✓

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

　　Case (1) move of focus or inside context

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

? ✓

C

G
⋯ G

⋯

G
⋯

f’

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

　　Case (1) move of focus or inside context

 R

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

? ✓

C

G
⋯ G

⋯

G
⋯

f’

 R

C

H
⋯ H

⋯

H
⋯

f’

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

　　Case (2) move of focus or , entering G? ✓

 R

C

G
⋯ G

⋯

G
⋯f

C

H
⋯ H

⋯

H
⋯f

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

　　Case (2) move of focus or , entering G

 R

C

G
⋯ G

⋯

G
⋯f

C

H
⋯ H

⋯

H
⋯f

? ✓

C

G
⋯ G

⋯

G
⋯

f’

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

　　Case (2) move of focus or , entering G

 R

C

G
⋯ G

⋯

G
⋯f

C

H
⋯ H

⋯

H
⋯f

? ✓

C

G
⋯ G

⋯

G
⋯

f’

sound condition of (G,H) identified:

“safety”

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

　　Case (3) update of hypernet

 R

C

G
⋯ G

⋯

G
⋯

↯

C

H
⋯ H

⋯

H
⋯

↯

P
?

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

　　Case (3) update of hypernet

 R

C

G
⋯ G

⋯

G
⋯

C

H
⋯ H

⋯

H
⋯

↯

↯

P
?

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified):

2. prove that the contextual closure R is a *-simulation

　　Case (3) update of hypernet

 R

C

G
⋯ G

⋯

G
⋯

C

H
⋯ H

⋯

H
⋯

↯

↯

P
?

sound condition of (G,H) identified:

“robustness”

relative to all possible rewrites

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by

behaviour of a sub-graph H.”

Proof idea (simplified):

1. take contextual closure R of (G,H)

2. prove that the contextual closure R is a *-simulation

 by case analysis

Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by

behaviour of a sub-graph H.”

Proof idea (simplified):

1. take contextual closure R of (G,H)

2. prove that the contextual closure R is a *-simulation

 by case analysis

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

Muroya (RIMS, Kyoto U.)

Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Example: cbv linear β-law 

Muroya (RIMS, Kyoto U.)

Example: cbv linear β-law
Proof methodology:

1. prepare a template {(G,H)}

2. prove that the template {(G,H)} is robust and safe

3. apply the Partial Characterisation Theorem

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

Muroya (RIMS, Kyoto U.)

Example: cbv linear β-law
Proof methodology:

1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value

2. prove that the cbv linear β-template is robust and safe

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

{(,)}λ

@

H
⋯

G
⋯

H
⋯

G
⋯

Muroya (RIMS, Kyoto U.)

Example: cbv linear β-law
Proof methodology:

1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value

2. prove that the cbv linear β-template is robust and safe

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

{(,)}λ

@

H
⋯

G
⋯

H
⋯

G
⋯

Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Aim: when focus or enters Gj,

 R

1 P
f’

n

m

? ✓

 R

C

f

C

f

P’
f’’

Q
f’’

Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Key scenario: when focus enters Gj,
?

 R

1

C

?

C

?

C

Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Key scenario: when focus enters Gj,
?

 R

1

C

?

C

?

C

1

C

Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Key scenario: when focus enters Gj,
?

 R

1

C

?

C

?

C

2

C

Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Key scenario: when focus enters Gj,

because Hj represents a value,

?

 R

1

C

?

C

?

C

n’+2

C

Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Key scenario: when focus enters Gj,

because Hj represents a value,

?

 R

1

C

?

C

?

C

n’+3

C

↯

Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Key scenario: when focus enters Gj,

because Hj represents a value,

?

 R

1

C

?

C

?

C

n’+4

C

?

Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Key scenario: when focus enters Gj,

because Hj represents a value,

?

 R

1

C

?

C

?

C

n’+4

C

?

0

C

?

Muroya (RIMS, Kyoto U.)

Safety of cbv linear β-template
Key scenario: when focus enters Gj,

because Hj represents a value,

?

 R

1

C

?

C

?

C

n’+4

C’

?

0

C’

?

 R

Muroya (RIMS, Kyoto U.)

Example: cbv linear β-law
Proof methodology:

1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value

2. prove that the cbv linear β-template is robust and safe

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

{(,)}λ

@

H
⋯

G
⋯

H
⋯

G
⋯

Muroya (RIMS, Kyoto U.)

Example: cbv linear β-law
Proof methodology:

1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value

2. prove that the cbv linear β-template is robust and safe

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

{(,)}λ

@

H
⋯

G
⋯

H
⋯

G
⋯

Muroya (RIMS, Kyoto U.)

Aim: for any possible rewrite triggered by focus ,

 R

1 P
?

n

m

 R

C

↯

C

↯

P’
f’’

Q
f’’

Robustness of cbv linear β-template
↯

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (1) arithmetic rewrite

 R

1 P
?C

↯

C

↯

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (1) arithmetic rewrite

 R

1 P
?C

↯

C

↯

Q: How can the redex overlap with the template?

