Koko Muroya (RIMS, Kyoto University)

Climbing up a ladder: an evitcudnioc approach to contextual refinement

Climbing up a ladder: an evitcudnioc (reverse coinductive) approach to contextual refinement

Koko Muroya (RIMS, Kyoto University)

Contextual refinement

- "Can the (observable) result of t be reproduced by u?
- variations:
 - $t \leq u \Leftrightarrow^{\Delta} \forall C . C[t] \downarrow \Longrightarrow C[u] \downarrow$ • $t \leq_V u \Leftrightarrow^{\Delta} \forall C, v \cdot C[t] \to^* v \implies C[u] \to^* v$ • $t \leq_{V}^{\geq} u \Leftrightarrow^{\Delta} \forall C, v \cdot C[t] \to^{k} v \implies C[u] \to^{m} v \land k \geq m$ • Sands' *improvement* • $t \leq_V^Q u \Leftrightarrow^{\Delta} \forall C, v \cdot C[t] \to^k v \implies C[u] \to^m v \wedge k Q m$

• for a preorder $Q \subseteq \mathbb{N} \times \mathbb{N}$, e.g. $\mathbb{N} \times \mathbb{N}$, \geq , ...

Abransky's applicative bisimilarity

- the coinductive proof methodology for contextual equivalence
 - (1) characterise observational equivalence as "bisimilarity"
 - (2) take a candidate 🖂 of contextual equivalence
 - (3) prove that ⋈ is a "bisimulation"
 - (4) prove that \bowtie is a congruence, typically by Howe's method

• (1) for all \bowtie , (2-4) for each \bowtie

Abramsky's applicative bisimilarity

- climbing up a rope of advanced features
 - from applicative to environmental bisimilarity [Koutavas+ '11]
 - Howe's method, once for all effects [Dal Lago+ '17]

- yet another coinductive proof methodology for contextual refinement
 - (1) characterise observational refinement as "trace inclusion" of automata
 - (2) design a sound "simulation" notion
 - (3) take a candidate \triangleleft of contextual refinement
 - (4) take the contextual closure $\overline{\triangleleft}$ (i.e. $\forall C \cdot C[\vec{t}] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$)
 - (5) prove that $\overline{\triangleleft}$ is a "simulation"

• (1-2) for all \triangleleft , (3-5) for each \triangleleft

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

Muroya (RIMS, Kyoto U.)

7

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

Muroya (RIMS, Kyoto U.)

7

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

Muroya (RIMS, Kyoto U.)

7

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

Muroya (RIMS, Kyoto U.)

7

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

The left bar: (2) "simulation" notions

forgetting how each \rightarrow is defined

counting simulation & graphical local reasoning (2020)

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

Counting simulation

- (2) design a sound "simulation" notion (for observational refinement)
- target: \leq_{\perp}^{Q} for a preorder $Q \subseteq \mathbb{N} \times \mathbb{N}$

•
$$t \leq^{Q}_{\downarrow} u \stackrel{\Delta}{\Longleftrightarrow} \forall C . C[t] \downarrow^{k} \Longrightarrow$$

- Q introduced for a technical reason
 - (will come back to this point)

$C[u] \downarrow^m \land k Q m$

Counting simulation

- (2) design a sound "simulation" notion (for observational refinement)
- target: \leq_{\perp}^{Q} for a preorder $Q \subseteq \mathbb{N} \times \mathbb{N}$

•
$$t \leq^{Q}_{\downarrow} u \stackrel{\Delta}{\Longleftrightarrow} \forall C . C[t] \downarrow^{k} \Longrightarrow C[t]$$

Def. (counting simulation)

- **Prop.** (soundness) If $\overline{\triangleleft}$ is a Q-counting simulation, then $\triangleleft \subseteq \leq_{\perp}^{Q}$.
 - only for deterministic \rightarrow , to prove by induction

 $[u] \downarrow^m \land k O m$

(counting simulation) $R \text{ is a } Q \text{-counting simulation} \stackrel{\Delta}{\iff} \qquad \begin{array}{c} s \to s' \to^k s'' \qquad s \in F \\ R \stackrel{\circ}{\cong} \qquad R \stackrel{\sim}{\cong} \qquad R \stackrel{\cong}{\cong} \qquad$ $t \rightarrow^m t'$ $t \in F$

