
室屋 晃子
(京都大学 数理解析研究所)

階層的グラフの戦略的書き換えによる
プログラム実行モデリングとその利用

早稲田大 上田研 セミナー, 30 January 2020

Koko Muroya
(RIMS, Kyoto University)

Modelling program execution with
token-guided

 (hierarchical) graph rewriting

早稲田大 上田研 セミナー, 30 January 2020

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

applications:

● cost analysis

● language designs for programming with data-flow networks

● reasoning about observational equivalence

● visualising program execution

graph rewriting token passing

token-guided graph rewriting

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

applications:

● cost analysis

● language designs for programming with data-flow networks

● reasoning about observational equivalence

● visualising program execution

graph rewriting token passing

token-guided graph rewriting

Muroya (RIMS, Kyoto U.)

Graph-rewriting model
● dates back to [Wadsworth 1971]

● useful to achieve time-efficiency (by flexible sharing)

● e.g. call-by-need evaluation without extra machinery

Muroya (RIMS, Kyoto U.)

Graph-rewriting model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

× 1 2

3λ

@

+

× 3

+

×

3

+

3 6

+

×

1

+

2

+

1

+

2 1

+

2
+

3

1

+

2

+

+

1

3

2

Muroya (RIMS, Kyoto U.)

Graph-rewriting model
● dates back to [Wadsworth 1971]

● useful to achieve time-efficiency (by flexible sharing)

● e.g. call-by-need evaluation without extra machinery

Question

How to specify a strategy (i.e. a particular way of rewriting)?

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

applications:

● cost analysis

● language designs for programming with data-flow networks

● reasoning about observational equivalence

● visualising program execution

graph rewriting token passing

token-guided graph rewriting

Muroya (RIMS, Kyoto U.)

Token-passing model
● based on Geometry of Interaction [Girard ’89],

pioneered by [Danos & Regnier ’99] [Mackie ’95]

● ingredients

● the token, passed around on a fixed graph

● hierarchy of the graph, managing re-evaluation

● said to be space-efficient (due to fixed graphs)

● … but not really time-efficient (due to re-evaluation)

Question

How to achieve time-efficiency?

+λ

@

+

×

1 2

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? *

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

B,? *

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? * *

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? * <*,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? * L<*,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

A,? L<*,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? L<*,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? <L<*,*>,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

1 <L<*,*>,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? <L<*,*>,1>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

2 <L<*,*>,1>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

3 L<*,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

A,3 L<*,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

3 * L<*,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

3 * <*,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? * <*,3>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? * L<*,3>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

A,? L<*,3>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? L<*,3>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? <L<*,3>,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

1 <L<*,3>,*>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? <L<*,3>,1>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

2 <L<*,3>,1>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

3 L<*,3>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

A,3 L<*,3>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

3 * L<*,3>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

3 * <*,3>

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

6 * *

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

B,6 *

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

6 *

Muroya (RIMS, Kyoto U.)

Token-passing model
● based on Geometry of Interaction [Girard ’89],

pioneered by [Danos & Regnier ’99] [Mackie ’95]

● ingredients

● the token, passed around on a fixed graph

● hierarchy of the graph, managing re-evaluation

● said to be space-efficient (due to fixed graphs)

● … but not really time-efficient (due to re-evaluation)

Question

How to achieve time-efficiency?

modelling call-by-name
evaluation by default

+λ

@

+

×

1 2

Muroya (RIMS, Kyoto U.)

Models of program execution

Questions

● a trade-off between time-efficiency and space-efficiency?

● a unified model to analyse the trade-off?

graph rewriting token passing

✔ time-efficiency ✔ space-efficiency

Muroya (RIMS, Kyoto U.)

applications:

● cost analysis

● language designs for programming with data-flow networks

● reasoning about observational equivalence

● visualising program execution

Overview: graphical models of program execution

graph rewriting token passing

token-guided graph rewriting

Muroya (RIMS, Kyoto U.)

Token-guided graph-rewriting model

 (λx. x + x) (1 + 2)

program
 6

result

Muroya (RIMS, Kyoto U.)

