Climbing up a ladder: an *evitcudnioc* approach to contextual refinement

Koko Muroya (RIMS, Kyoto University)

Climbing up a ladder: an *evitcudnioc* (reverse coinductive) approach to contextual refinement

Koko Muroya (RIMS, Kyoto University)

Contextual refinement

- \bullet "Can the (observable) result of t be reproduced by u ?
- variations:
	- \bullet $t \leq_{\downarrow} u \iff$ \bullet $t \leq_V u \iff$ \bullet $t \leq_V^{\geq}$ ● Sands' *improvement* \bullet $t \leq_V^Q$ Δ $\forall C$. *C*[*t*] $\downarrow \implies C[u] \downarrow$ Δ $\forall C, \nu$. $C[t] \rightarrow^* \nu \implies C[u] \rightarrow^* \nu$ $\frac{2}{V}$ *u* \Longleftrightarrow Δ $\forall C, \nu$. $C[t] \rightarrow^{k} \nu \implies C[u] \rightarrow^{m} \nu \wedge k \geq m$ $\frac{Q}{V}$ *u* \Longleftrightarrow Δ $\forall C, \nu$. $C[t] \rightarrow^{k} \nu \implies C[u] \rightarrow^{m} \nu \wedge k Q m$

• for a preorder $Q \subseteq N \times N$, e.g. $N \times N$, \geq , ...

- *the* coinductive proof methodology for contextual equivalence
	- (1) characterise observational equivalence as "bisimilarity"
	- \bullet (2) take a candidate \bowtie of contextual equivalence
	- \bullet (3) prove that \Join is a "bisimulation"
	- \bullet (4) prove that \bowtie is a congruence, typically by Howe's method

 \bullet (1) for all \bowtie , (2-4) for each \bowtie

Abransky's applicative bisimilarity

Abramsky's applicative bisimilarity

- climbing up a rope of advanced features
	- from applicative to environmental bisimilarity [Koutavas+ '11]
	- Howe's method, once for all effects [Dal Lago+ '17]

A new *evitcudnioc* approach

- yet another coinductive proof methodology for contextual refinement
	- (1) characterise observational refinement as "trace inclusion" of automata
	- (2) design a sound "simulation" notion
	- \bullet (3) take a candidate \triangleleft of contextual refinement
	- (4) take the contextual closure $\overline{\triangle}$ (i.e. $\forall C$. $C[t] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$) ⃗
	- \bullet (5) prove that $\overline{\triangleleft}$ is a "simulation"

 \bullet (1-2) for all \triangleleft , (3-5) for each \triangleleft

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

7

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

7

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

7

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

7

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

7

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

The right bar: (5) "simulation" proofs

counting simulation & graphical local reasoning (2020)

Counting simulation

- (2) design a sound "simulation" notion (for observational refinement)
- target: \leq ^{*Q*} for a preorder $\frac{Q}{L}$ for a preorder $Q \subseteq N \times N$

$$
\bullet \quad t \leq^{\mathcal{Q}}_{\downarrow} u \iff \forall C \, . \, C[t] \downarrow^k \Longrightarrow
$$

- Q introduced for a technical reason
	- (will come back to this point)

$C[u] \downarrow^m \wedge k Q$ *m*

Counting simulation

- (2) design a sound "simulation" notion (for observational refinement)
- target: \leq ^{ϱ} for a preorder $\frac{Q}{L}$ for a preorder $Q \subseteq N \times N$

 R is a Q -counting simulation \Longleftrightarrow Δ

- **Prop.** (soundness) If $\overline{\triangleleft}$ is a Q -counting simulation, then $\triangleleft \subseteq \leq^Q_1$.
	- \bullet only for deterministic \rightarrow , to prove by induction

 $T[u]$ \downarrow ^{*m*} \wedge k Q m

 $S \rightarrow S' \rightarrow k' S''$ $t \rightarrow^m t'$ *R*⋮ [⋮] *R s* ∈ *F t* ∈ *F R*⋮

$$
\bullet \quad t \leq^{\mathcal{Q}}_{\downarrow} u \iff \forall C \, . \, C[t] \downarrow^k \implies C
$$