• namely, for *dependency* of contextual refinements

- Case 1. up to structural congruences
 - e.g. (let x = t in u) $\simeq u$ if $x \notin FV(u)$
 - congruences

• instead of working with equivalence classes of terms wrt. structural

• namely, for *dependency* of contextual refinements

- Case 2. up to auxiliary contextual equivalences
 - e.g. $n \simeq m$ for $n, m \in \mathbb{N}$, in the absence of if
 - - stat inspects memory usage
 - A1. No, in the presence of if.
 - Try It Online: <u>https://bit.ly/3TqnGOW</u>

• Q. Is the call-by-value beta-law $(\lambda x \cdot t) v \triangleleft_{\beta} t[v/x]$ preserved by stat?

• namely, for *dependency* of contextual refinements

- Case 2. up to auxiliary contextual equivalences
 - e.g. $n \simeq m$ for $n, m \in \mathbb{N}$, in the absence of if
 - - stat inspects memory usage
 - A2. Yes, in the absence of if.

• Q. Is the call-by-value beta-law $(\lambda x \cdot t) v \triangleleft_{\beta} t[v/x]$ preserved by stat?

• The beta-law would depend on the auxiliary law $n \simeq m$.

- (2) design a sound "simulation" notion (for observational refinement)
- target: \leq_{\perp}^{Q} for a preorder $Q \subseteq \mathbb{N} \times \mathbb{N}$

•
$$t \leq^{Q}_{\downarrow} u \stackrel{\Delta}{\Longleftrightarrow} \forall C . C[t] \downarrow^{k} \Longrightarrow C[u]$$

• **Def.** (counting simulation up-to)

R is a Q-counting simulation up to (Q)

- - only for deterministic \rightarrow and reasonable (Q, Q_1, Q_2) , in particular $Q_1 \subseteq \geq$

 $\downarrow^m \land k \ Q \ m$

$${}_{1}, Q_{2}) \stackrel{\Delta}{\longleftrightarrow} R \stackrel{s \to s' \to k s''}{\underset{t \to m t'}{\overset{s \to k s'' \to k s''}{\underset{t \to m t'}{\overset{s \to k s'' \to k s''}{\underset{t \to m t'}{\overset{s \to k s'' \to k s''}{\underset{t \to k s'' \to k s''}{\overset{s \to k s'' \to k s''}{\underset{t \to k s'' \to k s''}{\overset{s \to k s'' \to k s'' s'' s''}}} s$$

• **Prop.** (soundness) If $\overline{\triangleleft}$ is a Q-counting simulation up to $(\dot{\simeq}_{\perp}^{Q_1}, \dot{\simeq}_{\perp}^{Q_2})$, then $\triangleleft \subseteq \leq_{\perp}^{Q}$.

Counting simulation

- (2) design a sound "simulation" notion (for observational refinement)
- target: \leq_{\perp}^{Q} for a preorder $Q \subseteq \mathbb{N} \times \mathbb{N}$

•
$$t \leq^{Q}_{\downarrow} u \stackrel{\Delta}{\Longleftrightarrow} \forall C . C[t] \downarrow^{k} \Longrightarrow C[u] \downarrow^{k}$$

- (counting simulation) $s \to s' \to k s''$ $s \in F$ *R* is a *Q*-counting simulation $\stackrel{\Delta}{\iff} R \vdots$ $\cdot R$ $R \vdots$ **<u>Def.</u>** (counting simulation)
- **Prop.** (soundness) If $\overline{\triangleleft}$ is a Q-counting simulation, then $\triangleleft \subseteq \preceq_{\perp}^{Q}$.
 - only for deterministic \rightarrow , to prove by induction
 - **Q.** Can we extend this result to nondeterministic \rightarrow ?

