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Observational equivalence on program fragments
“Do two program fragments behave the same?” 

“Is it safe to replace a program fragment with another?” 

If YES (“Two program fragments are observationally equal.”): 

• justification of compiler optimisation 

• program verification
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Observational equivalence on program fragments
“Do two program fragments behave the same?” 

“What program fragments behave the same?”

the beta-law 
(λx . M) N ≃ M[x := N ]

a parametricity law 
𝚕𝚎𝚝 a = 𝚛𝚎𝚏 1 𝚒𝚗 λx . (a := 2; !a) ≃ λx.2
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Robustness of observational equivalence
“Do two program fragments behave the same?” 

“When do program fragments behave the same?” 

Does the beta-law always hold? 

No, it’s violated if program contexts use OCaml’s Gc module: 

How robust is the beta-law then?

the beta-law 
(λx . M) N ≃ M[x := N ]

(λx.0) 100 ≄ 0
for memory 

management
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Robustness of observational equivalence
“Do two program fragments behave the same?” 

“What fragments, in which contexts, behave the same?” 

… in the presence of (arbitrary) language features: 

    pure vs. effectful (e.g.            vs.           ) 

    encoded vs. native (e.g.            vs.           ) 

    extrinsics (e.g.           ) 

    foreign language calls

50 + 50 ref 1

State ref

Gc.stat
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Our (big) goal: 

analysing robustness/fragility of observational equivalence, 

using a general framework
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Robustness of observational equivalence
“Do two program fragments behave the same?” 

“What fragments, in which contexts, behave the same?” 

… in the presence of (arbitrary) language features 

Our result: 

analysing robustness/fragility of observational equivalence, 

using a graphical framework 

• hypernet semantics: a graphical abstract machine 

• local & step-wise reasoning to prove observational 

equivalence, with the concept of robustness
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Overview
1. Motivation: robustness of observational equivalence 

2. Hypernet semantics 

3. Locality & step-wise reasoning 

4. Discussion: complication of simulation notion 
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Hypernet semantics
● program execution by a graphical abstract machine 

● programs as 

certain hierarchical hypergraphs (“hypernets”) 

● execution as 

step-by-step strategical update of hypernets
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (1 + 2) * 3

1 2 3

+

*
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 (x + y) * z

 (i + j) * k

+

*

i j k
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Idea: abstracting away variable names, and more…
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Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

  x + x

+

sharing
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 if x > 0 
 then 3 
 else 4 + 5

0 5

>

if

+

43

hierarchical hyperedge 
(hyperedge labelled with 

hypergraph) 

…representing deferred 
computation
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

(λx. x + x) 3

3

λ

@

+
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 new a = 1 in 
 a := 2; !a

!:=

;

2

1
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more…

program hypernet (hierarchical hypergraph)

 new a = 1 in 
 a := 2; !a

!:=

;

2

1

atom 
occurences
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Programs, graphically as hypernets

Idea: abstracting away variable names, and more… 

• making blocks of deferred computation explicit 

• accommodating atoms (reference names/locations)



Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step



Muroya (RIMS, Kyoto U.)

Program execution, graphically
Idea: updating hypernets step-by-step
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Program execution, graphically
Idea: updating hypernets step-by-step
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Program execution, graphically
Idea: updating hypernets step-by-step 

　　  … and strategically, using focus with three modes: 

• depth-first redex search 

• backtracking 

• triggering update of hypernet

?

✓

↯
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Hypernet semantics
● program execution by a graphical abstract machine 

● programs as 

certain hierarchical hypergraphs (“hypernets”) 

● execution as 

step-by-step strategical update of hypernets 

● state = hypernet with focus 

● transition = move of focus, or update of hypernet

? ✓ ↯
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4. Discussion: complication of simulation notion 
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Proof of observational equivalence, using locality

“Do two program fragments behave the same?” 

“Do two sub-graphs behave the same in hypernet semantics?” 