Def. (counting simulation)

↓

● namely, for *dependency* of contextual refinements

- Case 1. up to structural congruences
	- \bullet e.g. (let $x = t$ in u) $\simeq u$ if $x \notin FV(u)$
	- congruences

• instead of working with equivalence classes of terms wrt. structural

● namely, for *dependency* of contextual refinements

- Case 2. up to auxiliary contextual equivalences
	- e.g. $n \simeq m$ for $n, m \in \mathbb{N}$, in the absence of
	- - stat inspects memory usage
		- A1. No, in the presence of if.
			- Try It Online: **<https://bit.ly/3TqnGOW>**

• **Q.** Is the call-by-value beta-law $(\lambda x \cdot t)$ $\nu \lhd_{\beta} t[\nu/x]$ preserved by stat?

● namely, for *dependency* of contextual refinements

- Case 2. up to auxiliary contextual equivalences
	- e.g. $n \simeq m$ for $n, m \in \mathbb{N}$, in the absence of
	- - **stat inspects memory usage**
		- A2. Yes, in the absence of if.
			-

• **Q.** Is the call-by-value beta-law $(\lambda x \cdot t)$ $\nu \lhd_{\beta} t[\nu/x]$ preserved by stat?

• The beta-law would depend on the auxiliary law $n \simeq m$.

- (2) design a sound "simulation" notion (for observational refinement)
- target: $\leq f$ for a preorder $\frac{Q}{L}$ for a preorder $Q \subseteq N \times N$

● **Def.** (counting simulation up-to)

 R is a Q -counting simulation up to $(Q_1, Q_2) \Longleftrightarrow$

- - \bullet only for deterministic \to and *reasonable* (Q, Q_1, Q_2) , in particular $Q_1 \subseteq \; \geq$

$$
\bullet \quad t \leq^{\mathcal{Q}}_{\downarrow} u \iff \forall C \, . \, C[t] \downarrow^k \Longrightarrow \, C[u] \, .
$$

∀*C*.*C*[*t*] ↓*^k* ⟹ *C*[*u*] ↓*^m* ∧ *k Q m*

$$
{1},Q{2}) \stackrel{\Delta}{\Longleftrightarrow} S \stackrel{S}{\longrightarrow} S' \stackrel{\rightarrow k}{\longrightarrow} S''
$$

$$
t \stackrel{\Delta}{\longrightarrow} T' \stackrel{\rightarrow k}{\longrightarrow} S \stackrel{\prime l}{\longrightarrow} R \stackrel{\Delta l}{\longrightarrow} R \stackrel{\rightarrow l}{\longrightarrow} R \stackrel{\rightarrow l}{\longrightarrow} T
$$

• **Prop.** (soundness) If \overline{Q} is a Q-counting simulation up to (α_1^2, α_2^2) , then $\alpha_1 \in \alpha_1^Q$. \mathcal{Q}_1 \mathcal{Q}_1 , $\boldsymbol{\dot{\sim}}$ $\frac{Q_2}{\sqrt{2}}$, then $\leq \leq \frac{Q}{\sqrt{2}}$

Counting simulation

- (2) design a sound "simulation" notion (for observational refinement)
- target: $\leq f$ ^Q for a preorder $\frac{Q}{L}$ for a preorder $Q \subseteq N \times N$

$$
\bullet \ \ t \leq^{\mathcal{Q}}_{\downarrow} u \iff \forall C \ . \ C[t] \ \ \downarrow^{k} \implies \ C[u] \ \ \downarrow^{k}
$$

- **Def.** (counting simulation) R is a Q -counting simulation \Longleftrightarrow Δ
- **Prop.** (soundness) If $\overline{\triangleleft}$ is a Q -counting simulation, then $\triangleleft \subseteq \leq^Q_1$.
	- \bullet only for deterministic \rightarrow , to prove by induction
	- Q. Can we extend this result to nondeterministic \rightarrow ?

