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Call-by-value beta-law

golden standard of (functional) program equivalence and 
compiler optimisation

“A function can be applied to a value before evaluation
 without changing the outcome”
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Call-by-value beta-law

golden standard of (functional) program equivalence and 
compiler optimisation
… respected by most intrinsic/extrinsic language extensions
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Call-by-value beta-law

golden standard of (functional) program equivalence and 
compiler optimisation
… respected by most intrinsic/extrinsic language extensions
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recursion
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Call-by-value beta-law

golden standard of (functional) program equivalence and 
compiler optimisation
… respected by most intrinsic/extrinsic language extensions
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Call-by-value beta-law

golden standard of (functional) program equivalence and 
compiler optimisation
… respected by most intrinsic/extrinsic language extensions
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algebraic effects
& handlers
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Call-by-value beta-law

golden standard of (functional) program equivalence and 
compiler optimisation
… respected by most intrinsic/extrinsic language extensions
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control operators
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Call-by-value beta-law

golden standard of (functional) program equivalence and 
compiler optimisation
… respected by most intrinsic/extrinsic language extensions

justification by (operational) semantics, but how?
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Call-by-value beta-law

golden standard of (functional) program equivalence and 
compiler optimisation
… respected by most intrinsic/extrinsic language extensions

justification by (operational) semantics, but how?
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Question

Given an extension of untyped λ-calculus,

what semantic property of the extension

validates the call-by-value beta-law?
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Question

Given an extension of untyped λ-calculus,

what operational-semantic property of the extension

validates the call-by-value beta-law?
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Answer?

A formal answer is yet to be stated…

But a graph-rewriting perspective provides:

● a useful & robust method

● key observations
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Methodology

Given an operational semantics of an extended λ-calculus:

define the contextual equivalence by:

prove the beta-law:

and observe some sufficient condition.
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Which operational semantics?

● easy to extend (esp. by nondeterminism, observables)

● easy to prove a contextual equivalence
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Which operational semantics?

● easy to extend (esp. by nondeterminism, observables)

● easy to prove a contextual equivalence

small-step reduction

… obscures a sub-term of interest :-(
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redex searching
(i.e. decomposition into evaluation context & redex)

obscures `t`
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Which operational semantics?

● easy to extend (esp. by nondeterminism, observables)

● easy to prove a contextual equivalence

small-step “token-guided” graph-rewriting
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Which operational semantics?

● easy to extend (esp. by nondeterminism, observables)

● easy to prove a contextual equivalence

small-step “token-guided” graph-rewriting
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Which operational semantics?

● easy to extend (esp. by nondeterminism, observables)

● easy to prove a contextual equivalence

small-step “token-guided” graph-rewriting
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distinguished 
edge/node as 

“token”

closed 
term

graph representation
with unique open edge
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● easy to extend (esp. by nondeterminism, observables)

● easy to prove a contextual equivalence

small-step “token-guided” graph-rewriting

● redex searching (moving the token)

● rewriting (replacing a sub-graph)

Which operational semantics?
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● easy to extend (esp. by nondeterminism, observables)

● easy to prove a contextual equivalence

small-step “token-guided” graph-rewriting

● redex searching (moving the token)

● rewriting (replacing a sub-graph)

Which operational semantics?
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Which operational semantics?

● easy to extend (esp. by nondeterminism, observables)

● easy to prove a contextual equivalence

small-step “token-guided” graph-rewriting

… keeps a sub-term of interest traceable :-)
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Which operational semantics?

● easy to extend (esp. by nondeterminism, observables)

● easy to prove a contextual equivalence

small-step “token-guided” graph-rewriting

● visible interaction between the token     and a sub-graph

○ redex searching
○ rewriting

step-wise reasoning to prove a contextual equivalence
27

vs
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Methodology

Given operational semantics of an extended λ-calculus:

define the contextual equivalence by:

prove the beta-law:

and observe some sufficient condition.
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Case study: linear λ-calculus + “linear” recursion

Given operational semantics:

define the contextual equivalence by:

prove the beta-law:

and observe some sufficient condition.
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Case study: linear λ-calculus + “linear” recursion

Given operational semantics:
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Case study: linear λ-calculus + “linear” recursion

Given operational semantics:

define the contextual equivalence by:

prove the beta-law:

and observe some sufficient condition.
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Case study: linear λ-calculus + “linear” recursion

… prove the beta-law:
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Case study: linear λ-calculus + “linear” recursion

… prove the beta-law by step-wise reasoning:

33

no 
garbage 
created

same 
“graph-context”
with matching 

interface



Muroya (U. B’ham. & RIMS, Kyoto U.)