 $k^m \wedge k Q m$ $t \rightarrow^m t'$ $t \in F$

• (5) prove that $\overline{\triangleleft}$ is a Q-simulation

- now examining how each \rightarrow is defined
 - namely: token-guided graph rewriting
 - A token, moving around a graph, substitutes evaluation contexts.

+']

• (5) prove that $\overline{\triangleleft}$ is a Q-simulation

- now examining how each \rightarrow is defined
 - namely: token-guided graph rewriting
 - A token, moving around a graph, substitutes evaluation contexts.

+']

Token-guided graph rewriting

- 1. A token does depth-first traversal, searching for a redex.
- 2. The token triggers rewrite of the found redex.
- 3. Go back to 1.

Token-guided graph rewriting

- 1. A token does depth-first traversal, searching for a redex.
- 2. The token triggers rewrite of the found redex.
- 3. Go back to 1.

• (5) prove that $\overline{\triangleleft}$ is a Q-simulation

$$\begin{aligned} \dot{\mathscr{C}}[\vec{N}] &\to \dot{P} \to^{k} \dot{\mathscr{C}} \\ \overline{\triangleleft} \vdots & \vdots \\ \dot{\mathscr{C}}[\vec{H}] \to^{m} \dot{\mathscr{C}}'[\vec{H'}] \end{aligned}$$

- case analysis on $\dot{\mathscr{C}}[\overrightarrow{N}] \to \dot{P}$ in terms of the token behaviour
 - The token moves inside the context $\dot{\mathscr{C}}$. ==> Always OK.
 - The token visits N_i . ==> OK if \triangleleft is Q-safe.
 - The token triggers rewrite. ==> OK if \triangleleft is *Q*-robust.
- **Prop.** If \triangleleft is Q-safe and Q-robust, then $\overline{\triangleleft}$ is a Q-simulation.

 $\vec{B}'[\vec{N'}]$

• (5) prove that $\overline{\triangleleft}$ is a *Q*-simulation

$$\begin{aligned} \dot{\mathscr{C}}[\vec{N}] \to \dot{P} \to^{k} \dot{\mathscr{C}} \\ \overline{\triangleleft} \vdots & \vdots \\ \dot{\mathscr{C}}[\vec{H}] \to^{m} \dot{\mathscr{C}}'[\vec{H}'] \end{aligned}$$

- **Prop.** If \triangleleft is Q-safe and Q-robust, then $\overline{\triangleleft}$ is a Q-simulation.
- **Q.** How to prove safety and robustness?
- **A.** By hand.
 - Safety: by feasible pen-and-paper proof.
 - Robustness: by tedious, involved, error-prone, case analysis.
 - Q'. Can somebody help the case analysis?

S'[N']

• (5) prove that $\overline{\triangleleft}$ is a *Q*-simulation

$$\begin{split} \dot{\mathscr{C}}[\overrightarrow{N}] &\to \dot{P} \to^{k} \dot{\mathscr{C}} \\ \overline{\triangleleft} \vdots & \vdots \\ \dot{\mathscr{C}}[\overrightarrow{H}] \to^{m} \dot{\mathscr{C}}'[\overrightarrow{H'}] \end{split}$$

- **Prop.** If \triangleleft is Q-safe and Q-robust, then $\overline{\triangleleft}$ is a Q-simulation.
- **Q.** How to prove safety and robustness?
- Q". Can we do everything with terms and conventional reduction semantics?

 $\vec{S}'[\vec{N'}]$

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

The left bar: (2) "simulation" notions

forgetting how each \rightarrow is defined

counting simulation & graphical local reasoning (2020)

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

• climbing up a ladder probability nondeterminism, I/O state divergence

The left bar: (2) "simulation" notions

forgetting how each \rightarrow is defined

counting simulation & graphical local reasoning (2020)