↓

∀*C*.*C*[*t*] ↓*^k* ⟹ *C*[*u*] ↓*^m* ∧ *k Q m* $S \rightarrow S' \rightarrow k' S''$ $t \rightarrow^m t'$ *R*⋮ [⋮] *R s* ∈ *F t* ∈ *F R*⋮

• (5) prove that $\overline{\triangleleft}$ is a Q -simulation

- \bullet now examining how each \rightarrow is defined
	- namely: *token-guided graph rewriting*
		- A token, moving around a graph, substitutes evaluation contexts.

$$
\overrightarrow{C[\vec{u}]} \rightarrow s \rightarrow^{k} C'[\vec{t}']
$$

\n
$$
\overrightarrow{C[\vec{u}]} \rightarrow^{m} C'[\vec{u}']
$$

• (5) prove that $\overline{\triangleleft}$ is a Q -simulation

- \bullet now examining how each \rightarrow is defined
	- namely: *token-guided graph rewriting*
		- A token, moving around a graph, substitutes evaluation contexts.

$$
\overrightarrow{C[\vec{u}]} \rightarrow s \rightarrow^{k} C'[\vec{t}']
$$

\n
$$
\overrightarrow{C[\vec{u}]} \rightarrow^{m} C'[\vec{u}']
$$

Token-guided graph rewriting

- 1. A token does depth-first traversal, searching for a redex.
- 2. The token triggers rewrite of the found redex.
- 3. Go back to 1.

Token-guided graph rewriting

- 1. A token does depth-first traversal, searching for a redex.
- 2. The token triggers rewrite of the found redex.
- 3. Go back to 1.

• (5) prove that $\overline{\triangleleft}$ is a Q-simulation

′[*N*′] ⃗

.
2
2

$$
\dot{\mathscr{C}}[\overrightarrow{N}] \rightarrow \dot{P} \rightarrow^k \dot{\mathscr{C}}'[\overrightarrow{I}]
$$

$$
\dot{\mathscr{C}}[\overrightarrow{H}] \rightarrow^m \dot{\mathscr{C}}'[\overrightarrow{H'}]
$$

- \bullet case analysis on $\mathscr{C}[N] \to P$ in terms of the token behaviour <u>.</u>
2 $[N] \rightarrow$ ⃗ .
D *P*
	- The token moves inside the context \mathscr{C} . ==> Always OK.
	- The token visits N_i . ==> OK if \triangleleft is Q-safe.
	- The token triggers rewrite. $==$ > OK if \triangle is Q-robust.
- Prop. If \triangleleft is Q-safe and Q-robust, then $\overline{\triangleleft}$ is a Q-simulation.

• (5) prove that $\overline{\triangleleft}$ is a Q -simulation

- Prop. If \triangleleft is Q-safe and Q-robust, then $\overline{\triangleleft}$ is a Q-simulation.
- Q. How to prove safety and robustness?
- **A.** By hand.
	- Safety: by feasible pen-and-paper proof.
	- Robustness: by tedious, involved, error-prone, case analysis.
	- **Q'.** Can somebody help the case analysis?

′[*N*′] ⃗

$$
\begin{aligned}\n\ddot{\mathscr{C}}[\overrightarrow{N}] &\rightarrow \dot{P} \rightarrow^k \dot{\mathscr{C}}[\overrightarrow{I}] \\
\overrightarrow{\mathscr{C}}[\overrightarrow{H}] &\rightarrow^m \dot{\mathscr{C}}'[\overrightarrow{H'}] \\
\ddot{\mathscr{C}}[\overrightarrow{H}] &\rightarrow^m \dot{\mathscr{C}}'[\overrightarrow{H'}]\n\end{aligned}
$$

• (5) prove that $\overline{\triangleleft}$ is a Q -simulation

- Prop. If \triangleleft is Q-safe and Q-robust, then $\overline{\triangleleft}$ is a Q-simulation.
- **Q.** How to prove safety and robustness?
- **Q''.** Can we do everything with terms and conventional reduction semantics?

