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Is program semantics a TRS?
● Yes? 

● Arithmetics is a TRS. 

 (1 + 2) + (3 + 4) → 3 + (3 + 4) → 3 + 7 → 10
(1 + 2) + (3 + 4) → (1 + 2) + 7 → 3 + 7 → 10
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Muroya (RIMS, Kyoto U.)

Is program semantics a TRS?
● No! 

● Left-to-right arithmetics is not a TRS. 

 

 

● The evaluation order is specified by evaluation contexts 

[Felleisen, LFP ’88 & POPL ‘88], e.g.  

●  is an evaluation context. 

●  is not an evaluation context.

(1 + 2) + (3 + 4) → 3 + (3 + 4) → 3 + 7 → 10
(1 + 2) + (3 + 4) ↛ (1 + 2) + 7 → 3 + 7 → 10

E ::= □ ∣ E + t ∣ n + E

□ + (3 + 4)

(1 + 2) + □
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1. evaluate the first argument to a number 
2. evaluate the second argument
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Is program semantics a TRS?
● No! 

● The evaluation order is specified by evaluation contexts 

[Felleisen, LFP ’88 & POPL ’88], e.g.  

● Context-sensitive rewriting [Lucas, ’00] is not enough. 

● Question How can then we transfer TRS techniques to 

program semantics? 

● e.g. critical pair analysis 

● Answer Use Term Evaluation Systems, a variant of TRS! 

E ::= □ ∣ E + t ∣ n + E
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Term Evaluation Systems (TES)
● evaluation 

 

closed under evaluation contexts  only 

● cf. ordinary rewriting 

 

closed under any contexts

(l → r) ∈ R θ : subst. E ∈ ℰ
E[lθ] →R E[rθ]

ℰ

(l → r) ∈ R θ : subst. C : context

C[lθ] →R C[rθ]
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evaluation and rewriting
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Interaction between evaluation and rewriting
● From program semantics perspective: 

● Question Is refinement correct wrt. evaluation? 

● Goal to prove that  implies 

●  : -normalising   : -normalising

t ⇒ u

s[t]p → ⟹ s[u]p →
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terms                          t ::= n ∣ t + t ∣ t × t
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Interaction between evaluation and rewriting (refinement)

● From program semantics perspective: 

● Question Is refinement correct wrt. evaluation? 

● Goal to prove that  implies 

●  : -normalising   : -normalising

t ⇒ u

s[t]p → ⟹ s[u]p →

10

evaluation contexts     

evaluation rules           

evaluation relation      

E ::= □ ∣ E + t ∣ n + E ∣ E × t ∣ n × E

m + n → m + n, m × n → m × n

l → r E
E[l] → E[r]
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Interaction between evaluation and rewriting (refinement)

● From TES/TRS perspective: 

● Question Is refinement correct wrt. evaluation? 

● Goal to prove that  implies, for any context , 

●  : -normalising   : -normalising

t ⇒A u C

C[t] →R ⟹ C[u] →R

14

evaluation relation       

refinement relation      

(l → r) ∈ R θ : subst. E ∈ ℰ
E[lθ] →R E[rθ]

(l ⇒ r) ∈ A θ : subst. C : context

C[lθ] ⇒A C[rθ]
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Interaction between evaluation and rewriting (refinement)

● Question Is refinement correct wrt. evaluation? 

● Goal to prove that  implies, for any context , 

●  : -normalising   : -normalising 

● Sufficient to prove that  implies 
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evaluation relation       

refinement relation      

(l → r) ∈ R θ : subst. E ∈ ℰ
E[lθ ] →R E[rθ ]

(l ⇒ r) ∈ A θ : subst. C : context
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Interaction between evaluation and rewriting (refinement)

● Sufficient to prove that  implies 

●  : -normalising   : -normalising 

● For deterministic , sufficient to prove that  implies 

 

 

t ⇒A u

t →R ⟹ u →R

→R t ⇒A u
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• A template of E(⌃, R) is given by a set A of axioms where (l ) r) 2 A i↵ l, r 2 T (⌃, X).