★  Sub-graphs can represent parts of a program that are not 

 necessarily well-formed, 

 e.g. parts relevant to a certain reference: 
  … new a = 1 in … (λx. a := 2; !a) … (λx. a := 2; !a) …

Idea of locality: 

analysing behaviour of program fragments, 

by tracing sub-graphs during execution
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Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.” 

For any context C, 

if 

then

P

✓

C

G
⋯ G

⋯

G
⋯

?

C

H
⋯ H

⋯

H
⋯

?

Q

✓

⋯

⋯



Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.” 

Proof idea (simplified): 

1. take contextual closure R of (G,H) 

2. prove that the contextual closure R is a simulation



Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.” 

Proof idea (simplified): 

1. take contextual closure R of (G,H) 

     

2. prove that the contextual closure R is a simulation

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

for any context C with focus



Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.” 

Proof idea (simplified): 

1. take contextual closure R of (G,H) 

     

2. prove that the contextual closure R is a simulation

R is closed under 
contexts, by definition

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

for any context C with focus
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Proof of observational equivalence, using locality

Proof idea (simplified): 

2. prove that the contextual closure R is a simulation

 R 

C

G
⋯ G

⋯

G
⋯
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C

H
⋯ H

⋯

H
⋯
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P
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Proof of observational equivalence, using locality

Proof idea (simplified): 

2. prove that the contextual closure R is a simulation

P
f’

 R 

C

G
⋯ G

⋯

G
⋯

f

C

H
⋯ H

⋯

H
⋯

f

Q
f’
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Proof of observational equivalence, using locality

Proof idea (simplified): 

2. prove that the contextual closure R is a simulation

C

G
⋯ G

⋯

G
⋯

f

C’

G
⋯

G
⋯ G

⋯f’

G
⋯
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H
⋯

H
⋯ H

⋯f’

H
⋯
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H
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Proof of observational equivalence, using locality

Proof idea (simplified): 

2. prove that the contextual closure R is a simulation

C

G
⋯ G

⋯

G
⋯

f

C’

G
⋯

G
⋯ G

⋯f’

G
⋯

C’

H
⋯

H
⋯ H

⋯f’

H
⋯

 R  R 

C

H
⋯ H

⋯

H
⋯

f

Idea of locality: 

tracing sub-graphs during transition, 

by analysing what happens around the focus during transition
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Proof of observational equivalence, using locality

Proof idea (simplified): 

2. prove that the contextual closure R is a simulation 

　… by case analysis of transition

C

G
⋯ G

⋯

G
⋯

f

C’

G
⋯

G
⋯ G

⋯f’

G
⋯

C’

H
⋯

H
⋯ H

⋯f’

H
⋯

 R  R 

C

H
⋯ H

⋯

H
⋯

f

Idea of locality: 

tracing sub-graphs during transition, 

by analysing what happens around the focus during transition

move, or trigger update
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Proof of observational equivalence, using locality

Proof idea (simplified): 
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Proof of observational equivalence, using locality

Proof idea (simplified): 

2. prove that the contextual closure R is a simulation 

　　Case (2) move of focus      or      , entering G

 R 

C

G
⋯ G

⋯

G
⋯f

C

H
⋯ H

⋯

H
⋯f

? ✓

C

G
⋯ G

⋯

G
⋯

f’

sound condition of (G,H) identified: 
“safety”
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Proof of observational equivalence, using locality

Proof idea (simplified): 

2. prove that the contextual closure R is a simulation 

　　Case (3) update of hypernet

 R 

C

G
⋯ G

⋯

G
⋯

↯

C

H
⋯ H

⋯

H
⋯

↯

P
?



Muroya (RIMS, Kyoto U.)