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

- (1) characterise observational refinement as "trace inclusion" of automata
- **Def.** (reduction semantics as NA)

$$E[(\lambda x \, . \, t) \, v] \xrightarrow{\tau} E[t\{v/x\}]$$

- **<u>Def.</u>** (*Q*-trace inclusion) $x \sqsubseteq^{Q} y \Leftrightarrow^{\Delta} \forall w$
 - for a preorder $\mathcal{Q} \subseteq \Sigma^* \times \Sigma^*$ on words
 - *lifted* preorder $w | Q | w' \Leftrightarrow^{\Delta} | w | Q | w' |$ for $Q \subseteq \mathbb{N} \times \mathbb{N}$
 - filtered equality $a\tau\tau b\tau c\tau =_{rem(\tau)} abc$

$$\begin{array}{c} \operatorname{or}(t_1, t_2) \xrightarrow{\operatorname{or}_i} t_i \\ \hline n \xrightarrow{n} \checkmark \end{array} \\ \overline{\operatorname{in}(t_1, t_2)} \xrightarrow{\operatorname{in}_i} t_i \\ \in L_{\mathscr{A}_1}(x) \cdot \exists w' \in L_{\mathscr{A}_2}(y) \cdot w \end{array} \end{array}$$

W'.

- (1) characterise observational refinement as "trace inclusion" of automata
- **Def.** (reduction semantics as NA)

$$E[(\lambda x \, t) \, v] \xrightarrow{\tau} E[t\{v/x\}]$$

- **Def.** (*Q*-trace inclusion) $x \sqsubseteq^{Q} y \Leftrightarrow^{\Delta}$
- Lem. $\Box^{|Q|\cup=_{\operatorname{rem}(\tau,\operatorname{or})}} = {\preceq}_V^Q$ for nonder
- Lem. $\Box^{|Q|\cup=_{\operatorname{rem}(\tau)}} = {\leq_V^Q}$ for I/O

$$\overline{\operatorname{or}(t_1, t_2)} \xrightarrow{\operatorname{or}_i} t_i \qquad \overline{n \xrightarrow{n}} \checkmark$$

$$\overline{\operatorname{in}(t_1, t_2)} \xrightarrow{\operatorname{in}_i} t_i \qquad \overline{n \xrightarrow{n}} \checkmark$$

$$\forall w \in L_{\mathscr{A}_1}(x) . \exists w' \in L_{\mathscr{A}_2}(y) . w \ \mathscr{Q} \ w'.$$

$$\operatorname{eterminism} \qquad \operatorname{or}(1, 2) \stackrel{\checkmark}{\preceq} \overline{v} \ \operatorname{or}(2, 1) \dots \operatorname{YES}$$

$$\operatorname{in}(1, 2) \stackrel{\checkmark}{\prec} \overline{v} \ \operatorname{in}(2, 1) \dots \operatorname{NO}$$

- (2) design a sound "simulation" notion (for observational refinement
- (counting simulation) $s \to s' \to k s''$ $s \in R$ *R* is a *Q*-counting simulation $\stackrel{\Delta}{\iff} R \vdots \qquad \cdot R$ $R \vdots$ **Def.** (counting simulation)
- **<u>Def.</u>** (preorder-constrained simulation)

• idea: swap \forall and \exists to fully inspect branches

 $s \in F$ $t \rightarrow^m t'$ $t \in F$

- (2) design a sound "simulation" notion (for observational refinement
- **<u>Def.</u>** (counting simulation) *R* is a *Q*-counting simulation $\stackrel{\Delta}{\iff} R$:
- **<u>Def.</u>** (preorder-constrained simulation)

R is an *M*-lookahead *Q*-constrained simulation $\stackrel{\Delta}{\iff}$

$$\begin{array}{ccc} \to s' \to^k s'' & s \in F \\ & \ddots R & R \\ \to^m t' & t \in F \end{array} \end{array}$$

• **Prop.** (soundness) If $\overline{\triangleleft}$ is an *M*-lookahead $|Q| \cup =_{\operatorname{rem}(\tau, \operatorname{or})}$ -constrained simulation, then $\triangleleft \subseteq \leq_V^Q$.