• Given a template A, the rewrite relation )A ✓ T (⌃, X) ⇥ T (⌃, X) is defined as follows:
t )A u i↵ there exist a position p of t, an axiom (l ) r) 2 A and a substitution ✓, such that
t|p = l✓ and u|p = r✓.

• A template A is said to be compatible with a set V 2 T (⌃, X) if, for any v 2 V and any
(l ) r) 2 A, if there exist a position p and a substitution ✓ such that v[l✓]p 2 V and

v[r✓]p 62 V , then v[r✓]p
⇤!R v[l✓]p.

Lemma 2.4. The rewrite relation )A is closed under substitutions, and closed under contexts in

C(1)(⌃, X).

While the evaluation relation !R represents dynamics of a TES E(⌃, R), the rewrite relation
)A represents a statical equational property that should be respected by the dynamics. To em-
phasise this, we will also call the rewrite relation )A the refinement relation. Note that, whereas
the refinement relation )A is closed under any one-hole contexts, the evaluation relation !R is
closed under evaluation contexts only.

Remark 2.5. A TES E(⌃, R) with a template A should not be confused with the ARS (T (⌃, X),!R

) modulo the relation )A. The refinement relation )A is not necessarily an equivalence relation,

and we would not use it in a composed form such as )A · !R · )A. The evaluation relation !R

solely represents dynamics of the TES.

Example 2.6 (arithmetics). Let ⌃arith be the union of a set {+,⇥} of binary operations and a

set {n | n 2 N} of numeral constants. This signature and evaluation rules m + n ! m+ n and

m⇥n ! m⇥ n yield a TES of arithmetics. An example of an axiom of this TES is the distributivity

law l ⇥ (m+ n) ) l ⇥m+ l ⇥ n.

Definition 2.7 (linear terms, ready terms). Let E(⌃, R) be a TES.

• A term t is said to be linear if any variable appears at most once in t.

• A position p of a term t is said to be active if t[⇤]p 2 E .

• A term t is said to be ready if every variable position of t is active.

We say a set R of evaluation rules is linear if all its rules are linear on both sides. Similarly,
we say a template A is linear if all its axioms are linear on both sides. We also say a template A
is right-ready if all its axioms have a ready right hand side.

Definition 2.8 (R-peaks, R-joinability, (A,R)-peaks, (A,R)-joinability). Let E(⌃, R) be a TES
with a template A.

• An R-peak is given by a triple (t1, s, t2) such that s !R t1 and s !R t2.

• An R-peak (t1, s, t2) is R-joinable if there exists a term u such that t1
⇤!R u and t2

⇤!R u.

• An (A,R)-peak is given by a triple (t1, s, t2) such that s )A t1 and s !R t2.

• An (A,R)-peak (t1, s, t2) is (A,R)-joinable if there exist terms u1, u2 such that t1
⇤! u1,

t2
⇤! u2 and u2

=)A u1.

s //

✏✏

t2

⇤✏✏
t1

⇤ // u

s //

↵◆

t2
⇤ // u2

=↵◆
t1

⇤ // u1

s

↵◆

//6

t1
⇤ // u //6

s //

↵◆

t2
⇤ // u2

=↵◆
t1

⇤ // u1
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[M., PhD thesis ’20]

local coherence 
[Aoto & Toyama, LMCS ’12]

evaluation relation       

refinement relation      

(l → r) ∈ R θ : subst. E ∈ ℰ
E[lθ ] →R E[rθ ]

(l ⇒ r) ∈ A θ : subst. C : context

C[lθ ] ⇒A C[rθ ]
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Critical pair analysis for local coherence

17II. Term Evaluation Systems (TES) with refinement
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Definition 2.9 (local confluence). A TES E(⌃, R) is locally confluent if any R-peak is R-joinable.

