Local Coherence and Program Refinement (work in progress)

Makoto Hamana (Gunma University) <u>Koko Muroya</u> (RIMS, Kyoto University)

58th TRS Meeting (Niigata), 20 February 2023

Term *Evaluation* and Term *Rewriting* (work in progress)

Makoto Hamana (Gunma University) <u>Koko Muroya</u> (RIMS, Kyoto University)

58th TRS Meeting (Niigata), 20 February 2023

- Yes?
 - Arithmetics is a TRS.

 $(1+2) + (3+4) \rightarrow 3 + (3+4) \rightarrow 3 + 7 \rightarrow 10$ $\rightarrow (1+2) + 7 \rightarrow 3 + 7 \rightarrow$

- No!
 - Left-to-right arithmetics is not a TRS.

$$(1+2) + (3+4) \rightarrow 3 + (3+4) \rightarrow 3 + 7 \rightarrow 10$$
$$\Rightarrow (1+2) + 7 \rightarrow 3 + 7 \rightarrow$$

- The evaluation order is specified by *evaluation contexts* [Felleisen, LFP '88 & POPL '88], e.g. $E ::= \Box \mid E + t \mid n + E$
 - $\Box + (3+4)$ is

• $(1+2) + \square$ is 1. evaluate the first argument to a number 2. evaluate the second argument

- No!
 - Left-to-right arithmetics is not a TRS.

$$(1+2) + (3+4) \rightarrow 3 + (3+4) \rightarrow 3 + 7 \rightarrow 10$$
$$\rightarrow (1+2) + 7 \rightarrow 3 + 7 \rightarrow$$

- The evaluation order is specified by *evaluation contexts* [Felleisen, LFP '88 & POPL '88], e.g. $E ::= \Box | E + t | n + E$
 - $\Box + (3 + 4)$ is an evaluation context.
 - $(1+2) + \square$ is not an evaluation context.

- No!
 - The evaluation order is specified by evaluation contexts [Felleisen, LFP '88 & POPL '88], e.g. $E ::= \Box | E + t | n + E$
 - Context-sensitive rewriting [Lucas, '00] is not enough.
- **Question** How can then we transfer TRS techniques to program semantics?
 - e.g. critical pair analysis
- **Answer** Use Term *Evaluation* Systems, a variant of TRS!

Term Evaluation Systems (TES)

• evaluation

$$(l \to r) \in R \quad \theta: \text{ subst.} \quad E \in \mathscr{C}$$
$$E[l\theta] \to_R E[r\theta]$$

closed under evaluation contexts \mathcal{E} only

• cf. ordinary rewriting

$$\frac{(l \to r) \in R \quad \theta: \text{ subst. } C: \text{ context}}{C[l\theta] \to_R C[r\theta]}$$

closed under any contexts

Term Evaluation Systems (TES)

• evaluation

$$\frac{(l \to r) \in R \quad \theta: \text{ subst. } E \in \mathscr{C}}{E[l\theta] \to_R E[r\theta]}$$

closed under evaluation contexts \mathcal{E} only

• cf. ordinary rewriting

$$(l \rightarrow r) \in R \quad \theta$$
: subst. C: context

$$C[l\theta] \to_R C[r\theta]$$

closed under any contexts

Interaction between evaluation and rewriting

• From program semantics perspective:

terms $t ::= \underline{n} \mid t + t \mid t \times t$

evaluation contexts	$E ::= \Box \mid E + t \mid \underline{n} + E \mid E \times t \mid \underline{n} \times E$
evaluation rules	$\underline{m} + \underline{n} \to \underline{m+n}, \underline{m} \times \underline{n} \to \underline{m \times n}$
evaluation relation	$\frac{l \to r E}{E[l] \to E[r]}$

evaluation contexts	$E ::= \Box \mid E + t \mid \underline{n} + E \mid E \times t \mid \underline{n} \times E$
evaluation rules	$\underline{m} + \underline{n} \to \underline{m+n}, \underline{m} \times \underline{n} \to \underline{m \times n}$
evaluation relation	$\frac{l \to r E}{E[l] \to E[r]}$
refinement rules	$\underline{l} \times (\underline{m} + \underline{n}) \Rightarrow \underline{l} \times \underline{m} + \underline{l} \times \underline{n}, \underline{m} + \underline{n} \Rightarrow \underline{m} \times \underline{n}$

evaluation contexts	$E ::= \Box \mid E + t \mid \underline{n} + E \mid E \times t \mid \underline{n} \times E$
evaluation rules	$\underline{m} + \underline{n} \to \underline{m+n}, \underline{m} \times \underline{n} \to \underline{m \times n}$
evaluation relation	$\frac{l \to r E}{E[l] \to E[r]}$
refinement rules	$\underline{l} \times (\underline{m} + \underline{n}) \Rightarrow \underline{l} \times \underline{m} + \underline{l} \times \underline{n}, \underline{m} + \underline{n} \Rightarrow \underline{m} \times \underline{n}$

- **Question** Is refinement *correct* wrt. evaluation?
- **Goal** to prove that $t \Rightarrow u$ implies, for any context *C*,
 - $C[t] : \rightarrow$ -normalising $\Longrightarrow C[u] : \rightarrow$ -normalising