Token-guided graph-rewriting model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? *

Muroya (RIMS, Kyoto U.)

Token-guided graph-rewriting model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

B,? *

Muroya (RIMS, Kyoto U.)

Token-guided graph-rewriting model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? * *

Muroya (RIMS, Kyoto U.)

Token-guided graph-rewriting model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? * *

the token has detected a redex…
 > pass
 > rewrite

Muroya (RIMS, Kyoto U.)

Token-passing model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? * <*,*>

the token has detected a redex…
 ✔ pass
 > rewrite

Muroya (RIMS, Kyoto U.)

Token-guided graph-rewriting model

 (λx. x + x) (1 + 2)

program
 6

result

+λ

@

+

×

1 2

? * *

the token has detected a redex…
 > pass
 > rewrite

Muroya (RIMS, Kyoto U.)

Token-guided graph-rewriting model

 (λx. x + x) (1 + 2)

program
 6

result

? *

the token has detected a redex…
 > pass
 ✔ rewrite

+

×

1

+

2

Muroya (RIMS, Kyoto U.)

Token-guided graph-rewriting model

● a combination of graph rewriting and token passing

● graph rewriting, guided and controlled by the token

● redexes always detected by the token

● rewrites can only be triggered by the token

freedom
of choice

+λ

@

+

×

1 2

+λ

@

+

×

1 2

+

×

1

+

2

Muroya (RIMS, Kyoto U.)

Modes of token-guided graph-rewriting model

graph rewriting token passing

“maximum” token-guided
graph rewriting

(rewrites triggered by the
token whenever possible)

“minimum” token-guided
graph rewriting

(rewrites never triggered by
the token)

rewrites triggered by the
token whenever possible

rewrites never triggered by
the token

modelling…

● by default: call-by-need evaluation

● also: call-by-value evaluation

by changing the routing of the token

modelling…

● by default: call-by-name evaluation

Muroya (RIMS, Kyoto U.)

Modes of token-guided graph-rewriting model

graph rewriting token passing

“maximum” token-guided
graph rewriting

(rewrites triggered by the
token whenever possible)

“minimum” token-guided
graph rewriting

(rewrites never triggered by
the token)

rewrites triggered by the
token whenever possible

rewrites never triggered by
the token

modelling…

● by default: call-by-need evaluation

● also: call-by-value evaluation

by changing the routing of the token

modelling…

● by default: call-by-name evaluation
demo: https://koko-m.github.io/GoI-Visualiser/

for the (pure, untyped) lambda-calculus

https://koko-m.github.io/GoI-Visualiser/

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

applications:

● cost analysis

● language designs for programming with data-flow networks

● reasoning about observational equivalence

● visualising program execution

graph rewriting token passing

token-guided graph rewriting

Muroya (RIMS, Kyoto U.)

Application 1: cost analysis

Goal (also original motivation)

analysis of a trade-off between time-efficiency and space-
efficiency

graph rewriting token passing

✔ time-efficiency ✔ space-efficiency

Muroya (RIMS, Kyoto U.)

Application 1: cost analysis

graph rewriting token passing

“maximum” token-guided
graph rewriting

(rewrites triggered by the
token whenever possible)

“minimum” token-guided
graph rewriting

(rewrites never triggered by
the token)

rewrites triggered by the
token whenever possible

rewrites never triggered by
the token

[— & Ghica, LMCS ’19]

proof of time-efficiency of the “maximum” mode

● call-by-need evaluation

● call-by-value evaluation

Muroya (RIMS, Kyoto U.)

Application 1: cost analysis

graph rewriting token passing

“maximum” token-guided
graph rewriting

(rewrites triggered by the
token whenever possible)

“minimum” token-guided
graph rewriting

(rewrites never triggered by
the token)

rewrites triggered by the
token whenever possible

rewrites never triggered by
the token

[ongoing work]

analysis of various modes, and hence the time-space trade-off

● “maximum” mode & “minimum” mode,

● “up-to” mode (e.g. allowing up to 100 rewrites),

● “no-increase” mode (i.e. forbidding growth of the graph), etc.