Definition 2.10 (determinism). A TES E(⌃, R) is said to be deterministic if its evaluation relation
!R satisfies the following: for any t, u, u0 2 T (⌃, X), if t !R u and t !R u0 then u = u0.

2

Definition 2.11 (local coherence). A TES E(⌃, R) with a template A is locally coherent if any
(A,R)-peak is (A,R)-joinable.

In a TES, a term is said to be closed if it has no occurrence of variables.

Definition 2.12 (program/contextnal refinement). Let E(⌃, R) be a TES with a template A.

• A program refinement between closed terms is given by a relation �prog ✓ T (⌃, R)⇥T (⌃, R)
that is defined as follows: t �prog u i↵ t + implies u +.

• A contextual refinement between terms is given by a relation �ctxt ✓ T (⌃, R)⇥T (⌃, R) that
is defined as follows: t �prog u i↵ C[t] �prog C[u] for any one-hole context C that makes
C[t], C[u] closed terms.

Proposition 2.13. Let E(⌃, R) be a TES with a template A.

1. If the TES E(⌃, R) with A is deterministic and locally coherent, and it satisfies the following

(Termination) condition, then for any closed terms t, u 2 T (⌃, X), t )A u implies t �prog

u.

• (Termination) for any t, u 2 T (⌃, X) such that t )A u, if t # then u +.

2. If the TES E(⌃, R) with A is deterministic and locally coherent, and it satisfies the (Termi-
nation) condition above, then for any terms t, u 2 T (⌃, X), t )A u implies t �ctxt u.

Proof.

1. Take arbitrary t, u 2 T (⌃, X) such that t )A u and t +. There exist k 2 N and t0 2 T (⌃, X)

such that t
k! t0 #. We prove that t )A u and t

k! t0 # imply u +, for any k 2 N, by induction
on k.

When k = 0, t = t0 # holds. By the condition (Termination), we have u +.

When k > 0, thete exists t00 2 T (⌃, X) such that t ! t00
k�1! t0 #. Because the TES E(⌃, R)

with the template A is locally coherent, there exist exist t000, u00 2 A such that t00
⇤! t000,

t000 )A u00, and u
⇤! u00. This in particular means that there exists l 2 N such that t00

l! t000.

Because the TES E(⌃, R) is deterministic, t000 must appear within the sequence t00
k�1! t0 #,

and hence t00
l! t000

k�1�l! t0 # must hold. By I.H. on k � 1� l, we get u00 +, and hence u +.

2. This is a consequence of the first bullet and Lem. 2.4.

3 Inductively defined evaluation contexts

BNF is just another notation of production rules of context free grammer. So a more ordinary
formulation of scheme for evaluation contexts may be possible.

Let V,T be two distinct countably infinite sets, and E be a distinct variable.

Definition 3.1 ((well-behaved) schemes). Let ⌃ be a signature.

• A set of schemes is given by a set of linear terms in T (⌃,V [T [ {E}).

• A set S of schemes is said to be well-behaved if it satisfies the following.

1. For any s 2 S, there exist f 2 ⌃ with arity n and x1, . . . ,xn 2 V [T [ {E} such that
s = f(x1, . . . ,xn). Moreover, there exists i such that xi = E.

2. For any s = f(x1, . . . ,xn) 2 S, if xi 2 V for some i, then s{E 7!t,xi 7!E} 2 S holds for
some t 2 T that does not appear in s.

3
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Critical pair analysis for local coherence

18II. Term Evaluation Systems (TES) with refinement

• The (expanding) critical pair generated by an expanding overlap (l1 ) r1, l2 ! r2, p, ✓) is
given by a triple (l2✓[r1✓]p, l2✓, r2✓).

Lemma 5.4 (Critical Pair Lemma). Let ES,V (⌃, R) be a well-behaved TES with a template A.

