
Understanding How You Should (Not) Mix Programming Features

(Project Title: A Proof Assistant for Contextual Equivalences, Using Hierarchical Graph Rewriting)

Koko Muroya (RIMS, Kyoto University)

Programming = the act of combining features

● arithmetic

● conditional branching

● loop, recursion

● mutable state, 

reference

● system call

● random number generation

● error handling, callback

● …

Contextual equivalence:

	 expected behaviour of each feature, in an equational form,

	 meaning “two sides act the same in any programs”

Actual behaviour of features depends on how they are mixed:

● Safe combination yields expected behaviour

● Dangerous combination may yield undesired behaviour

● Example: arithmetic & system call (getting current time) 

 

Possible “bad” programs: 
 
 
 

● using system call

● distinguishing two sides of

Undesired behaviour (i.e. violation of contextual equivalence)

→ No safety of compiler optimisation & refactoring

Step 1: Modelling program execution 
　　 as hierarchical graph rewriting

 

Step 2: Checking robustness of 　　　　and
● Example: robustness of 　　　　and 

 relative to conditional branching 
 
 
 
 
 
 
 
　　

Step 3: Proving the main theorem
	 “If 　　　　and 　　　　are robust,

	 then 　　　　　　　　　holds”

Prototypical method

	 (a part of PhD thesis; 
	 with ideas presented at workshops e.g. LOLA 2019)

● Supporting deterministic features  
　✔ arithmetic, conditional branching, recursion, 
　　 mutable state, 
　　 (error handling, callback) 
　× random number generation 
→ Extension to non-deterministic features

● Extension of definition of contextual equivalence

● Modification of the main theorem (Step 3)

● Working fine, but mathematically a little rough 
→ Consulting related theories

● Rewriting theory, category theory, 
theory of state transition systems, graph theory, …

● Involving (intuitive) case analysis for robustness check 
　Example: identifying & analysing all patterns of 
　　　　 interferences between graph rewriting rules 
　　　　 that implement features 
→ (Semi-)automation of case analysis, 
　 in particular, case enumeration

Programming features & behaviour Potential danger

Proof idea for contextual equivalence Progress so far & objectives

Goal: Mathematical method of understanding (un)safe combinations

≃ 1 + 2 3

 if true then P else Q P≃
 int i;
 for (i=0; i<5; i++) {
 f(i);
 }

 f(0);
 f(1);
 f(2);
 f(3);
 f(4);

≃

 int i = 0;
 i = 1;
 i;

≃ 1

 int i = 0;
 f(5); ≃ f(5); ≄ 1 + 2 3

 t0 = gettime();
 n = 1 + 2;
 t1 = gettime();
 print(t1 - t0);
 return n;

 t0 = gettime();
 n = 3;
 t1 = gettime();
 print(t1 - t0);
 return n;

Proof method for 
contextual equivalence

Guarantee of safe combination Detection & analysis of 
dangerous combination

Understanding of 
(un)safe combinations

proof succeeds proof fails

Challenging but crucial quality: 
Generality of method

● Accommodating various

programming features in a
uniform way

● Common fragility: 
The more complicated
features are, 
the more involved 
a proof method gets

 (fun x -> x + 1) 2 2 + 1 3

λ

@

1

2

+ 1

+

2

3

https://tnttodda.github.io/Spartan-Visualiser/

● Execution steps 
modelled as 
graph rewriting steps

● Program structure 
partially modelled as 
hierarchical structure

if true then 1 + 2 else 0 1 + 2 3

2

+

1

3

tt

if

2

0+

1

if true then 3 else 0 3

3

tt

if

03

 M N

 1 + 2 3

● Arithmetic and
conditional branching 
modelled as 
non-interfering graph
rewriting rules

 M N

≃ M N

https://tnttodda.github.io/Spartan-Visualiser/
https://tnttodda.github.io/Spartan-Visualiser/