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (1) arithmetic rewrite

 R

1 P
?C

C

Q: How can the redex overlap with the template?

A: No overlap is possible!

• {Hi}i represent values.

• The redex is always outside a box .

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (1) arithmetic rewrite

 R

1

C

C

Q: How can the redex overlap with the template?

A: No overlap is possible!

• {Hi}i represent values.

• The redex is always outside a box .

C’

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (1) arithmetic rewrite

 R

1

C

C

C’

C’

1

 R
robustness relative to

arithmetic rewrite

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (2) cbv linear β-reduction

 R

1 P
?C

↯

C

↯

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (2) cbv linear β-reduction

 R

1 P
?C

↯

C

↯

Q: How can the redex overlap with the template?

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (2) cbv linear β-reduction

 R

1 P
?C

C

Q: How can the redex overlap with the template?

A: Overlaps can only be inside boxes of the redex.

• {Hi}i represent values.

• The redex is always outside a box .

• No overlap can cross the boundary of a box .

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (2) cbv linear β-reduction

 R

1

C

C

Q: How can the redex overlap with the template?

A: Overlaps can only be inside boxes of the redex.

• {Hi}i represent values.

• The redex is always outside a box .

• No overlap can cross the boundary of a box .

C’

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (2) cbv linear β-reduction

 R

1

C

C

C’

robustness relative to

arithmetic rewrite

C’

1

 R

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (3) measurement of space usage

 R

1 P
?C

↯

C

↯

k is the size of a whole graph

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (3) measurement of space usage

 R

1 P
?C

C

k is the size of a whole graph

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (3) measurement of space usage

 R

1

C

C

k is the size of a whole graph

C’

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (3) measurement of space usage

 R

1

C

C

k is the size of a whole graph

C’

C’’

1

Muroya (RIMS, Kyoto U.)

Robustness of cbv linear β-template
Example (3) measurement of space usage

 R

1

C

C

k is the size of a whole graph

C’
robustness relative to

`stat`

due to and ,

k ≥ h

and hence possibly

C’ ≠ C’’

λ @

C’’

1

Muroya (RIMS, Kyoto U.)

Example: cbv linear β-law
Proof methodology:

1. prepare the cbv linear β-template: 

 

 

 

 

　 where H represents a value

2. prove that the cbv linear β-template is robust and safe

 … relative to arithmetic and cbv linear β-reduction

{(,)}λ

@

H
⋯

G
⋯

H
⋯

G
⋯

Muroya (RIMS, Kyoto U.)

Example: cbv linear β-law
Proof methodology:

2. prove that the cbv linear β-template is robust and safe

 … relative to arithmetic and cbv linear β-reduction

3. apply the Partial Characterisation Theorem

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

Muroya (RIMS, Kyoto U.)

Example: cbv linear β-law
Proof methodology:

2. prove that the cbv linear β-template is robust and safe

 … relative to arithmetic and cbv linear β-reduction

3. apply the Partial Characterisation Theorem

 Proposition (cbv linear β-law)

 The cbv linear β-template induces observational equivalence,

 if arithmetic and cbv linear β-reduction are the only computation

 allowed.

Muroya (RIMS, Kyoto U.)

Partiality

● The cbv linear β-template is not robust relative to `stat` 

(measurement of space usage).

● What can we say about the cbv linear β-law, in the presence of `stat`?

●

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

Muroya (RIMS, Kyoto U.)

Partiality

● The cbv linear β-template is not robust relative to `stat` 

(measurement of space usage).

● What can we say about the cbv linear β-law, in the presence of `stat`?

● The counterexample of robustness would provide a

counterexample of the law, in the presence of conditional

statements (e.g. `if`).

● The template can be extended so it is robust relative to `stat`, 

if a language allows no computation to distinguish numbers.

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

Muroya (RIMS, Kyoto U.)

Partiality

If a template is safe but fails to be robust, either:

(1) The intended observational equivalence fails too.

• Counterexamples of robustness would suggest how the

observational equivalence could be violated.

(2) The intended observational equivalence actually holds.

• There may be a bigger, robust, template.

• Counterexamples of robustness would suggest how the template

could be extended.

 Partial Characterisation Theorem

 Robust and safe templates induce observational equivalences.

(for deterministic & “reasonable” languages)

Muroya (RIMS, Kyoto U.)

Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Example: cbv linear β-law 

Muroya (RIMS, Kyoto U.)

Conclusion
● a (general) framework for analysing and proving

robustness of observational equivalence

● current key limitation: determinism

• hypernet semantics: a graphical abstract machine

• local & step-wise reasoning to prove observational

equivalence, with the concept of robustness

Muroya (RIMS, Kyoto U.)

Future directions
● dealing with nondeterminism

● overcoming unsoundness of *-simulation

● Sand’s improvement theory

● incorporating cost reduction in observational

equivalence

● introducing quantitative restrictions on *-simulation

● (semi-)automating robustness & safety check

● exploiting techniques of critical pair analysis