Case study: linear λ-calculus + “linear” recursion

… prove the beta-law by step-wise reasoning:

1. redex searching “within” 

graph-context

2. rewriting “in” graph-context

3. visiting the hole
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1. redex searching “within” graph-context (1/6)

Case study: linear λ-calculus + “linear” recursion

35

searching 
stopped

at a value
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1. redex searching “within” graph-context (2/6)

Case study: linear λ-calculus + “linear” recursion
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searching 
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1. redex searching “within” graph-context (3/6)

Case study: linear λ-calculus + “linear” recursion

37

a redex found
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1. redex searching “within” graph-context (4/6)

Case study: linear λ-calculus + “linear” recursion
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1. redex searching “within” graph-context (5/6)

Case study: linear λ-calculus + “linear” recursion
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1. redex searching “within” graph-context (6/6)

Case study: linear λ-calculus + “linear” recursion

40

a redex found
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1. redex searching within graph-context (6 cases)

observation: only one node is inspected at each step

Case study: linear λ-calculus + “linear” recursion
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2. rewriting “in” graph-context (1/3)

Case study: linear λ-calculus + “linear” recursion
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2. rewriting “in” graph-context (2/3)

Case study: linear λ-calculus + “linear” recursion
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call-by-value 
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2. rewriting “in” graph-context

observation: the hole is not involved

Case study: linear λ-calculus + “linear” recursion
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2. rewriting “in” graph-context (3/3)

Case study: linear λ-calculus + “linear” recursion
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2. rewriting “in” graph-context (3/3)

Case study: linear λ-calculus + “linear” recursion

46

reduction for 
recursion

`G` contains:

● all reachable nodes 

from `μ`

● hence,

○ none of the hole

○ or, all of the hole
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2. rewriting “in” graph-context (3/3)

Case study: linear λ-calculus + “linear” recursion

47

reduction for 
recursion

the hole is

● not involved

● or, duplicated as a 

part of `G`
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2. rewriting “in” graph-context

observation: the hole is not involved, or is duplicated as a 

whole

observation 2: each rewriting step is “history-free”

Case study: linear λ-calculus + “linear” recursion
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3. visiting the hole (1/1)

Case study: linear λ-calculus + “linear” recursion
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3. visiting the hole (1/1)

Case study: linear λ-calculus + “linear” recursion
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3. visiting the hole (1/1)

Case study: linear λ-calculus + “linear” recursion
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3. visiting the hole (1/1)

Case study: linear λ-calculus + “linear” recursion
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3. visiting the hole (1/1)

Case study: linear λ-calculus + “linear” recursion
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3. visiting the hole (1/1)

Case study: linear λ-calculus + “linear” recursion
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3. visiting the hole (1/1)

Case study: linear λ-calculus + “linear” recursion
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3. visiting the hole (1/1)

Case study: linear λ-calculus + “linear” recursion
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6 0
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3. visiting the hole (1 case)

observation: the hole is reduced

Case study: linear λ-calculus + “linear” recursion

57



Muroya (U. B’ham. & RIMS, Kyoto U.)

Case study: linear λ-calculus + “linear” recursion

Given operational semantics:

define the contextual equivalence by:

prove the beta-law by step-wise reasoning:

and observe some sufficient condition.

58

closed 
term

same basic 
constants



Muroya (U. B’ham. & RIMS, Kyoto U.)

Case study: linear λ-calculus + “linear” recursion

… prove the beta-law by step-wise reasoning,

and observe that:

1. redex searching only inspects one node at each step
2. rewriting preserves, duplicates or simply reduces a 

beta-redex.
3. rewriting is “history-free”.
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Case studies so far

… prove the beta-law by step-wise reasoning,

and observe that:

1. redex searching only inspects one node at each step
2. rewriting preserves, duplicates or simply reduces a 

beta-redex.
3. rewriting is “history-free”.
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✓ untyped pure λ-calculus

✓ basic operations, recursion, if-statement

✓ control operators: call/cc, shift/reset

● algebraic effects & handlers
method needs 
to be slightly 

adjusted
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Question

Given an extension of untyped λ-calculus,

what operational-semantic property of the extension

validates the call-by-value beta-law?
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Answer?

A formal answer is yet to be stated…

But a graph-rewriting perspective provides:

● a useful & robust method

● key observations