Let s ) t1 where an axiom (l1 ) r1) 2 A is applied to a position q1 of s. Let s ! t2 where an

evaluation rule (l2 ! r2) 2 R is applied to a position q2 of s. If Var(l1)\Var(l2) = ;, R is linear,

and A is linear, right-ready and compatible with V , then either of the following holds:

1. the peak (t1, s, t2) is joinable; or,

2. there exist a position p of s and terms u1, u2, such that ti = s[ui]p (i 2 {1, 2}), and (u1, s|p, u2)
is an instance of a critical pair.

Proof. Let ✓1, ✓2 be two substitutions that match (l1 ) r1) and (l2 ! r2) respectively to s, i.e.
s = s[l1✓1]q1 = s[l2✓2]q2 . The proof is by case analysis on the positions q1, q2.

Disjoint case We have s = C[l1✓1, l2✓2] for some context C[⇤,⇤], such that s[⇤]q1 = C[⇤, l2✓2]
and s[⇤]q2 = C[l1✓2,⇤]. The former context is necessarily an evaluation context, i.e. C[⇤, l2✓2] 2 E .
Because A is compatible, we have either of the following two diagrams.

C[l1✓1,l2✓2] //

↵◆

C[l1✓1,r2✓2]

↵◆
C[r1✓1,l2✓2] // C[r1✓1,l2✓2]

C[l1✓1,l2✓2] //

↵◆

C[l1✓1,r2✓2]

C[r1✓1,l2✓2]
⇤ // C[l1✓1,l2✓2] // C[l1✓1,r2✓2]

Prefix case (1) Let q1q = q2 for some q, which is a position of l1✓1. We have s = s[l1✓1]q1 =
s[l1✓1[l2✓2]q]q1 , t1 = s[r1✓1]q1 , and t2 = s[l1✓1[r2✓2]q]q1 . Let ✓ be a substitution defined by

✓(x) =

(
✓1(x) x 2 Var(l1)

✓2(x) x 2 Var(l2).

By Var(l1)\Var(l2) = ;, we have s = s[l1✓]q1 = s[l1✓[l2✓]q]q1 , t1 = s[r1✓]q1 , and t2 = s[l1✓[r2✓]q]q1 .
We proceed with case analysis on the position q of l1✓1.

• When q coincides with a non-variable position of l1, we have (l1|q)✓ = (l1✓)|q = l2✓.
We can take a most general unifier � between l1|q and l2. It provides a shrinking over-
lap (l1 ) r1, l2 ! r2, q,�), which generates a critical pair (r1�, l1�, l1�[r2�]q). The triple
(r1✓, l1✓, l1✓[r2✓]q) is its instance.

• Otherwise, there exist positions p1, p2 such that q = p1p2 and p1 coincides with a variable
position of l1. Let x be the variable of l1 at p1 (i.e. l1|p = x). We have x✓|p2 = l1✓|q = l2✓,
and moreover, s = s[l1✓[x✓[l2✓]p2 ]p1 ]q1 , t1 = s[r1✓]q1 and t2 = s[l1✓[x✓[r2✓]p2 ]p1 ]q1 . Let � be
a substitution such that �(x) = x✓[r2✓]p2 and �(y) = ✓(y) for any y 6= x. Because the axiom
l1 ) r1 is linear, the variable x appears only once in l1, and no more than once in r1. We
therefore have t2 = s[l1�[x✓[r2✓]p2 ]p1 ]q1 = s[l1�]q1 ) s[r1�]q1 .

– When x does not appear in r1, t1 = s[r1�]q1 holds.

– When x appears once (at position p) in r1, we have t1|q1 = r1✓ = r1✓[x✓]p. Because
the axiom l1 ) r1 is right-ready, we have r1[⇤]p 2 E , and consequently, r1✓[⇤]p 2 E .
The evaluation u ! t2 implies that s[⇤]q1 , x✓[⇤]p2 2 E . We consequently have t1 =
s[r1✓[x✓[l2✓]p2 ]p]q1 ! s[r1✓[x✓[r2✓]p2 ]p]q1 = s[r1�[x✓[r2✓]p2 ]p]q1 = s[r1�]q1 .