• now for nondeterministic \rightarrow , but not for probabilistic \rightarrow yet (e.g. $\text{or}_{0.5}(1,1) \triangleleft_{\leq_+} \text{or}_{0.5}(0,1)$)

Preorder-constrained simulation, as a reachability game

• two-player reachability game between Challenger & Simulator

Position	Player	Move	Guard	
(w, x, y)	Challongor	(wa, x', y)	$x \stackrel{a}{\leadsto}_1 x'$	
$\in \Sigma^* \times X_1 \times X_2$		$\boxed{(\checkmark, w, x, y)}$	$x \in F_1$	2
(w, x', y)	Simulator	(w, x', y)	w < M	3
$\in \Sigma^* \times X_1 \times X_2$			$ \exists w' \in \Sigma^*.$	
		$(arepsilon, x^{*}, y^{*})$	$ w' < N \land y \overset{w'}{\leadsto}_2 y' \land w \mathbf{Q} w'$	
(\checkmark, w, x, y)	C : 1 4		$ \exists w' \in \Sigma^* . \exists y' \in F_2. $	
$\in \{\checkmark\} \times \Sigma^* \times X_1 \times X_2$	Simulator	sim-win	$ w' < N \land y \overset{w'}{\leadsto}_2 y' \land w \mathbf{Q} w'$	

- Challenger chooses $x \stackrel{a}{\rightsquigarrow}_1 x'$ from the current state x and enqueues the label a.
- accepting state is reachable from $y \in X_2$.
- Simulator skips the turn. This move is always possible when $M = \infty$.
- than N transitions.

Figure 9 Two-player game $\mathcal{G}_{\mathcal{A}_1,\mathcal{A}_2}^{M,N,\mathbf{Q}}$ characterising (*M*-bounded) **Q**-constrained simulation.

Challenger is at an accepting state $x \in F_1$. Challenger forces Simulator to check whether an

Simulator simulates Challenger's moves in the queue w, in less than N transitions.

Simulator simulates Challenger's moves in the queue w and reaches an accepting state, in less

• climbing up a ladder probability nondeterminism, I/O state divergence

The left bar: (2) "simulation" notions

forgetting how each \rightarrow is defined

counting simulation & graphical local reasoning (2020)

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

• climbing up a ladder probability nondeterminism, I/O state divergence

forgetting how each \rightarrow is defined

"trace inclusion" with modalities (ongoing)

tion & graphical local ning (2020)

The left bar: (2) "simulation" notions

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

"Trace inclusion" with modalities

- (1) characterise observational refinement as "trace inclusion" of automata
- **Def.** (reduction semantics as NA)

$$E[(\lambda x \, t) \, v] \xrightarrow{\tau} E[t\{v/x\}]$$

- **Def.** (*O*-trace inclusion) $x \sqsubseteq^{O} y \stackrel{\Delta}{\iff} \cdots$
- **Goal** $\sqsubseteq^{\mathcal{O}} = \stackrel{\cdot}{\preceq}^{\mathcal{O}}_{V}$ for various algebraic effects
 - \leq_{V}^{O} : observational refinement with *modalities* [Simpson+ '18]
 - altering modalities —> adjusting observation to various effects

$$\begin{array}{ccc} \operatorname{or}(t_1, t_2) \xrightarrow{\operatorname{or}_i} t_i & & \\ & & & n \xrightarrow{n} \checkmark \\ \operatorname{in}(t_1, t_2) \xrightarrow{\operatorname{in}_i} t_i & & \\ \end{array}$$

• climbing up a ladder probability nondeterminism, I/O state divergence

forgetting how each \rightarrow is defined

31

"trace inclusion" with modalities (ongoing)

tion & graphical local ning (2020)

The left bar: (2) "simulation" notions

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

• climbing up a ladder probability nondeterminism, I/O state divergence

The left bar: (2) "simulation" notions

forgetting how each \rightarrow is defined

counting simulation & graphical local reasoning (2020)

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

• climbing up a ladder probability nondeterminism, I/O state divergence

The left bar: (2) "simulation" notions

forgetting how each \rightarrow is defined

counting simulation & graphical local

local coherence & critical pair analysis (2024)

> The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

- yet another coinductive proof methodology for contextual refinement
 - (1) characterise observational refinement as "trace inclusion" of automata
 - (2) design a sound "simulation" notion (for observational refinement)
 - (3) take a candidate \triangleleft of contextual refinement
 - (4) take the contextual closure $\overline{\triangleleft}$ (i.e. $\forall C \cdot C[\vec{t}] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$)
 - (5) prove that $\overline{\triangleleft}$ is a "simulation"