′[*N*′] ⃗

$$
\begin{aligned}\n\ddot{\mathscr{C}}[\overrightarrow{N}] &\rightarrow \dot{P} \rightarrow^k \dot{\mathscr{C}}[\overrightarrow{I}] \\
\ddot{\mathscr{C}}[\overrightarrow{H}] &\rightarrow^m \dot{\mathscr{C}}'[\overrightarrow{H'}] \\
\ddot{\mathscr{C}}[\overrightarrow{H}] &\rightarrow^m \dot{\mathscr{C}}'[\overrightarrow{H'}]\n\end{aligned}
$$

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

The right bar: (5) "simulation" proofs

counting simulation & graphical local reasoning (2020)

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

The right bar: (5) "simulation" proofs

preorder-constrained

 W' .

Preorder-constrained simulation

- (1) characterise observational refinement as "trace inclusion" of automata
- **Def.** (reduction semantics as NA)

$$
\frac{\overline{\mathsf{or}(t_1, t_2) \stackrel{\mathsf{or}_i}{\rightarrow} t_i}}{\mathsf{in}(t_1, t_2) \stackrel{\mathsf{in}_i}{\rightarrow} t_i} \qquad \qquad n \stackrel{n}{\rightarrow} \checkmark
$$
\n
$$
\forall w \in L_{\mathscr{A}_1}(x) \quad \exists w' \in L_{\mathscr{A}_2}(y) \quad w \quad \mathcal{Q}
$$

$$
E[(\lambda x \cdot t) \ v] \stackrel{\tau}{\rightarrow} E[t\{v/x\}]
$$

- Def. (\mathcal{Q} -trace inclusion) $x \sqsubseteq^{\mathcal{Q}} y \Longleftrightarrow \forall w \in L_{\mathcal{A}_1}(x)$. $\exists w' \in L_{\mathcal{A}_2}(y)$. $w \oslash w'$. Δ
	- for a preorder $\mathcal{Q} \subseteq \Sigma^* \times \Sigma^*$ on words
		- \bullet *lifted* preorder $w|Q|w' \stackrel{\Delta}{\Longleftrightarrow} |w|Q|w'|$ for $Q \subseteq \mathbb{N} \times \mathbb{N}$
		- \bullet *filtered equality* $a\tau\tau b\tau c\tau =_{rem(\tau)}abc$

Preorder-constrained simulation

- (1) characterise observational refinement as "trace inclusion" of automata
- **Def.** (reduction semantics as NA)

- Δ
- **•** Lem. \Box $Q|U=$ \Box _{rem(*τ*, or) = \angle \angle _V for nondeterminism} · ⪯*^Q V*
- \bullet **Lem.** \sqsubseteq $|Q|\cup_{\text{rem}(\tau)} = \frac{1}{2}Q$ for $|Q|$ · ⪯*^Q V*

$$
\frac{\overline{\text{or}(t_1, t_2) \xrightarrow{\text{or}_i} t_i}}{E[(\lambda x. t) v] \xrightarrow{\text{f}} E[t\{v/x\}]}
$$
\n
$$
\frac{\overline{\text{or}(t_1, t_2) \xrightarrow{\text{or}_i} t_i}}{in(t_1, t_2) \xrightarrow{\text{in}_i} t_i}
$$
\n• **Def.** (Q-tree inclusion) $x \sqsubseteq^{\mathcal{Q}} y \xrightarrow{\Delta} \forall w \in L_{\mathcal{A}_1}(x) \xrightarrow{\text{in}_i} \exists w' \in L_{\mathcal{A}_2}(y) \xrightarrow{\text{in}_i} \mathcal{Q} w'.$ \n• **Lemma** $\sqsubseteq |\mathcal{Q}| \cup \exists_{\text{rem}(x, \text{or})} = \frac{\text{i} \mathcal{Q}}{\text{v}}$ for nondeterminism or (1,2) $\frac{\text{i} \exists \overline{y} \text{ or}(2,1) \dots \text{Yes}}{in(1,2) \underline{\text{i}} \overline{y} \text{ in}(2,1) \dots \text{No}}$.

$$
E[(\lambda x \cdot t) \ \nu] \stackrel{\tau}{\rightarrow} E[t\{\nu/x\}]
$$

Preorder-constrained simulation

- (2) design a sound "simulation" notion (for observational refinement
- **Def.** (counting simulation) R is a Q -counting simulation \Longleftrightarrow Δ
- **Def.** (preorder-constrained simulation)

