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Contextual refinement

e "Can the (observable) result of 7 be reproduced by u?

e Vvariations:

e 1<, U< YC.Clf] | = Clu] |
o tﬁvuéVC,v.C[t] —>*y = (Clu] ->*v

A
o tﬁ‘Z/LM:}VC,v.C[t] -y = Clu]l »™vAk>m
e Sands’ improvement
Q A k m
o tﬁVLM:}VC,v.C[t]ﬁ v = Clu] " vAkQOm

e forapreorder C N XN,eg NXN,>,...
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Abransky's applicative bisimilarity

e the coinductive proof methodology for contextual equivalence

e (1) characterise observational equivalence as “bisimilarity”

e (2) take a candidate X of contextual equivalence
e (3) prove that X is a "bisimulation”

e (4) prove that X is a congruence, typically by Howe’'s method

e (1) forall X, (2-4) for each X
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Abramsky’s applicative bisimilarity

e climbing up a rope of advanced features
e from applicative to environmental bisimilarity [Koutavas+ "11]

e Howe's method, once for all effects [Dal Lago+ '17]
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A new evitcudnioc approach

e Yyet another coinductive proof methodology for contextual refinement
e (1) characterise observational refinement as “trace inclusion” of automata

e (2)design a sound “simulation” notion

e (3)take a candidate < of contextual refinement

e (4)take the contextual closure < (i.e. VC.C[f] < Cli] < Vi.t, < u)

e (5) prove that < is a “simulation”

o (1-2)for all «, (3-5) for each <
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, 1/O
state

divergence

The left bar: The right bar:

(2) “simulation” notions (5) “simulation” proofs
forgetting how each — s examining how each — Is
defined defined
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, 1/O

state

counting simulation & graphical local

divergence reasoning (2020)

The left bar:
(2) “simulation” notions

The right bar:
(5) “simulation” proofs

forgetting how each — is
defined

examining how each — is
defined
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Counting simulation

e (2)design a sound “simulation” notion (for observational refinement)

o target: 5lQ for a preorder O C N X N

. zgguévc.cm K= Clu] 1" Ak Om

e () introduced for a technical reason

e (will come back to this point)
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Counting simulation

e (2) design a sound “simulation” notion (for observational refinement)

o target: 5lQ for a preorder 0 C N X N

o 1<Cu ES VOOl k= Clul 1" Ak O m

)
e Def. (counting simulation
Det. { 7 ) . s — 5 =Kg” seF
R is a Q-counting simulation <= R R R:
t ="t t e F

e Prop. (soundness) If < is a OJ-counting simulation, then <1 C ﬁlQ .

e only for deterministic —, to prove by induction
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Detour: counting simulation up-to

e namely, for dependency of contextual refinements

e (Case 1. up to structural congruences
e eg.(letx=rinu)~uifx & FV(u)

e instead of working with equivalence classes of terms wrt. structural

congruences

11 Muroya (RIMS, Kyoto U.)



Detour: counting simulation up-to

e namely, for dependency of contextual refinements

e (Case 2. up to auxiliary contextual equivalences

e ecg.n~mforn,m €N, in the absence of i f

o Q.Is the call-by-value beta-law (Ax.7) v < f[v/x] preserved by stat?

e sStTat inspects memory usage

e A1. No, in the presence of 1f.

e TIry It Online: https://bit.ly/3TgnGOW
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https://bit.ly/3TqnGOW

Detour: counting simulation up-to

e namely, for dependency of contextual refinements

e (Case 2. up to auxiliary contextual equivalences

e ecg.n~mforn,m €N, in the absence of i f

o Q.Is the call-by-value beta-law (Ax.7) v < f[v/x] preserved by stat?

e sStTat inspects memory usage
e A2. Yes, inthe absence of 1f.

e The beta-law would depend on the auxiliary law n >~ m.
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Detour: counting simulation up-to

e (2) design a sound “simulation” notion (for observational refinement)

o target: <Y for a preorder O C N x N

!
0O A k m
° tﬁl u=>VC.Clt]|" = Clu]l]l" ANkQO m
e Def. (counting simulation up-to

Det. ( ° P-to) . s — 5§ kg seF

R is a Q-counting simulation up to (Q;, O,) S p: . 0 R o -0, R:

. o =) =~ .
t ="t t e F

e Prop. (soundness) If < is a O-counting simulation up to ( ilQl : ilQZ ), then < C 5lQ .

e only for deterministic = and reasonable (Q, Q,, ,), in particular O, C >
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Counting simulation

e (2) design a sound “simulation” notion (for observational refinement)

o target: <Y for a preorder O C N X N

}
o 10U VC.ClH 1= Clul 1" AkQm
e Def. (counting simulation) ¢ — g _>k ¢/ seE F
R is a O-counting simulation = R: R R:

r ="t te F

e Prop. (soundness) If < is a J-counting simulation, then <1 C 5lQ .

e only for deterministic —, to prove by induction

e Q. Can we extend this result to nondeterministic — 7
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Graphical local reasoning for counting simulation

e (5) prove that < is a J-simulation

C[7] = s =K C1]
3 G
Clul =" C'[u]

e Now examining how each — is defined

e namely: token-quided graph rewriting 5 E
e A token, moving around a graph, substitutes @/
evaluation contexts. \@ -----
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Token-guided graph rewriting
1. A token does depth-first traversal, searching for a redex.

2. The token triggers rewrite of the found redex.

3. Go back to 1.

...................
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Graphical local reasoning for counting simulation

e (5) prove that < is a JO-simulation
GIN] - P =" G'[N]
: o<
G|lH| ->" ¢'H]
e case analysis on Cfﬁ[ﬁ] — P in terms of the token behaviour

e The token moves inside the context . ==> Always OK.

e The token visits V.. ==> OK if < is (J-safe.

e The token triggers rewrite. ==> OK if < is OJ-robust.
e Prop. If < is O-safe and O-robust, then < is a O-simulation.
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Graphical local reasoning for counting simulation

e (5) prove that < is a OJ-simulation
GIN] - P =K GN
: o<
G|H| " ¢'[H']
e Prop. If < is O-safe and O-robust, then < is a OJ-simulation.

e Q. How to prove safety and robustness?

e A. By hand.
e Safety: by feasible pen-and-paper proof.
e Robustness: by tedious, involved, error-prone, case analysis.
e Q’. Can somebody help the case analysis?
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Graphical local reasoning for counting simulation

e (5) prove that < is a O-simulation
GIN] - P =K GN
: o<
G|H| ->" C¢'H]
e Prop. If < is O-safe and O-robust, then < is a O-simulation.

e Q. How to prove safety and robustness?

e Q”. Can we do everything with terms and conventional reduction semantics?
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, 1/O

state

counting simulation & graphical local

divergence reasoning (2020)

The left bar:
(2) “simulation” notions

The right bar:
(5) “simulation” proofs

forgetting how each — is
defined

examining how each — is
defined
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, /0 JUGEUCEIREEIET(ET \
simulation (2024 )

state

counting simulation & graphical local

divergence reasoning (2020)

The left bar:
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Preorder-constrained simulation

e (1) characterise observational refinement as “trace inclusion” of automata

e Def. (reduction semantics as NA)

o Or(tl, fz) CE;‘ L, o
E[(Ax.0)v] > Elf{v/x})] —___ n SV

in(t, 1) =t

A
o Def. (O-trace inclusion) x C? y <= Vw € Lﬂl(x) dw' E L%(y) waQw.
e for a preorder @ C 2* X 2* on words

A
o lifted preorderw|Q|w < [w|OQO|w’'| for O C N X N

o filtered equality attbtct =, abc
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Preorder-constrained simulation

e (1) characterise observational refinement as “trace inclusion” of automata

e Def. (reduction semantics as NA)

- or(H, ) = o o
El(Ax.1) V] BN Elt{vix})] ——  n S5V

iIll'
in(tl, tz) —> ti

A
Def. (@-trace inclusion) x C? y <= Vw € Lﬂl(x) dw' E L%(y) W aQw.