We therefore have t1 != s[r1�]q1 .
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Question Is! locally coherent wrt.)? If the answer is yes, and the ARS E(⌃, R) = (T (⌃, X),!R

) is deterministic, then s )A t implies “if s has a NF, then t also has a NF.” This means that
the axioms A provide a convenient su�cient condition for normalisation to coincide. This coinci-
dence of normalisation is an important concept in program semantics, which enables us to compare
behaviour of two programs.

Axioms that are not linear or not right-ready may induce non-joinable peaks that cannot be
explained by a standard critical pair.

Example 5.1 ((A,R)-peaks). Let terms t and evaluation contexts E be defined by

t ::= a | x | f(t, t) | g(t)
E ::= ⇤ | f(E, t) | f(a,E) | g(E).

1. An axiom f(x, a) ) f(x, x) and an evaluation rule g(y) ! y have the following non-joinable

peak, where the variable x of the axiom is matched to the left hand side g(y) of the rule.

f(g(y),a) //

↵◆

f(y,a)

↵◆
f(g(y),g(y)) // f(y,g(y)) ⇥ // f(y,y)

2. An axiom f(x, x) ) a and an evaluation rule g(y) ! y have the following non-joinable peak,

where the variable x of the axiom is again matched to the left hand side g(y) of the rule.

f(g(y),g(y)) //

↵◆

f(y,g(y)) ⇥ // f(y,y)

↵◆
a a

3. An axiom f(x, y) ) f(y, x) and an evaluation rule g(y) ! y have the following joinable peak,

where the variables x, y of the axiom are both matched to the left hand side g(y) of the rule.

f
�
g(y),g(y)

�
//

↵◆

f
�
y,g(y)

�

f
�
g(y),g(y)

�
// f
�
y,g(y)

�

The axiom and the rule, however, have the following non-joinable peak, where the variable x
is matched to f(g(y), z) while the variable y is matched to the left hand side g(y) of the rule.

f
�
f(g(y),z),g(y)

�
//

↵◆

f
�
f(y,z),g(y)

�
⇥ //

⇥
↵◆

f
�
g(y),f(g(y),z)

�
// f
�
y,f(g(y),z)

�
⇥ //

Definition 5.2 (overlaps). Let (l1 ) r1) 2 A and (l2 ! r2) 2 R.

• A shrinking overlap between (l1 ) r1) and (l2 ! r2) is given by data (l1 ) r1, l2 ! r2, p, ✓),
such that p is a non-variable position of l1 and ✓ is a most general unifier between l1|p and
l2.

• An expanding overlap between (l1 ) r1) and (l2 ! r2) is given by data (l1 ) r1, l2 ! r2, p, ✓),
such that p is a non-variable position of l2 and ✓ is a most general unifier between l2|p and
l1.

Definition 5.3 (critical pairs).

• The (shrinking) critical pair generated by a shrinking overlap (l1 ) r1, l2 ! r2, p, ✓) is given
by a triple (r1✓, l1✓, l1✓[r2✓]p).

6
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19II. Term Evaluation Systems (TES) with refinement

Prefix case (2) Let q1 = q2q for some q, which is a position of l2✓2. We have s = s[l2✓2]q2 =
s[l2✓2[l1✓1]q]q2 , t2 = s[r2✓2]q2 , and t1 = s[l2✓2[r1✓1]q]q2 . Let ✓ be a substitution defined by

✓(x) =

(
✓2(x) x 2 Var(l2)

✓1(x) x 2 Var(l1).

By Var(l2)\Var(l1) = ;, we have s = s[l2✓]q2 = s[l2✓[l1✓]q]q2 , t2 = s[r2✓]q2 , and t1 = s[l2✓[r1✓]q]q2 .
We proceed with case analysis on the position q of l2✓2.