R is an M-lookahead $\mathbb Q$ -constrained simulation \Longleftrightarrow

● idea: swap \forall and \exists to fully inspect branches

 $S \rightarrow S' \rightarrow k' S''$ $t \rightarrow^m t'$ *R*⋮ [⋮] *R R*⋮ *s* ∈ *F t* ∈ *F*

Preorder-constrained simulation

- (2) design a sound "simulation" notion (for observational refinement
- **Def.** (counting simulation) R is a Q -counting simulation \Longleftrightarrow Δ
- **Def.** (preorder-constrained simulation)

R is an M-lookahead $\mathbb Q$ -constrained simulation \Longleftrightarrow

- -

$$
s \to s' \to s''
$$

\n
$$
R: \qquad \qquad \cdot \cdot R
$$

\n
$$
t \to^m t'
$$

\n
$$
s \in F
$$

\n
$$
t \in F
$$

 \bullet **Prop.** (soundness) If $\overline{\triangleleft}$ is an M -lookahead $|Q| \cup =_{\text{rem}(\tau, \text{or})}$ -constrained simulation, then $\prec \subseteq \leq^Q_V$.

• now for nondeterministic \rightarrow , but not for probabilistic \rightarrow yet (e.g. $\text{or}_{0.5}(1,1) \triangleleft_{\leq_{+}} \text{or}_{0.5}(0,1)$)

● two-player reachability game between Challenger & Simulator 2 tupe player reachability game between Challenger

- 1 Challenger chooses *x a*
- accepting state is reachable from $y \in X_2$.
- Simulator skips the turn. This move is always possible when $M = \infty$.
- 4 Simulator simulates Challenger's moves in the queue *w*, in less than *N* transitions.
- than *N* transitions.

Figure 9 Two-player game $\mathcal{G}_{\mathcal{A}_1,\mathcal{A}_2}^{M,N,\mathbf{Q}}$ characterising (*M*-bounded) **Q**-constrained simulation.

 $\stackrel{a}{\leadsto}_1 x'$ from the current state *x* and enqueues the label *a*.

Challenger is at an accepting state $x \in F_1$. Challenger forces Simulator to check whether an

5 Simulator simulates Challenger's moves in the queue *w* and reaches an accepting state, in less

Preorder-constrained simulation, as a reachability game

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

The right bar: (5) "simulation" proofs

preorder-constrained

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

\int ^{inding} "trace inclusion" with
modelities (angeing) modalities (ongoing)

tion & graphical local ning (2020)

"Trace inclusion" with modalities

- (1) characterise observational refinement as "trace inclusion" of automata
- **Def.** (reduction semantics as NA)

$$
E[(\lambda x \cdot t) \, v] \stackrel{\tau}{\rightarrow} E[t\{v/x\}]
$$

- **Def.** (\mathcal{O} -trace inclusion) $x \sqsubseteq^{\mathcal{O}} y \Longleftrightarrow$ Δ …
- Goal $\mathbf{E}^{\omega} = \mathbf{S}_{V}^{\omega}$ for various algebraic effects · \leq°_{V}
	- \bullet \leq°_{V} : observational refinement with *modalities* [Simpson+ '18] · \leq°_{V}
	- altering modalities \longrightarrow adjusting observation to various effects

$$
\overline{\text{or}(t_1, t_2) \xrightarrow{\text{or}_i} t_i} \quad \overline{n \xrightarrow{n}} \quad \overline{n}
$$
\n
$$
\overline{\text{in}(t_1, t_2) \xrightarrow{\text{in}_i} t_i}
$$

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

31

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

\int ^{inding} "trace inclusion" with
modelities (angeing) modalities (ongoing)

tion & graphical local ning (2020)

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

The right bar: (5) "simulation" proofs

preorder-constrained

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

The right bar: (5) "simulation" proofs

counting simulation & graphical local

reasoning (2020) local coherence & critical pair analysis (2024)