Proof of observational equivalence, using locality

Proof idea (simplified): 
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Proof of observational equivalence, using locality

Proof idea (simplified): 

2. prove that the contextual closure R is a simulation 

　　Case (3) update of hypernet

 R 

C

G
⋯ G

⋯

G
⋯

C

H
⋯ H

⋯

H
⋯

↯

↯

P
?

sound condition of (G,H) identified: 
“robustness” 

relative to all possible rewrites
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Proof of observational equivalence, using locality

Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.” 

Proof idea (simplified): 

1. take contextual closure R of (G,H) 

2. prove that the contextual closure R is a simulation 

    by case analysis 
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Claim: “Behaviour of a sub-graph G can be matched by 

behaviour of a sub-graph H.” 

Proof idea (simplified): 

1. take contextual closure R of (G,H) 

2. prove that the contextual closure R is a simulation 

    by case analysis 

  Characterisation Theorem 
  Robust and safe template induce observational equivalences. 

(for deterministic & “reasonable” languages)
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Complication of simulation notion
Proof idea (simplified): 

1. take contextual closure R of (G,H) 

2. prove that the contextual closure R is a simulation 

    by case analysis

  Characterisation Theorem 
  Robust and safe template induce observational equivalences. 

(for deterministic & “reasonable” languages)
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  Characterisation Theorem 
  Robust and safe template induce observational equivalences. 

(for deterministic & “reasonable” languages)

Complication of simulation notion
Proof idea (simplified): 

1. take contextual closure R of (G,H) 

2. prove that the contextual closure R is a simulation 

    by case analysis

Observation: 

ordinary simulations do not always suffice…



Muroya (RIMS, Kyoto U.)

Complication of simulation notion
2. prove that the contextual closure R is a simulation 

• The standard simulation suffices for GC:



Muroya (RIMS, Kyoto U.)

Complication of simulation notion
2. prove that the contextual closure R is a simulation 

• The standard simulation suffices for GC:
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Complication of simulation notion
2. prove that the contextual closure R is a simulation 

• A weak simulation is desired for some arithmetic laws:
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Complication of simulation notion
2. prove that the contextual closure R is a simulation 
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Complication of simulation notion
2. prove that the contextual closure R is a simulation 

• A weak simulation is desired:
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Complication of simulation notion
2. prove that the contextual closure R is a simulation 

• A weak simulation is desired: 

• Soundness fails, in the presence of nondeterminism.
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Complication of simulation notion
2. prove that the contextual closure R is a simulation 

• A weak simulation up to observational equivalence is 

desired, to identify different ways of sharing: 

 

 

 

working on graphs modulo structural equivalence 

using up-to technique with structural equivalence

1 1 1 1
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Complication of simulation notion
2. prove that the contextual closure R is a simulation 

• A weak simulation up to observational equivalence is 

desired:
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Complication of simulation notion
2. prove that the contextual closure R is a simulation 

• A weak simulation up to observational equivalence is 

desired: 

 

 

 

 

 

• Soundness fails, without some quantitative restrictions.
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Complication of simulation notion
2. prove that the contextual closure R is a simulation 

• A weak simulation up to observational equivalence is 

desired: 

 

 

 

 

 

• Soundness fails, without some quantitative restrictions.

Pf
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Q’f’

 R ≃

 R ≃

1+n ≥ m
non-

expanding
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4. Discussion: complication of simulation notion 



Muroya (RIMS, Kyoto U.)

Conclusion
● a (general) framework for analysing and proving 

robustness of observational equivalence 

● current key limitation: determinism

• hypernet semantics: a graphical abstract machine 

• local & step-wise reasoning to prove observational 

equivalence, with the concept of robustness
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Future directions
● complication of simulation notion 

 

 

 

● What causes complication of simulation notion? 

● How can this complication be justified? 

● Are there relevant simulation notions? 

● How can we deal with nondeterminism?
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Future directions
● Sand’s improvement theory 

(incorporating cost reduction in observational equivalence) 

● The number of steps can already be dealt with, 

by the quantitative restrictions on the weak up-to 

simulation.