- <u>Question</u> Is refinement *correct* wrt. evaluation?
- **Goal** to prove that $t \Rightarrow u$ implies, for any context *C*,
 - $C[t] : \rightarrow$ -normalising $\Longrightarrow C[u] : \rightarrow$ -normalising

• From TES/TRS perspective:

- **Question** Is refinement *correct* wrt. evaluation?
- **Goal** to prove that $t \Rightarrow_A u$ implies, for any context C,
 - $C[t] : \rightarrow_R$ -normalising $\Longrightarrow C[u] : \rightarrow_R$ -normalising

ovaluation rolation	$(l \to r) \in R$	heta : subst.	$E\in \mathcal{E}$
rofinement relation	$E[l\theta] \to_R E[r\theta]$		
	$(l \Rightarrow r) \in A$	heta : subst.	C: context
rennementrelation	$C[l\theta] \Rightarrow_A C[r\theta]$		

- **Question** Is refinement *correct* wrt. evaluation?
- **Goal** to prove that $t \Rightarrow_A u$ implies, for any context *C*,
 - $C[t] : \rightarrow_R$ -normalising $\Longrightarrow C[u] : \rightarrow_R$ -normalising

- Sufficient to prove that $t \Rightarrow_A u$ implies
 - $t: \rightarrow_R$ -normalising $\Longrightarrow u: \rightarrow_R$ -normalising

ovaluation relation	$(l \to r) \in R$	heta : subst.	$E\in \mathcal{E}$	
refinement relation	$E[l\theta] \to_R E[r\theta]$			
	$(l \Rightarrow r) \in A$	heta: subst.	C: context	
	$C[l\theta] \Rightarrow_A C[r\theta]$			

- Sufficient to prove that $t \Rightarrow_A u$ implies
 - $t: \rightarrow_R$ -normalising $\Longrightarrow u: \rightarrow_R$ -normalising

• For deterministic \rightarrow_R , sufficient to prove that $t \Rightarrow_A u$ implies

Critical pair analysis for local coherence

Definition 2.8 (*R*-peaks, *R*-joinability, (A, R)-peaks, (A, R)-joinability). Let $\mathcal{E}(\Sigma, R)$ be a TES with a template A.

- An *R*-peak is given by a triple (t_1, s, t_2) such that $s \to_R t_1$ and $s \to_R t_2$.
- An *R*-peak (t_1, s, t_2) is *R*-joinable if there exists a term u such that $t_1 \xrightarrow{*}_R u$ and $t_2 \xrightarrow{*}_R u$.
- An (A, R)-peak is given by a triple (t_1, s, t_2) such that $s \Rightarrow_A t_1$ and $s \rightarrow_R t_2$.
- An (A, R)-peak (t_1, s, t_2) is (A, R)-joinable if there exist terms u_1, u_2 such that $t_1 \xrightarrow{*} u_1, t_2 \xrightarrow{*} u_2$ and $u_2 \stackrel{\equiv}{\Rightarrow}_A u_1$.

Definition 2.11 (local coherence). A TES $\mathcal{E}(\Sigma, R)$ with a template A is *locally coherent* if any (A, R)-peak is (A, R)-joinable.

II. Term Evaluation Systems (TES) with refinement

Critical pair analysis for local coherence

Definition 5.2 (overlaps). Let $(l_1 \Rightarrow r_1) \in A$ and $(l_2 \to r_2) \in R$.

- A shrinking overlap between $(l_1 \Rightarrow r_1)$ and $(l_2 \to r_2)$ is given by data $(l_1 \Rightarrow r_1, l_2 \to r_2, p, \theta)$, such that p is a non-variable position of l_1 and θ is a most general unifier between $l_1|_p$ and l_2 .
- An expanding overlap between $(l_1 \Rightarrow r_1)$ and $(l_2 \to r_2)$ is given by data $(l_1 \Rightarrow r_1, l_2 \to r_2, p, \theta)$, such that p is a non-variable position of l_2 and θ is a most general unifier between $l_2|_p$ and l_1 .

Definition 5.3 (critical pairs).

- The *(shrinking) critical pair* generated by a shrinking overlap $(l_1 \Rightarrow r_1, l_2 \rightarrow r_2, p, \theta)$ is given by a triple $(r_1\theta, l_1\theta, l_1\theta[r_2\theta]_p)$.
- The *(expanding) critical pair* generated by an expanding overlap $(l_1 \Rightarrow r_1, l_2 \rightarrow r_2, p, \theta)$ is given by a triple $(l_2\theta[r_1\theta]_p, l_2\theta, r_2\theta)$.

3. Correctness of refinement $t \Rightarrow_A u$ wrt. evaluation $t \rightarrow_R u$

Theorem 5.5 (Critical Pair Theorem). Let $\mathcal{E}_{S,V}(\Sigma, R)$ be a well-behaved TES with a template A. If R is linear, and A is linear, right-ready and compatible with V, the TES $\mathcal{E}_{S,V}(\Sigma, R)$ with the template A is locally coherent if and only if every critical pair is joinable.

Overview

• Term Evaluation Systems with refinement (ordinary rewriting)

- **Question** Is refinement *correct* wrt. evaluation?
- **<u>Goal</u>** to prove that $t \Rightarrow_A u$ implies, for any context *C*,
 - $C[t] : \rightarrow_R$ -normalising $\Longrightarrow C[u] : \rightarrow_R$ -normalising