• (1-2) for all \triangleleft , (3-5) for each \triangleleft

- yet another coinductive proof methodology for contextual refinement
 - (1) characterise observational refinement as "trace inclusion" of automata
 - (2) design a sound "simulation" notion (for observational refinement)
 - (3) take a candidate \triangleleft of contextual refinement

 - (5) prove that $\overline{\triangleleft}$ is a counting simulation

• only for deterministic \rightarrow

• (4) take the contextual closure $\overline{\triangleleft}$ (i.e. $\forall C \cdot C[\vec{t}] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$)

- yet another coinductive proof methodology for contextual refinement
 - (1) characterise observational refinement as "trace inclusion" of automata
 - (2) design a sound "simulation" notion (for observational refinement)
 - (3) take a refinement rule $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement
 - (4) take the contextual closure $\overline{\triangleleft}$ (i.e. $\forall C \cdot C[\vec{t}] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$)
 - (5) prove that $\overline{\triangleleft}$ is a counting simulation

• only for deterministic \rightarrow

- yet another coinductive proof methodology for contextual refinement

 - (2) design a sound "simulation" notion (for observational refinement)
 - (3) take a refinement rule $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement
 - (4) take the *refinement* relation \Rightarrow_{a}

• (5) prove that $\overline{\triangleleft}$ is a counting simulation

• only for deterministic \rightarrow

• (1) characterise observational refinement as "trace inclusion" of automata

$$\mathcal{R} \text{ (i.e. } \frac{(l \Rightarrow r) \in \mathcal{R} \quad C \in Ctx}{C[l\theta] \Rightarrow_{\mathcal{R}} C[r\theta]}$$

- yet another coinductive proof methodology for contextual refinement

 - (2) design a sound "simulation" notion (for observational refinement)
 - (3) take a refinement rule $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement
 - (4) take the *refinement* relation \Rightarrow_{i}

• (5) prove that $\Rightarrow_{\mathscr{P}}$ is locally coherent

• only for deterministic \rightarrow

• (1) characterise observational refinement as "trace inclusion" of automata

$$\mathcal{R} \text{ (i.e. } \frac{(l \Rightarrow r) \in \mathcal{R} \quad C \in Ctx}{C[l\theta] \Rightarrow_{\mathcal{R}} C[r\theta]})$$

- yet another coinductive proof methodology for contextual refinement
 - (1) characterise observational refinement as "trace inclusion" of automata
 - (2) design a sound "simulation" notion (for observational refinement)
 - (3) take a refinement rule $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement
 - (4) take the *refinement* relation $\Rightarrow_{\mathscr{R}}$ (i.
 - (5) prove that $\Rightarrow_{\mathscr{R}}$ is locally coherent

only for the deterministic evaluation relation

.e.
$$\frac{(l \Rightarrow r) \in \mathcal{R} \quad C \in Ctx}{C[l\theta] \Rightarrow_{\mathcal{R}} C[r\theta]}$$

$$pn \to_{\mathscr{C}} \text{(i.e.} \ \frac{(l \to r) \in \mathscr{C} \quad E \in Ectx}{E[l\theta] \to_{\mathscr{C}} E[r\theta]}$$

- yet another coinductive proof methodology for contextual refinement
 - (1) characterise observational refinement as "trace inclusion" of automata
 - (2) design a sound "simulation" notion (for observational refinement)
 - (3) take a refinement rule $(l \Rightarrow r) \in \mathcal{R}$, a candidate of ctx. refinement

 - (5) prove that $\Rightarrow_{\mathscr{R}}$ is locally coherent

only for the deterministic evaluation relation $\rightarrow_{\mathscr{C}}$ (i.e. –

• (4) take the *refinement* relation $\Rightarrow_{\mathscr{R}}$ (i.e. $\frac{(l \Rightarrow r) \in \mathscr{R} \quad C \in Ctx}{C[l\theta] \Rightarrow_{\mathscr{R}} C[r\theta]}$)

standard term rewriting

Local coherence

- (2) design a sound "simulation" notion (for observational refinement)
- target: \leq_V^{\geq} (Sands' *improvement*)