Muroya (RIMS, Kyoto U.)

Overview: models of program execution

applications:

● cost analysis

● language designs for programming with data-flow networks

● reasoning about observational equivalence

● visualising program execution

graph rewriting token passing

token-guided graph rewriting

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:

● construction of a dataflow network

● evaluation of a dataflow network

● update of a dataflow network

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:

● construction of a dataflow network

● evaluation of a dataflow network

● update of a dataflow network

[— & Cheung & Ghica, LICS ’18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’18]

Idealised TensorFlow

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:

● construction of a dataflow network

● evaluation of a dataflow network

● update of a dataflow network

●

● construction of a parametrised model
(e.g. f(x) = a * x + b)
as a network with parameter nodes

[— & Cheung & Ghica, LICS ’18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’18]

Idealised TensorFlow

166 CHAPTER 5. DISCUSSION

tion with parametrised data-flow networks. Its semantics, a variation of the DGoIM,

accordingly has extra nodes that represent parameters, and an extra rewriting rule

of graph abstraction. These extra features altogether model the behaviour of the

parameter nodes in TensorFlow network, in a functional way. The rest of this

section gives an informal description using a simplified style of the DGoIM graphs,

deliberately ignoring their box structure, and making the token implicit in rewriting

rules.

The starting point is to get rid of one of the three classes of nodes in the Ten-

sorFlow network, namely input nodes. They can be replaced with the nodes

for lambda-abstraction and function application à la DGoIM. The linear regres-

sion model f(x) = a ⇤ x + b can be represented as a lambda-abstraction with two

parameter nodes:

a

⇤

+

�

b

The subtle manipulation required by prediction, which was to replace the input node

with a value node x0, can be simply modelled by graphical beta reduction:

a

⇤

+

�

@

x0

b

99K

a

⇤

x0

+

b

Observation of the resulting network, which involves parameter nodes, can be

achieved solely by token passing. The output data a ⇤ x0 + b can be obtained by

letting the token travel through the network from the bottom, as indicated by a

thick gray arrow:

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:

● construction of a dataflow network

● evaluation of a dataflow network

● update of a dataflow network

●

● prediction with a parametrised model by

1. graph rewriting:
function application to input data

[— & Cheung & Ghica, LICS ’18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’18]

Idealised TensorFlow

166 CHAPTER 5. DISCUSSION

tion with parametrised data-flow networks. Its semantics, a variation of the DGoIM,

accordingly has extra nodes that represent parameters, and an extra rewriting rule

of graph abstraction. These extra features altogether model the behaviour of the

parameter nodes in TensorFlow network, in a functional way. The rest of this

section gives an informal description using a simplified style of the DGoIM graphs,

deliberately ignoring their box structure, and making the token implicit in rewriting

rules.

The starting point is to get rid of one of the three classes of nodes in the Ten-

sorFlow network, namely input nodes. They can be replaced with the nodes

for lambda-abstraction and function application à la DGoIM. The linear regres-

sion model f(x) = a ⇤ x + b can be represented as a lambda-abstraction with two

parameter nodes:

a

⇤

+

�

b

The subtle manipulation required by prediction, which was to replace the input node

with a value node x0, can be simply modelled by graphical beta reduction:

a

⇤

+

�

@

x0

b

99K

a

⇤

x0

+

b

Observation of the resulting network, which involves parameter nodes, can be

achieved solely by token passing. The output data a ⇤ x0 + b can be obtained by

letting the token travel through the network from the bottom, as indicated by a

thick gray arrow:

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:

● construction of a dataflow network

● evaluation of a dataflow network

● update of a dataflow network

●

● prediction with a parametrised model by

2. token passing over
the resulting network

[— & Cheung & Ghica, LICS ’18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’18]

Idealised TensorFlow

5.2. CASE STUDY: DATA-FLOW NETWORKS 167

a

⇤

x0

+

b

? a ⇤ x0 + b

Values in gray (‘?’ and ‘a ⇤ x0 + b’) represents token data, enriched to record values;

recall that the token uses its data to determine routing and control rewriting in the

DGoIM. The token can itself read back a value from the network, if it can record a

value of a node and perform an operation denoted by a node as it travels through

the network.