• When q coincides with a non-variable position of l2, we have (l2|q)✓ = (l2✓)|q = l1✓. We
can take a most general unifier � between l2|q and l1. It provides an expanding over-
lap (l2 ) r2, l1 ! r1, q,�), which generates a critical pair (l2�[r1�]q, l2�, r2�). The triple
(l2✓[r1✓]q, l2✓, r2✓) is its instance.

• Otherwise, there exist positions p1, p2 such that q = p1p2 and p1 coincides with a variable
position of l2. Let x be the variable of l2 at p1 (i.e. l2|p = x). We have x✓|p2 = l2✓|q = l1✓,
and moreover, s = s[l2✓[x✓[l1✓]p2 ]p1 ]q2 , t1 = s[l2✓[x✓[r1✓]p2 ]p1 ]q2 , and t2 = s[r2✓]q2 . Let � be
a substitution such that �(x) = x✓[r1✓]p2 and �(y) = ✓(y) for any y 6= x. Because the rule
l2 ! r2 is linear, the variable x appears only once in l2, and no more than once in r2. We
therefore have t1 = s[l2�[x✓[r1✓]p2 ]p1 ]q2 = s[l2�]q2 ! s[r2�]q2 , and t2 )= s[r2�]q2 .

Theorem 5.5 (Critical Pair Theorem). Let ES,V (⌃, R) be a well-behaved TES with a template A.

If R is linear, and A is linear, right-ready and compatible with V , the TES ES,V (⌃, R) with the

template A is locally coherent if and only if every critical pair is joinable.

Proof. The “if” part is a consequence of Lem. 5.4 and Lem. 3.2. Using Lem. 3.2, we can show the
following: any terms t, u such that t ! u and any evaluation context E 2 E satisfy E[t] ! E[u];
and, any terms t, u such that t! u and any substitution ✓ satisfy t✓ ! u✓.

The “only if” part is straightforward, because every critical pair (u1, t, u2) satisfies t) u1 and
t! u2.

6 Far simulation for contextual refinement

6.1 Far simulation

Our methodology is to use a simulation notion to prove program refinement, which is an asymmetric
version of program equivalence. Here we define the simulation notion, dubbed far simulation, for
general term rewriting systems. It is an adaptation of a simulation notion [3, Def. 4.4.1] that was
used to prove program refinement with a particular operational semantics.

Definition 6.1 (far simulation). Given a set A, and two relations! and R on A, the relation R is
a far simulation if it satisfies the following: (Termination) R�1 � # ✓ +, and (Step) R�1 �! ✓
⇤!�R�1 � ⇤ .

Far simulation in fact satisfies a stronger condition than the condition (Termination), when
the relation ! is deterministic.

Proposition 6.2. Let A be a set A, and! and R be two relations on A. When! is deterministic

and R is far simulation, R satisfies the following: R�1 � + ✓ +.

Proof. Take any y 2 A such that (y,X) 2 R�1 � +. There must exist x, x0 2 A and k 2 N such

that (x, y) 2 R and x
k! x0 #. We prove that (x, y) 2 R and x

k! x0 # imply y +, for any k 2 N, by
induction on k.

When k = 0, x = x0 # holds. By the condition (Termination) of the far simulation R, we have
y +.

When k > 0, thete exists x00 2 A such that x ! x00 k�1! x0 #. By the condition (Step) of the

far simulation R, there exist x000, y00 2 A such that x00 ⇤! x000, (x000, y00) 2 R, and y
⇤! y00. This in
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• well-behaved evaluation contexts, with a notion of values 

•  is defined by a certain BNF, e.g.:  

• linear rules 

•  are linear terms in  

• right-ready rules 

• in  of , if  is a variable position,  

• compatible rules wrt. values 

ℰ E ::= □ ∣ ⋯ ∣ f (v, E ) ∣ f (E, t)

l, r (l → r) ∈ R, (l ⇒ r) ∈ A

r (l ⇒ r) ∈ A p r[ □ ]p ∈ ℰ

V

• A template of E(⌃, R) is given by a set A of axioms where (l ) r) 2 A i↵ l, r 2 T (⌃, X).