- yet another coinductive proof methodology for contextual refinement
	- (1) characterise observational refinement as "trace inclusion" of automata
	- (2) design a sound "simulation" notion (for observational refinement)
	- \bullet (3) take a candidate \triangleleft of contextual refinement
	- (4) take the contextual closure $\overline{\triangle}$ (i.e. $\forall C$. $C[t] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$) ⃗
	- \bullet (5) prove that $\overline{\triangleleft}$ is a "simulation"

 \bullet (1-2) for all \triangleleft , (3-5) for each \triangleleft

- yet another coinductive proof methodology for contextual refinement
	- (1) characterise observational refinement as "trace inclusion" of automata
	- (2) design a sound "simulation" notion (for observational refinement)
	- \bullet (3) take a candidate \triangleleft of contextual refinement
	-
	- \bullet (5) prove that $\overline{\triangleleft}$ is a counting simulation

 \bullet only for deterministic \rightarrow

• (4) take the contextual closure $\overline{\triangle}$ (i.e. $\forall C$. $C[t] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$) ⃗

- yet another coinductive proof methodology for contextual refinement
	- (1) characterise observational refinement as "trace inclusion" of automata
	- (2) design a sound "simulation" notion (for observational refinement)
	- (3) take a *refinement rule* $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement
	- (4) take the contextual closure $\overline{\triangle}$ (i.e. $\forall C$. $C[t] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$) ⃗
	- \bullet (5) prove that $\overline{\triangleleft}$ is a counting simulation

 \bullet only for deterministic \rightarrow

- yet another coinductive proof methodology for contextual refinement
	-
	- (2) design a sound "simulation" notion (for observational refinement)
	- (3) take a *refinement rule* $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement
	-

• (5) prove that $\overline{\triangleleft}$ is a counting simulation

 \bullet only for deterministic \rightarrow

● (1) characterise observational refinement as "trace inclusion" of automata

(4) take the *refinement* relation
$$
\Rightarrow_{\mathcal{R}} (i.e. \frac{(l \Rightarrow r) \in \mathcal{R}}{C[l\theta]} \Rightarrow_{\mathcal{R}} C[r\theta]
$$

- yet another coinductive proof methodology for contextual refinement
	-
	- (2) design a sound "simulation" notion (for observational refinement)
	- (3) take a *refinement rule* $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement
	-

 \bullet (5) prove that $\Rightarrow_{\mathcal{R}}$ is *locally coherent*

 \bullet only for deterministic \rightarrow

● (1) characterise observational refinement as "trace inclusion" of automata

A new *evitcudnioc* approach from rewriting perspective

(4) take the *refinement* relation
$$
\Rightarrow_{\mathcal{R}} (i.e. \frac{(l \Rightarrow r) \in \mathcal{R}}{C[l\theta]} \Rightarrow_{\mathcal{R}} C[r\theta]
$$

- yet another coinductive proof methodology for contextual refinement
	- (1) characterise observational refinement as "trace inclusion" of automata
	- (2) design a sound "simulation" notion (for observational refinement)
	- (3) take a *refinement rule* $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement
	- **(4)** take the *refinement* relation $\Rightarrow_{\mathscr{R}}$ (i.e. $\frac{1}{\sqrt{1}}$ \Rightarrow $\frac{1}{\sqrt{1}}$ \Rightarrow $\frac{1}{\sqrt{1}}$ \Rightarrow $\frac{1}{\sqrt{1}}$
	- \bullet (5) prove that $\Rightarrow_{\mathcal{R}}$ is *locally coherent*

only for the deterministic evaluation relation

$$
\mathbf{e} \xrightarrow{(l \Rightarrow r) \in \mathcal{R}} C \in Ctx
$$

$$
C[l\theta] \Rightarrow_{\mathcal{R}} C[r\theta]
$$

on
$$
\rightarrow_{g}
$$
 (i.e. $\frac{(l \rightarrow r) \in \mathcal{E}}{E[l\theta] \rightarrow_{g} E[r\theta]}$)