The main manipulation of parametrised data-flow networks is to update param-

eter nodes. This can be modelled as a combination of graphical beta reduction and

graph abstraction, a new graph-rewriting rule. Graph abstraction “abstracts away”

all the parameters of a network, and turns the parametrised network into an ordi-

nary network that represents a function on vectors. As a side product, it creates

a value node that represents a vector whose elements are the current values of the

parameters. The rewriting rule is formalised using two additional nodes: the node

‘A’ dedicated to trigger the rewrite, and a node ‘P’ that denotes projections of a

vector. When applied to the linear regression model, the rule looks like below:

a

⇤

+

�

A

b

99K
⇤

+

�

�

P

(a, b)

Graph abstraction is not a local rewriting rule, because it extracts all parameters

in a network, which are not necessarily neighbours of the triggering node ‘A’. Pa-

rameters are extracted altogether as a function argument, so that parameter update

can be completed with graphical beta reduction. This deviates from the in-place

update of TensorFlow. Once a new parameter vector (a0, b0) is computed, pre-

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:

● construction of a dataflow network

● evaluation of a dataflow network

● update of a dataflow network

●

● functional update of parameters by

1. graph rewriting:
novel “graph abstraction”
to turn a parametrised model
into an ordinary function

[— & Cheung & Ghica, LICS ’18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’18]

Idealised TensorFlow

5.2. CASE STUDY: DATA-FLOW NETWORKS 167

a

⇤

x0

+

b

? a ⇤ x0 + b

Values in gray (‘?’ and ‘a ⇤ x0 + b’) represents token data, enriched to record values;

recall that the token uses its data to determine routing and control rewriting in the

DGoIM. The token can itself read back a value from the network, if it can record a

value of a node and perform an operation denoted by a node as it travels through

the network.

The main manipulation of parametrised data-flow networks is to update param-

eter nodes. This can be modelled as a combination of graphical beta reduction and

graph abstraction, a new graph-rewriting rule. Graph abstraction “abstracts away”

all the parameters of a network, and turns the parametrised network into an ordi-

nary network that represents a function on vectors. As a side product, it creates

a value node that represents a vector whose elements are the current values of the

parameters. The rewriting rule is formalised using two additional nodes: the node

‘A’ dedicated to trigger the rewrite, and a node ‘P’ that denotes projections of a

vector. When applied to the linear regression model, the rule looks like below:

a

⇤

+

�

A

b

99K
⇤

+

�

�

P

(a, b)

Graph abstraction is not a local rewriting rule, because it extracts all parameters

in a network, which are not necessarily neighbours of the triggering node ‘A’. Pa-

rameters are extracted altogether as a function argument, so that parameter update

can be completed with graphical beta reduction. This deviates from the in-place

update of TensorFlow. Once a new parameter vector (a0, b0) is computed, pre-

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:

● construction of a dataflow network

● evaluation of a dataflow network

● update of a dataflow network

●

● functional update of parameters by

2. graph rewriting:
function application to
new parameter values

[— & Cheung & Ghica, LICS ’18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’18]

Idealised TensorFlow 168 CHAPTER 5. DISCUSSION

diction with the updated model f(x) = a0 ⇤x+ b0 using input data x0 can be started

with two steps of graphical beta reduction:

⇤

+

�

�

P

(a0, b0)

@ x0

@

99K ⇤

+

�

P

(a0, b0)

@

x0

99K

⇤

P

(a0, b0)

x0

+

This will be followed by projections of the new parameter vector into each element.