® LTI,
o Lem. E‘Q‘U:mm@m = 5% for nondeterminism or(1,2) <y or(2,1) ... YES.
o Lem., C!¢Y=renw = <Y for /O in(1,2) <5 in(2,1) ... NO.
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Preorder-constrained simulation

e (2) design a sound “simulation” notion (for observational refinement

e Def. (counting simulation) ¢y ¢/ K g se F
A
R is a O-counting simulation < R - <R R :
t —->"r re
e Def. (preorder-constrained simulation)
Wy Ws w
S > 5. > Sy s> S8, €L
A . , :
R is an M-lookahead @-constrained simulation < R : ‘ R R :
W/ W/
t>» 1 t»>tr el

e idea: swap V and d to fully inspect branches
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Preorder-constrained simulation

e (2) design a sound “simulation” notion (for observational refinement

e Def. (counting simulation) . ¢ 5 ¢ _)k o/ se F
R is a O-counting simulation <= R: o R R:
t =>"r te
e Def. (preorder-constrained simulation)
W W, W
§ > 5 > S s>» S5, €F
. L SM
R is an M-lookahead @-constrained simulation < R: ' R R :
W/ W/
t >t t >t erF
e Prop. (soundness) If < is an M-lookahead | Q| U =, or) -COnstrained simulation, then <1 C 5% .

e now for nondeterministic —, but not for probabilistic — yet (e.g. org5(1,1) <, 0rp5(0,1))
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Preorder-constrained simulation, as a reachabllity game

e two-player reachability game between Challenger & Simulator

€X' x X1 x Xo Jw’ € ¥~.

Position Player Move Guard
(w, z,y) Challenger (wa, 2/, y) B
€Y x X1 x Xo 5 (v, w,z,y) 'z € In

/ / !
(w, 2", y) Simulator wz,y) o |w <M
(

|

| w’

W | < NAy~»2 9y AwQu'
: Jw’ € ¥*. 3y € Fy.

! W | < N Ay ~2y' A wQu'

(\/7w7aj7y)
c{vV}x X" x X1 x Xo

@ | ® e

Simulator sim-win

(1) Challenger chooses = ~»1 2’ from the current state z and enqueues the label a.

(2) Challenger is at an accepting state z € F;. Challenger forces Simulator to check whether an
accepting state is reachable from y € Xo.

(3) Simulator skips the turn. This move is always possible when M = oo.

(4) Simulator simulates Challenger’s moves in the queue w, in less than N transitions.

(5) Simulator simulates Challenger’s moves in the queue w and reaches an accepting state, in less
than NV transitions.

Figure 9 Two-player game Qﬁ’ﬁ’? characterising (M-bounded) Q-constrained simulation.
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, /0 JUGEUCEIREEIET(ET \
simulation (2024 )

state

counting simulation & graphical local

divergence reasoning (2020)

The left bar:
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“Trace Inclusion” with modalities

e (1) characterise observational refinement as “trace inclusion” of automata

e Def. (reduction semantics as NA)

oI
Or(tl, tz) —> ti
n

E[Qx.0Ov] > E[t{vix}] —  n->V
in(t, 1) = t

A
e Def. (O-trace inclusion) x T y &= ---

e Goal C’ = 5‘@/ for various algebraic effects

o 5‘@, observational refinement with modalities [Simpson+ 18]

e altering modalities —> adjusting observation to various effects
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, /0 JUGEUCEIREEIET(ET \
simulation (2024 )

state \ , . .
counting simulation & agraphical local

divergence local coherence & critical pair analysis
(2024)

The left bar:
(2) “simulation” notions

The right bar:
(5) “simulation” proofs

forgetting how each — is
defined

examining how each — is
defined
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A new evitcudnioc approach from rewriting perspective

e Yyet another coinductive proof methodology for contextual refinement

e (2)design a sound “simulation” notion (for observational refinement)

e (3)take a candidate < of contextual refinement

e (4)take the contextual closure < (i.e. VC.C[f] < Cli] < Vi.t, < u)

e (5) prove that < is a “simulation”

o (1-2)for all «, (3-5) for each <
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A new evitcudnioc approach from rewriting perspective

e Yyet another coinductive proof methodology for contextual refinement

O
e (3)take a refinement rule (I = r) € 9, a candidate of ctx. refinement

e (4)take the contextual closure < (i.e. VC.C[f] < Cli] < Vi.t, < u)

e (5) prove that < is a counting simulation

e only for deterministic —
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A new evitcudnioc approach from rewriting perspective

e yet another coinductive proof methodology for contextual refinement

e (3)take a refinement rule (I = r) € AR, a candidate of ctx. refinement

(l=>reR Ce(Cr

(4) take the refinement relation = o, (.e. ——— )