•
$$t \leq_V^{\geq} u \Leftrightarrow^{\Delta} \forall C . C[t] \to^k v \implies C[u] \to^m v \land k \geq m$$

- \geq chosen for a technical reason
- <u>**Def.</u>** (local coherence)</u> $s \rightarrow$ $\mathbf{V}_{\mathcal{R}}$ $\Rightarrow_{\mathscr{R}}$ is locally coherent $\stackrel{\Delta}{\iff}$ $t \rightarrow$
- **Prop.** (soundness) If $\Rightarrow_{\mathscr{R}}$ is locally coherent, then $\Rightarrow_{\mathscr{R}} \subseteq \leq_V^{\geq}$.
 - only for deterministic $\rightarrow_{\mathscr{R}}$ and value-invariant $\Rightarrow_{\mathscr{R}}$

$$\mathcal{E} S' \xrightarrow{k} S'$$

$$\mathcal{U}_{*}$$

$$m t' \stackrel{\mathcal{U}_{*}}{\stackrel{\mathcal{D}}{\Rightarrow}}$$

a notion taken from equational rewriting

- (5) prove that $\Rightarrow_{\mathscr{P}}$ is locally coherent
- Thm. (critical pair theorem) $\Rightarrow_{\mathscr{R}}$ is locally coherent iff every critical pair is joinable.
 - joinability:

- evaluation rules, ...
- **Ex.** the call-by-value λ -calculus, the computational λ -calculus with (shallow) effect handlers

Critical pairs can be automatically enumerated & checked for joinability!

• only for evaluation-context-preserving $\Rightarrow_{\mathscr{R}}$, linear refinement rules, left-linear

2 critical pairs

10 critical pairs

• **Ex.** the call-by-value λ -calculus

Signature Σ Syntax class *Sclass* Evaluation contexts *Ectx* Evaluation rules \mathcal{E} $(\lambda x.M[x]) V \rightarrow M[V]$

 $\lambda: \langle 1 \rangle, @: \langle 0, 0 \rangle$ values $V ::= \lambda x.t$ $E ::= \Box \mid E t \mid v E$ Refinement rules \mathcal{R} $(\lambda x.M[x]) V \Rightarrow M[V]$ $\lambda x.V x \Rightarrow V$

• **Ex.** the computational λ -calculus with (shallow) effect handlers

Signature Σ

true: $\langle 0 \rangle$, false: $\langle 0 \rangle$, fun: $\langle 1 \rangle$, @: $\langle 0, 0 \rangle$, return: $\langle 0 \rangle$, op₁: $\langle 0, 1 \rangle$, op₂: $\langle 0, 1 \rangle$, handler₁: $\langle 1, 2 \rangle$, handler₀: $\langle 1 \rangle$, do: $\langle 0, 1 \rangle$, if: $\langle 0, 0, 0 \rangle$, with_handle: $\langle 0, 0 \rangle$ Syntax class Sclass $F ::= x \mid fun(x.P)$ functions V ::= true | false | F | Hvalues **handlers** $H ::= \text{handler}_1(x.P, x.k.P_1) | \text{handler}_0(x.P)$ $P, P_1, P_2 ::= return(V) | op(V, y.P) | do(P_1, x.P_2)$ computations $|if(V, P_1, P_2)| F V|$ with_handle(H, P) **Evaluation contexts** *Ectx* $E ::= \Box \mid do(E, x.P) \mid with_handle(H, E)$ **Evaluation rules** \mathcal{E} where $i \in [2]$ $do(return(V), x.P[x]) \rightarrow P[V]$ (1) (2) $do(op_i(V, y.P_1[y]), x.P_2[x]) \rightarrow op_i(V, y.do(P_1[y], x.P_2[x]))$ $if(true, P_1, P_2) \rightarrow P_1$ (3) $if(false, P_1, P_2) \rightarrow P_2$ (4) $fun(x.P[x]) V \rightarrow P[V]$ (5) In the following three rules, $h_1 \equiv \text{handler}_1(x.P[x], x.k.P_1[x, k])$. with_handle(h_1 , return(V)) $\rightarrow P[V]$ (6) with_handle(h_1 , op₁(V, y.P'[y])) $\rightarrow P_1[V, fun(y.P'[y])]$ (7) with_handle(h_1 , op₂(V, y.P'[y])) \rightarrow op₂($V, y.with_handle(h_1, P'[y])$) (8) In the following two rules, $h_0 \equiv \text{handler}_0(x.P[x])$. with_handle(h_0 , return(V)) $\rightarrow P[V]$ (9) with_handle(h_0 , op_i(V, y.P'[y])) \rightarrow op_i($V, y.with_handle(h_0, P'[y])$) (10) **Refinement rules** \mathcal{R} (r3) $do(P, x.return(x)) \Rightarrow P$ $do(do(P_1, x_1.P_2[x_1]), x_2.P_3[x_2]) \Rightarrow do(P_1, x_1.do(P_2[x_1], x_2.P_3[x_2]))$ (r4) (r9) $fun(x.F x) \Rightarrow F$ with_handle(handler_0(x.P[x]), P') \Rightarrow do(P', x.P[x]) (r13)