The calculus ITF is proposed as an extension of the simply-typed lambda-

calculus, in which the computation described above can be expressed with two extra

language features: parameters and graph abstraction. The TensorFlow code in

Sec. 5.2.1 corresponds to the following program in ITF, using the OCaml-like con-

vention:

1 ; ; c on s t ruc t the model as a func t i on wi th two parameters
2 let a = {1} in
3 let b = {0} in
4 let y = fun x -> a ⇤ x + b in
5 ; ; turn the model i n t o a func t i on and a parameter v ec t o r
6 let (model,p) = abs y in
7 ; ; update the parameter v ec t o r wi th ‘ t ra in ’ de f i ned e l s ewhere
8 let q = t r a i n model p in
9 ; ; p r e d i c t output wi th the updated model
10 let y 0 = model q 10 in
11 y 0

The parameters, indicated by {�}, enable users to construct a model without

explicitly declaring which parameters are involved in each model. This convenient

style of construction is taken from TensorFlow. What used to be in-place up-

date of parameters in TensorFlow is now decomposed through graph abstraction,

which can be accessed by programmers using the operation ‘abs’ (line 6).

As a final remark, the idea of local reasoning, which is extensively investigated

in Chap. 4, was initially tried out with ITF and its DGoIM-style model. Although

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:

● construction of a dataflow network

● evaluation of a dataflow network

● update of a dataflow network

[— & Cheung & Ghica, LICS ’18] [Cheung & Darvariu & Ghica & — & Rowe, FLOPS ’18]

Idealised TensorFlow

● extension of the simply-typed lambda-calculus with:
parameters, “graph abstraction”, “opaque” vector types

● type soundness & some observational equivalences

● visualiser of token-guided graph rewriting
https://cwtsteven.github.io/GoI-TF-Visualiser/CBV-with-CBN-embedding/index.html

● OCaml PPX implementation https://github.com/DecML/decml-ppx

https://cwtsteven.github.io/GoI-TF-Visualiser/CBV-with-CBN-embedding/index.html
https://github.com/DecML/decml-ppx

Muroya (RIMS, Kyoto U.)

Application 2: programming with data-flow networks

Goal programming language designs for:

● construction of a dataflow network

● evaluation of a dataflow network

● update of a dataflow network
[Cheung & Ghica & —, unpublished manuscript (arXiv:1910.09579)]

Transparent Synchronous Dataflow

● extension of the simply-typed lambda-calculus with:
spreadsheet-like “cells” (allowing circular dependency),
“step” command (updating cells step-by-step & concurrently)

● type soundness & some efficiency guarantee

● visualiser of token-guided graph rewriting https://cwtsteven.github.io/TSD-visual/

● OCaml PPX implementation https://github.com/cwtsteven/TSD
(explained in https://danghica.blogspot.com/2019/11/making-ocaml-more-like-excel.html)

for presentation,

see (esp. from 34:11):

https://www.youtube.com/watch?

v=sgmpVedCsNM&t=102s

https://cwtsteven.github.io/TSD-visual/
https://github.com/cwtsteven/TSD
https://danghica.blogspot.com/2019/11/making-ocaml-more-like-excel.html
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s
https://www.youtube.com/watch?v=sgmpVedCsNM&t=102s

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

applications:

● cost analysis

● language designs for programming with data-flow networks

● reasoning about observational equivalence

● visualising program execution

graph rewriting token passing

token-guided graph rewriting

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two program fragments behave the same?

or, is it safe to replace a program fragment with another?

if YES:

● justification of refactoring, compiler optimisation

● verification of programs

let x = 100 in
let y = 50 in
y + y

let y = 50 in
y + y 50 + 50

let x = 100 in
let y = 50 in
y + y

let x = 100 in
50 + 50 50 + 50

? ?

??

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two program fragments behave the same?

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two program fragments behave the same?

What program fragments behave the same?

the beta-law
(λx . M) N ≃ M[x := N]

a parametricity law
𝚕𝚎𝚝 a = 𝚛𝚎𝚏 1 𝚒𝚗 λx . (a := 2; !a) ≃ λx.2

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two program fragments behave the same?

When do program fragments behave the same?

Does the beta-law always hold?

the beta-law
(λx . M) N ≃ M[x := N]

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two program fragments behave the same?

When do program fragments behave the same?

Does the beta-law always hold?

No, it is violated by program contexts that can measure
memory usage (e.g. with OCaml’s Gc module)…

the beta-law
(λx . M) N ≃ M[x := N]

(λx.0) 100 ≄ 0

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two program fragments behave the same?