. C[10] =, C[r0]

e (5) prove that < is a counting simulation

e only for deterministic —
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A new evitcudnioc approach from rewriting perspective

e yet another coinductive proof methodology for contextual refinement

e (3)take a refinement rule (I = r) € 9, a candidate of ctx. refinement

l=>reAX CeClCx

(4) take the refinement relation = 4 (i.e. )

° ClI6] =, C[r0]

e (5) prove that = is locally coherent

| | - (U->nrneé& Ee€kEcx
o Only for the deterministic evaluation relation — « (i.e. )

39 Muroya (RIMS, Kyoto U.)



A new evitcudnioc approach from rewriting perspective

e yet another coinductive proof methodology for contextual refinement

e (3)take a refinement rule (I = r) € 9, a candidate of ctx. refinement

([l =>7r) R Ce Ctx) standard

(4) take the refinement relation = 4 (i.e. term

. ClI6] =, C[r0]

rewriting

e (5) prove that = is locally coherent

. . - (Il->r)eé& Ee€kEctx _
o Only for the deterministic evaluation relation — « (i.e. P new kind of
E[l0] -« E[r0] term
rewriting
40 Muroya (RIMS, Kyoto U.)




L ocal coherence

e (2) design a sound “simulation” notion (for observational refinement)

o target: <2 (Sands’ improvement)

o 1<Zu<>VC.Clf] >Fv = Clu] " vAk>m

e > chosen for a technical reason

e Def. (local coherence r ko
Det. ) L Soes s
= 4 Is locally coherent <= U@ Q% a notion tqken
m g S from equational
[ > 1 »
@ rewriting

e Prop. (soundness) If = 4 is locally coherent, then = C 5‘2/ .

e only for deterministic — < and value-invariant = 4
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Critical pair analysis for local coherence

e (5) prove that = ¢ is locally coherent

e Thm. (critical pair theorem) = 4 is locally coherent iff every critical pair is

Joinable. C ok Critical pairs can be
- - S 7% S _)% § automatically enumerated
e joinability: . ., & checked for joinability!
l. _)m l./ t%

&

e only for evaluation-context-preserving = o, linear refinement rules, left-linear

evaluation rules, ...

e EXx. the call-by-value A-calculus, 2 critical pairs

the computational A-calculus with (shallow) effect handlers 10 critical pairs
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Critical pair analysis for local coherence

e EX. the call-by-value A-calculus

Signature X A: (1), @: (0,0)
Syntax class Sclass values V.= Ax.t
Evaluation contexts Ectx E:=0|Et|vE
Evaluation rules & Refinement rules R
(Ax.M[x]) V - M[V] (Ax.M[x]) V = M[V]
Ax.Vx=V

43

(Ax.V x) V'
= ~

VvV VvV

AX' M'[XDV

(Ax" M'[x']) (Ax.V x)
&= T

\ o /

M'[Ax.V x]
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Critical pair analysis for local coherence

e EX. the computational A-calculus with (shallow) effect handlers

Signature X
true: (0), false: (0), fun: (1), @: (0,0), return: (0), op;: (0,1), op,: (0,1),
handler;: (1,2), handlerg: (1), do: (0,1), if: (0,0,0), with_handle: (0, 0)
Syntax class Sclass
functions F = x| fun(x.P)
values Vi=1true| false|F | H
handlers H ::=handler;(x.P, x.k.P;) | handlery(x.P)
computations P, P, Py ::=return(V) | op(V,y.P) | do(Pq, x.P>)

| if(V, P1,P2) | F V | with_handle(H, P)
Evaluation contexts Ectx E ::=0|do(E, x.P) | with_handle(H, E)
Evaluation rules & where i € [2]

do(return(V), x.P[x]) — P[V] (1)
do(op;(V,y.P1[yD), x.P2[x]) — op;(V,y.do(P1[y], x.P2[x])) (2)
if(true, P, Py) — P (3)
if(false, P1,P3) —» P> 4)
fun(x.P[x]) V — P[V] ®))
In the following three rules, 41 = handler;(x.P[x], x.k.P1[x, k]).