- yet another coinductive proof methodology for contextual refinement
	- (1) characterise observational refinement as "trace inclusion" of automata
	- (2) design a sound "simulation" notion (for observational refinement)
	- (3) take a *refinement rule* $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement
	- **(4)** take the *refinement* relation $\Rightarrow_{\mathscr{R}}$ (i.e. $\frac{1}{\sqrt{1}}$ \Rightarrow $\frac{1}{\sqrt{1}}$ \Rightarrow $\frac{1}{\sqrt{1}}$ \Rightarrow $\frac{1}{\sqrt{1}}$
	- \bullet (5) prove that $\Rightarrow_{\mathcal{R}}$ is *locally coherent*

 $(l \Rightarrow r) \in \mathcal{R}$ $C \in Ctx$ $C[l\theta] \Rightarrow_{\mathcal{R}} C[r\theta]$

standard term rewriting

Local coherence

- (2) design a sound "simulation" notion (for observational refinement)
- target: \leq^{\geq}_{V} (Sands' *improvement*) *V*

$$
\bullet \quad t \leq_V^{\geq} u \iff \forall C \, . \, C[t] \to^k \nu \implies C[u] \to^m \nu \land k \geq m
$$

- \bullet \geq chosen for a technical reason
- **Def.** (local coherence) $\Rightarrow_{\mathscr{R}}$ is locally coherent \Longleftrightarrow Δ $s \rightarrow$ $t \rightarrow$ $\bigcup_{\mathscr{R}}$
- **Prop.** (soundness) If $\Rightarrow_{\mathscr{R}}$ is locally coherent, then $\Rightarrow_{\mathscr{R}} \subseteq \leq_{V}^2$. $\Rightarrow_{\mathscr{R}}$ is locally coherent, then $\Rightarrow_{\mathscr{R}} \subseteq \leq_{V}^{\geq}$
	- \bullet only for deterministic $\rightarrow_{\mathscr{C}}$ and *value-invariant* $\Rightarrow_{\mathscr{R}}$

a notion taken from equational rewriting

$$
\begin{array}{c}\n\mathscr{E} S' \rightarrow^k \mathscr{E} S'' \\
\mathscr{E} t' \rightarrow^k \mathscr{S} \\
\mathscr{E} t' \rightarrow^k \mathscr{E} \\
\mathscr{E} t' \
$$

Critical pair analysis for local coherence

- (5) prove that $\Rightarrow_{\mathcal{R}}$ is locally coherent
- Thm. (critical pair theorem) $\Rightarrow_{\mathscr{R}}$ is locally coherent iff every critical pair is joinable.
	- joinability:

- evaluation rules, …
- **Ex.** the call-by-value λ-calculus, the computational λ-calculus with (shallow) effect handlers

2 critical pairs

10 critical pairs

Critical pairs can be **automatically** enumerated & checked for joinability!

$\bullet\;$ only for evaluation-context-preserving $\Rightarrow_{\mathscr R}$, linear refinement rules, left-linear

Critical pair analysis for local coherence

● **Ex.** the call-by-value λ-calculus

Signature Σ **Syntax class Sclass Evaluation contexts Ectx** Evaluation rules $\mathcal E$ $(\lambda x.M[x]) V \rightarrow M[V]$

 λ : $\langle 1 \rangle$, ω : $\langle 0, 0 \rangle$ $V ::= \lambda x.t$ values $E ::= \Box | E t | v E$ Refinement rules R $(\lambda x.M[x]) V \Rightarrow M[V]$ $\lambda x. V x \Rightarrow V$