What fragments, in which contexts?

… in the presence of (arbitrary) language features

 pure vs. effectful (e.g. vs.)

 encoded vs. native (e.g. vs.)

 extrinsics (e.g.)

 foreign language calls

50 + 50 ref 1

State ref

Gc.stat

Muroya (RIMS, Kyoto U.)

Application 3: reasoning about observational equivalence

Question(s)

Do two sub-graphs behave the same?

What sub-graphs, in which contexts?

… in token-guided graph rewriting for (arbitrary) language features

proof of (robustness of) observational equivalence

by exploiting locality of graph representation/syntax

[Ghica & — & Waugh Ambridge, unpublished manuscript (arXiv:1907.01257)]

Local reasoning for robust observational equivalence

Muroya (RIMS, Kyoto U. & U. B’ham.)

Application 3: reasoning about observational equivalence

Locality of graph syntax

“Does behave the same as ?”

with linear syntax:

𝚗𝚎𝚠 a ⊸ 1 𝚒𝚗 λx . (a := 2; !a) λx . 2

𝚗𝚎𝚠 a ⊸ 1 𝚒𝚗 λx . (a := 2; !a)λx . (a := 2; !a)⋯ ⋯ ⋯
λx . 2⋯ ⋯ λx . 2

⋯
⋯

Muroya (RIMS, Kyoto U. & U. B’ham.)

Application 3: reasoning about observational equivalence

Locality of graph syntax

“Does behave the same as ?”

with linear syntax: comparison between sub-terms

𝚗𝚎𝚠 a ⊸ 1 𝚒𝚗 λx . (a := 2; !a) λx . 2

𝚗𝚎𝚠 a ⊸ 1 𝚒𝚗 λx . (a := 2; !a)λx . (a := 2; !a)⋯ ⋯ ⋯
λx . 2⋯ ⋯ λx . 2

⋯
⋯

Muroya (RIMS, Kyoto U. & U. B’ham.)

Application 3: reasoning about observational equivalence

Locality of graph syntax

“Does behave the same as ?”

with linear syntax: comparison between sub-terms

with graph syntax: comparison between sub-graphs

𝚗𝚎𝚠 a ⊸ 1 𝚒𝚗 λx . (a := 2; !a) λx . 2

𝚗𝚎𝚠 a ⊸ 1 𝚒𝚗 λx . (a := 2; !a)λx . (a := 2; !a)⋯ ⋯ ⋯
λx . 2⋯ ⋯ λx . 2

⋯
⋯

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

applications:

● cost analysis

● language designs for programming with data-flow networks

● reasoning about observational equivalence

● visualising program execution

graph rewriting token passing

token-guided graph rewriting

Muroya (RIMS, Kyoto U.)

Application 4: visualising program execution
● OCaml Visual Debugger

https://fyp.jackhughesweb.com/ by Jack Hughes

● comparison between programs

● mutable state: encoded vs native
https://www.youtube.com/watch?v=ysZdqocIu7E

● sorting algorithms: insertion vs bubble
https://www.youtube.com/watch?v=bZMSwo0zLio

● sorting algorithms: merge vs insertion
https://www.youtube.com/watch?v=U1NI-mWeNe0&t=213s

https://fyp.jackhughesweb.com/
https://www.youtube.com/watch?v=ysZdqocIu7E
https://www.youtube.com/watch?v=bZMSwo0zLio
https://www.youtube.com/watch?v=U1NI-mWeNe0&t=213s

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

applications:

● cost analysis

● language designs for programming with data-flow networks

● reasoning about observational equivalence

● visualising program execution

graph rewriting token passing

token-guided graph rewriting

Muroya (RIMS, Kyoto U.)

Overview: graphical models of program execution

biggest, persistent, challenge:

● mathematical formalisation

● graph theory?

● category theory? (DPO rewriting, string diagrams, …)

● rewriting theory? (term-graph rewriting, …)

graph rewriting token passing

token-guided graph rewriting