• Given a template A, the rewrite relation )A ✓ T (⌃, X) ⇥ T (⌃, X) is defined as follows:
t )A u i↵ there exist a position p of t, an axiom (l ) r) 2 A and a substitution ✓, such that
t|p = l✓ and u|p = r✓.

• A template A is said to be compatible with a set V 2 T (⌃, X) if, for any v 2 V and any
(l ) r) 2 A, if there exist a position p and a substitution ✓ such that v[l✓]p 2 V and

v[r✓]p 62 V , then v[r✓]p
⇤!R v[l✓]p.

Lemma 2.4. The rewrite relation )A is closed under substitutions, and closed under contexts in

C(1)(⌃, X).

While the evaluation relation !R represents dynamics of a TES E(⌃, R), the rewrite relation
)A represents a statical equational property that should be respected by the dynamics. To em-
phasise this, we will also call the rewrite relation )A the refinement relation. Note that, whereas
the refinement relation )A is closed under any one-hole contexts, the evaluation relation !R is
closed under evaluation contexts only.

Remark 2.5. A TES E(⌃, R) with a template A should not be confused with the ARS (T (⌃, X),!R

) modulo the relation )A. The refinement relation )A is not necessarily an equivalence relation,

and we would not use it in a composed form such as )A · !R · )A. The evaluation relation !R

solely represents dynamics of the TES.

Example 2.6 (arithmetics). Let ⌃arith be the union of a set {+,⇥} of binary operations and a

set {n | n 2 N} of numeral constants. This signature and evaluation rules m + n ! m+ n and

m⇥n ! m⇥ n yield a TES of arithmetics. An example of an axiom of this TES is the distributivity

law l ⇥ (m+ n) ) l ⇥m+ l ⇥ n.

Definition 2.7 (linear terms, ready terms). Let E(⌃, R) be a TES.

• A term t is said to be linear if any variable appears at most once in t.

• A position p of a term t is said to be active if t[⇤]p 2 E .

• A term t is said to be ready if every variable position of t is active.

We say a set R of evaluation rules is linear if all its rules are linear on both sides. Similarly,
we say a template A is linear if all its axioms are linear on both sides. We also say a template A
is right-ready if all its axioms have a ready right hand side.

Definition 2.8 (R-peaks, R-joinability, (A,R)-peaks, (A,R)-joinability). Let E(⌃, R) be a TES
with a template A.

• An R-peak is given by a triple (t1, s, t2) such that s !R t1 and s !R t2.

• An R-peak (t1, s, t2) is R-joinable if there exists a term u such that t1
⇤!R u and t2

⇤!R u.

• An (A,R)-peak is given by a triple (t1, s, t2) such that s )A t1 and s !R t2.

• An (A,R)-peak (t1, s, t2) is (A,R)-joinable if there exist terms u1, u2 such that t1
⇤! u1,

t2
⇤! u2 and u2

=)A u1.

s //

✏✏

t2

⇤✏✏
t1

⇤ // u

s //

↵◆

t2
⇤ // u2

=↵◆
t1

⇤ // u1

Definition 2.9 (local confluence). A TES E(⌃, R) is locally confluent if any R-peak is R-joinable.

Definition 2.10 (determinism). A TES E(⌃, R) is said to be deterministic if its evaluation relation
!R satisfies the following: for any t, u, u0 2 T (⌃, X), if t !R u and t !R u0 then u = u0.
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Overview
● Term Evaluation Systems with refinement (ordinary rewriting) 

● Question Is refinement correct wrt. evaluation? 

● Goal to prove that  implies, for any context , 

●  : -normalising   : -normalising

t ⇒A u C

C[t] →R ⟹ C[u] →R

20

evaluation relation       

refinement relation      

(l → r) ∈ R θ : subst. E ∈ ℰ
E[lθ] →R E[rθ]

(l ⇒ r) ∈ A θ : subst. C : context

C[lθ] ⇒A C[rθ]