Critical pair analysis for local coherence

• Ex. the computational λ-calculus with (shallow) effect handlers

Signature Σ

true: $\langle 0 \rangle$, false: $\langle 0 \rangle$, fun: $\langle 1 \rangle$, \mathcal{Q} : $\langle 0, 0 \rangle$, return: $\langle 0 \rangle$, op₁: $\langle 0, 1 \rangle$, op₂: $\langle 0, 1 \rangle$, handler₁: $\langle 1, 2 \rangle$, handler₀: $\langle 1 \rangle$, do: $\langle 0, 1 \rangle$, if: $\langle 0, 0, 0 \rangle$, with_handle: $\langle 0, 0 \rangle$ **Syntax class Sclass** $F ::= x | \text{ fun}(x.P)$ functions V ::= true | false | F | H values **handlers** $H ::=$ handler₁ $(x.P, x.k.P_1)$ | handler₀ $(x.P)$ computations $P, P_1, P_2 ::= \text{return}(V) | \text{op}(V, y.P) | \text{do}(P_1, x.P_2)$ \vert if(V, P_1, P_2) \vert F V \vert with_handle(H, P) $E ::= \Box | \text{do}(E, x.P) | \text{with_handle}(H, E)$ **Evaluation contexts Ectx Evaluation rules** \mathcal{E} where $i \in [2]$ $do(return(V), x.P[x]) \rightarrow P[V]$ (1) (2) $do(op_i(V, y. P_1[y]), x. P_2[x]) \rightarrow op_i(V, y. do(P_1[y], x. P_2[x]))$ if(true, P_1, P_2) \rightarrow P_1 (3) if(false, P_1, P_2) \rightarrow P_2 (4) $fun(x.P[x]) V \rightarrow P[V]$ (5) In the following three rules, $h_1 \equiv$ handler₁(*x*.*P*[*x*], *x*.*k*.*P*₁[*x*, *k*]). with_handle(h_1 , return(V)) \rightarrow $P[V]$ (6) with_handle(h_1 , op₁(V , y . $P'[y])$) \rightarrow $P_1[V$, fun(y . $P'[y])$] (7) with_handle(h_1 , op₂(V , y . $P'[y])$) \rightarrow op₂(V , y .with_handle(h_1 , $P'[y])$) (8) In the following two rules, $h_0 \equiv \text{handler}_0(x.P[x])$. with_handle(h_0 , return(V)) \rightarrow $P[V]$ (9) with_handle(h_0 , op_i(V , y . $P'[y])$) \rightarrow op_i(V , y .with_handle(h_0 , $P'[y])$) (10) Refinement rules R $(r3)$ $do(P, x. return(x)) \Rightarrow P$ $\text{do}(\text{do}(P_1, x_1 \ldots P_2[x_1]), x_2 \ldots P_3[x_2]) \Rightarrow \text{do}(P_1, x_1 \ldots \text{do}(P_2[x_1], x_2 \ldots P_3[x_2]))$ $(r4)$ $(r9)$ $fun(x.F x) \Rightarrow F$ with_handle(handler₀(x,P[x]), P') \Rightarrow do(P', x,P[x]) $(r13)$

Critical pair analysis for local coherence

• Ex. the computational λ-calculus with (shallow) effect handlers

 $return(V)$ =

 $op_i(V, y. P[y]) \Leftarrow$

 $do(return(V), x.doc(P[x], x'.P'[x']))$

 $do(return(V), x.P[x])$

 $do(op_i(V, y.P'[y]), x.P[x])$

A new *evitcudnioc* approach

- yet another coinductive proof methodology for contextual refinement
	- (1) characterise observational refinement as "trace inclusion" of automata
	- (2) design a sound "simulation" notion
	- \bullet (3) take a candidate \triangleleft of contextual refinement
	- (4) take the contextual closure $\overline{\triangle}$ (i.e. $\forall C$. $C[t] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$) ⃗
	- \bullet (5) prove that $\overline{\triangleleft}$ is a "simulation"

 \bullet (1-2) for all \triangleleft , (3-5) for each \triangleleft

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

47 forgetting how each \rightarrow is defined

The right bar: (5) "simulation" proofs

counting simulation & graphical local reasoning (2020)

M. PhD thesis 2020

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

M., Sanada & Urabe CMCS 2024

● climbing up a ladder probability ● nondeterminism, I/O state divergence preorder-constrained

● climbing up a ladder probability ● nondeterminism, I/O state divergence

A new *evitcudnioc* approach

forgetting how each \rightarrow is defined

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions

The right bar: (5) "simulation" proofs

counting simulation & graphical local

reasoning (2020) local coherence & critical pair analysis (2024)

M. & Hamana FLOPS 2024

● climbing up a ladder probability ● nondeterminism, I/O state divergence

potential side-steps

- call-by-need
- continuation

A new *evitcudnioc* approach

 $examing$ how each \rightarrow is defined

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

The right bar: (5) "simulation" proofs

counting simulation & graphical local

reasoning (2020) local coherence & critical pair analysis (2024)