Term Evaluation Systems with Refinements (to appear in Proc. FLOPS '24)

Koko Muroya (RIMS, Kyoto University) & Makoto Hamana (Gunma University)

Contributions

demonstrate the use

- of a term-rewriting technique (namely, critical pair analysis)
- for proving observational equivalence on programs (namely, Sands' contextual improvement)

by introducing Term Evaluation and Refinement Systems (TERS)

Critical pair analysis -

Evaluation

- "When rewriting diverges, can it be joined?"
- a fundamental technique in term rewriting
- enumerating patterns of interference between rewrite rules
- automatable

Sands' Contextual improvement

• a quantitative variant of observational equivalence • *u* improves $t \iff$ for any context C, if $C[t] \stackrel{k}{\rightarrow} v$ then $C[u] \stackrel{m}{\rightarrow} v' \land k \ge m \land v =_{Val} v'$ $\lambda x \cdot t =_{Val} \lambda x' \cdot t'$ $\underline{n} =_{Val} \underline{n}$

specification of operational semantics	model of compiler optimisation (to be validated wrt. evaluation)
run-time rewriting	compile-time rewriting
rule-based rewriting	rule-based rewriting
constrained by Felleisen's evaluation contexts	unrestricted
beta-reduction $E[(\lambda x \cdot t) v] \rightarrow E[t\{v/x\}]$	beta-law $C[(\lambda x . t) v] \Rightarrow C[t\{v/x\}]$ eta-law $C[\lambda x . v x] \Rightarrow C[v]$

Term Evaluation and Refinement

Systems (TERS)

Local coherence and

contextual improvement

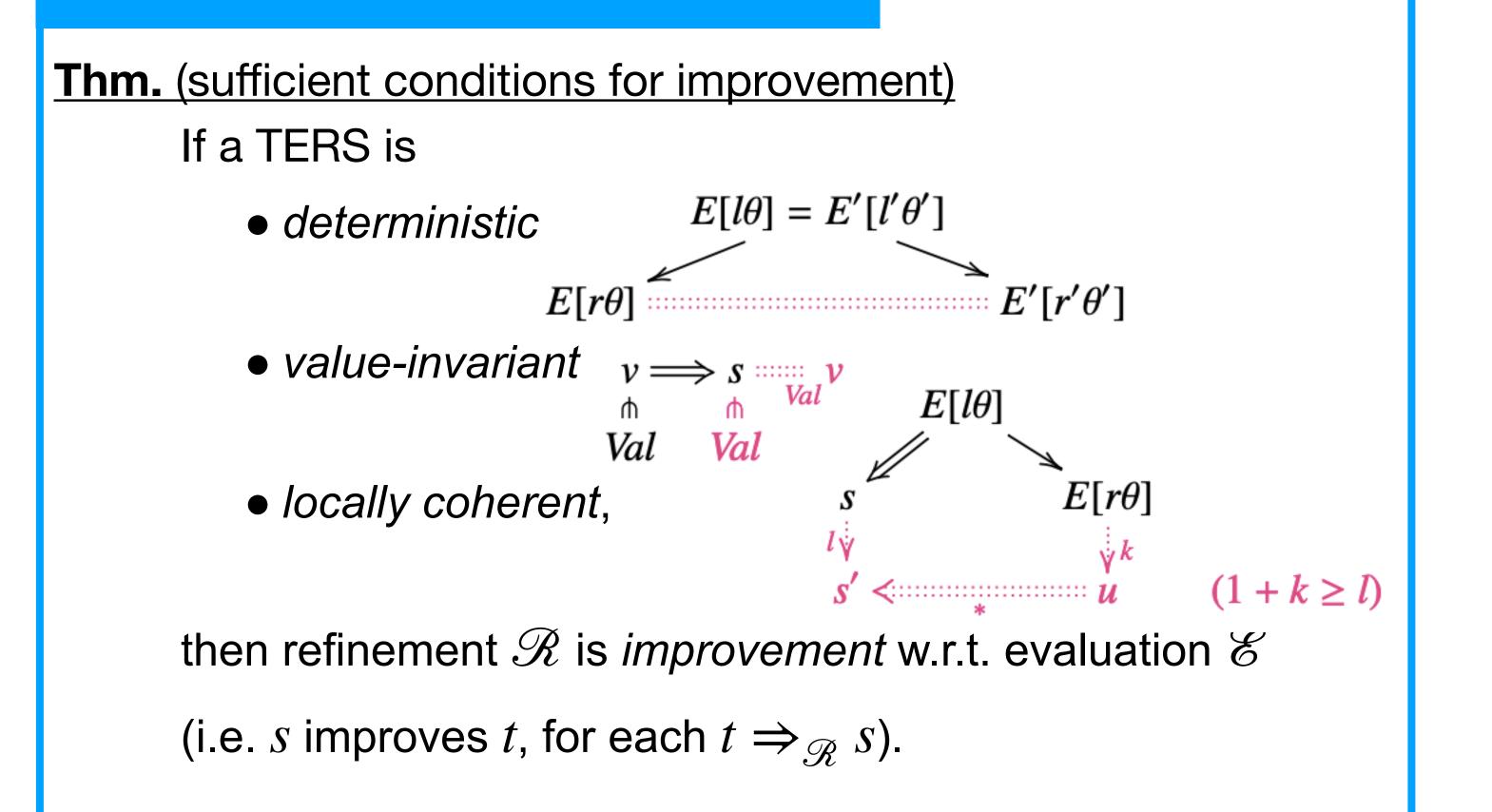
<u>Def.</u> A TERS $(\Sigma, \mathscr{C}, \mathscr{R}, Ectx, SClass)$ is given by:

- ullet a signature Σ
- a set $\mathscr E$ of evaluation rules $l \to r$
- a set \mathscr{R} of refinement rules $l \Rightarrow r$
- a set $Ectx \subseteq Ctx$ of evaluation contexts
- a set *SClass* of syntax classes including $Val \subseteq NF(\rightarrow_{\mathscr{C}})$

 $\frac{(l \to r) \in \mathcal{E} \quad E \in Ectx}{E[l\theta] \to_{\mathcal{E}} E[r\theta]} \qquad \qquad \frac{(l \Rightarrow r) \in \mathcal{R} \quad C \in Ctx}{C[l\theta] \Rightarrow_{\mathcal{R}} C[r\theta]}$

Ex. A TERS Hndl for effect handlers [Pretnar '15]

```
Syntax class SclassfunctionsF ::= x | fun(x.P)valuesV ::= true | false | F | HhandlersH ::= handler_1(x.P, x.k.P_1) | handler_0(x.P)computationsP, P_1, P_2 ::= return(V) | op(V, y.P) | do(P_1, x.P_2)i f(V, P_1, P_2) | F V | with handle(H, P)
```



Thm. (critical pair theorem)

A well-behaved TERS

refinement respecting evaluation contexts E ⇒ C h f f Ectx Ectx
linearity for (l ⇒ r) ∈ R eleft-linearity for (l → r) ∈ C h lhs l being Miller's HO pattern for (l → r) ∈ R ∪ C is *locally coherent* iff every critical pair is *joinable*.
Prop. Hndl is deterministic, value-invariant and locally coherent.
10 critical pairs automatically enumerated & checked for joinability

$ if(V, P_1, P_2) F V with_handle(H, P)$	
Evaluation contexts $Ectx$ $E ::= \Box do(E, x.P) with_handle(H, E)$	
Evaluation rules \mathcal{E} where $i \in [2]$	
$do(return(V), x.P[x]) \rightarrow P[V]$	(1)
$do(op_i(V, y.P_1[y]), x.P_2[x]) \to op_i(V, y.do(P_1[y], x.P_2[x]))$	(2)
$if(true, P_1, P_2) \rightarrow P_1$	(3)
$if(false, P_1, P_2) \rightarrow P_2$	(4)
$fun(x.P[x]) V \to P[V]$	(5)
In the following three rules, $h_1 \equiv \text{handler}_1(x.P[x], x.k.P_1[x,k])$.	
with_handle(h_1 , return(V)) $\rightarrow P[V]$	(6)
with_handle(h_1 , op ₁ ($V, y.P'[y]$)) $\rightarrow P_1[V, fun(y.P'[y])]$	(7)
with_handle(h_1 , op ₁ ($V, y.P'[y]$)) $\rightarrow P_1[V, fun(y.with_handle(h_1, P'[y]))]$	(7')
with_handle(h_1 , op ₂ (V , y . $P'[y]$)) \rightarrow op ₂ (V , y .with_handle(h_1 , $P'[y]$))	(8)
In the following two rules, $h_0 \equiv \text{handler}_0(x.P[x])$.	
with_handle(h_0 , return(V)) $\rightarrow P[V]$	(9)
with_handle(h_0 , op _i ($V, y.P'[y]$)) \rightarrow op _i ($V, y.with_h(handle(h_0, P'[y])$)	(10)
Refinement rules \mathcal{R}	
$do(P, x.return(x)) \Rightarrow P$	(r3)
$do(do(P_1, x_1.P_2[x_1]), x_2.P_3[x_2]) \Rightarrow do(P_1, x_1.do(P_2[x_1], x_2.P_3[x_2]))$	(r4)
$if(V, P[true], P[false]) \Rightarrow P[V]$	(r7)
$fun(x.F x) \Rightarrow F$	(r9)
with_handle(handler_0(x.P[x]), P') \Rightarrow do(P', x.P[x])	(r13)