• **Ex.** the computational λ -calculus with (shallow) effect handlers

do(return(V), x.return(x)) $= op_i(V, y.do(P[y], x.return(x)))$ do(do(return(V), x.P[x]), x'.P'[x'])do(P[V], x'.P'[x'])do(P[V], x'.P'[x']) $do(do(op_i(V, x.P[x]), y.P_2[y]), z.P_3[z])$ with_handle(h_0 , return(V)) P[V]P[V] $op_i(V, y.with_handle(h_0, P'[y]))$ r13 $op_i(V, y.do(P'[y], x.P[x]))$

return(V) = $do(op_i(V, y.P[y]), x.return(x))$ do(return(V), x.P[x])with_handle($h_0, op_i(V, y.P'[y])$)

 $op_i(V, y, P[y]) \leq$

do(return(V), x.do(P[x], x'.P'[x'])) $do(op_i(V, x.P[x]), y.do(P_2[y], z.P_3[z])) do(op_i(V, x.do(P[x], y.P_2[y])), z.P_3[z])$ $op_i(V, x.do(P[x], y.do(P_2[y], z.P_3[z])))^{r_4} op_i(V, x.do(do(P[x], y.P_2[y]), z.P_3[z]))$ $do(op_i(V, y.P'[y]), x.P[x])$

- yet another coinductive proof methodology for contextual refinement
 - (1) characterise observational refinement as "trace inclusion" of automata
 - (2) design a sound "simulation" notion
 - (3) take a candidate \triangleleft of contextual refinement
 - (4) take the contextual closure $\overline{\triangleleft}$ (i.e. $\forall C \cdot C[\vec{t}] \overline{\triangleleft} C[\vec{u}] \iff \forall i \cdot t_i \triangleleft u_i$)
 - (5) prove that $\overline{\triangleleft}$ is a "simulation"

• (1-2) for all \triangleleft , (3-5) for each \triangleleft

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

M. PhD thesis 2020

The left bar: (2) "simulation" notions

forgetting how each \rightarrow is defined

counting simulation & graphical local reasoning (2020)

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

M., Sanada & Urabe CMCS 2024

The left bar: (2) "simulation" notions

forgetting how each \rightarrow is defined

counting simulation & graphical local reasoning (2020)

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

M. & Hamana FLOPS 2024

The left bar: (2) "simulation" notions

forgetting how each \rightarrow is defined

49

counting simulation & graphical local

local coherence & critical pair analysis (2024)

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

climbing up a ladder
 probability
 nondeterminism, I/O
 state
 divergence

potential side-steps

- call-by-need
- continuation

The left bar: (2) "simulation" notions forgetting how each \rightarrow is defined

counting simulation & graphical local

local coherence & critical pair analysis (2024)

The right bar: (5) "simulation" proofs

examining how each \rightarrow is defined