with_handle(k;, return(V)) — P[V] (6)
with_handle(hi,op;(V,y.P'[y])) — PilV, fun(y.P’[y])] (7)
with_handle(hq, 0p,(V, y.P'[y])) — op,(V,y.with_handle(h;, P'[y])) (8)
In the following two rules, hg = handlery(x.P[x]).

with_handle(hg, return(V)) — P[V] 9
with_handle(hg, op;(V,y.P’'[y])) — op;(V,y.with_handle(hg, P'[y])) (10)
Refinement rules R

do(P, x.return(x)) = P (r3)
do(do(Py, x1.P2[x1]), x2.P3[x2]) = do(P1, x1.do(P2[x1], x2.P3[x2])) (r4)
fun(x.F x) = F (r9)
with_handle(handlery(x.P[x]), P’) = do(P’, x.P[x]) (r13)
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Critical pair analysis for local coherence

e EX. the computational A-calculus with (shallow) effect handlers

do(return(V) X. return(x))

/\

return(V) return(V)

do(opj(V L y.Ply)), x. return(x))
/ \

op;(V,y.Ply]) < op;(V, y.do(P[y], x.return(x)))

do(c}o(retum(V), x.P[x]), ch’.P' [xX'])

/ \
do(return(V), x.do(P[x], x'.P’[x'])) do(P[V], x".P'[x'])
l\ /

do(P[V],x".P'[X'])

dO(dO(or;,-( V, x.P[x]),y.P> Lv])z, z.P3(z])
\
do(op;(V, x.P[x]), y.do(P>[y], z.P3[z])) do(op;(V, x.do(P[x],y.P>[y])),z.P3[z])

2|, |2

opi(V, x.do(P[x], y.do(P,[y], z.P3[z]))) 0p,(V, x.do(do(P[x], y.P2[y]), z.Ps[z]))

£m(x.V x) VS'
Z X

'A% Vv

wi ;;3h_hand1e(ho, return(V))
r 9
do(return(V), x.P[x]) P[V]

\/

PlV]

with_handle(ho, op;(V,y.P’ [y]))

% \
do(op;(V,y.P'[y]), x.P[x]) op;(V,y.with_handle(ho, P'[y]))

T /

op;(V,y.do(P'[y], x.P[x])) Muroya (RIMS, Kyoto U.)



A new evitcudnioc approach

e Yyet another coinductive proof methodology for contextual refinement
e (1) characterise observational refinement as “trace inclusion” of automata

e (2)design a sound “simulation” notion

e (3)take a candidate < of contextual refinement

e (4)take the contextual closure < (i.e. VC.C[f] < Cli] < Vi.t, < u)

e (5) prove that < is a “simulation”

o (1-2)for all «, (3-5) for each <
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, 1/O

state counting simulation & graphical local

divergence reasoning (2020)

. The left bar: The right bar:
Vi FD (SIS 2020 (2) “simulation” notions (5) “simulation™ proofs
forgetting how each — s examining how each — Is
defined defined
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, /O LUGELCEIREEIETIET)
simulation (2024 )

state

counting simulation & graphical local

divergence reasoning (2020)

The left bar:
(2) “simulation™ notions

The right bar:
(5) “simulation™ proofs

M., Sanada & Urabe

CMCS 2024

forgetting how each — is
defined

examining how each — is
defined
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, 1/O
state

divergence

M. & Hamana

FLOPS 2024

preorder-constrained |

simulation (2024 )

I counting simulation & araphical local

local coherence & critical pair analysis
(2024)

The left bar:
(2) “simulation™ notions

The right bar:
(5) “simulation” proofs

forgetting how each — is
defined

examining how each — is
defined
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A new evitcudnioc approach

e climbing up a ladder

probability

nondeterminism, 1/O preorder-constrained \
simulation (2024 )

state \ ‘ . .
counting simulation & agraphical local

divergence

local coherence & critical pair analysis
(2024)

e potential side-steps The left bar-

The right bar:

(2) “simulation” notions (5) “simulation” proofs

e call-by-need

e continuation forgetting how each — is
defined

examining how each — is
defined

Muroya (RIMS, Kyoto U.)



