A Graph-Rewriting Perspective of the Beta-Law Work in progress

Dan R. Ghica Todd Waugh Ambridge (University of Birmingham)

<u>Koko Muroya</u> (University of Birmingham & RIMS, Kyoto University)

LOLA 2018 (Oxford), 7 July 2018

$$
(\lambda x.t) w = t [w/x]
$$

terms $t := x | \lambda x.t |tt|...$
values $w := x | \lambda x.t|...$

golden standard of (functional) program equivalence and compiler optimisation

"A function can be applied to a value before evaluation without changing the outcome"

$$
(\lambda x.t) w = t [w/x]
$$

terms $t := x | \lambda x.t |tt|...$
values $w := x | \lambda x.t|...$

golden standard of (functional) program equivalence and compiler optimisation

$$
(\lambda x.t) w = t [w/x]
$$

terms $t := x | \lambda x. t | t t | n | succ(n) | ...$

values $v := x | \lambda x.t |n| ...$ basic operations

(nat, int, float, ...)

golden standard of (functional) program equivalence and compiler optimisation

$$
(\lambda x.t) w = t[w/x]
$$

Terrus $t := x | \lambda x.t | tt(t,t)| fst(t)|snd(t)|...$

values $v == x | \lambda x.t | \langle v, v \rangle|$ algebraic

data structures

golden standard of (functional) program equivalence and compiler optimisation

$$
(\lambda x.t) w = t [w/x]
$$

terms t := x | xx. t | tt | ux. t values $v := x | \lambda x.t | ...$

recursion

golden standard of (functional) program equivalence and compiler optimisation

$$
(\lambda x.t) w = t [w/x]
$$

terms t:= x | xx. t | tt | if t then t else t

values $v := x | \lambda x.t | ...$

conditional statement

golden standard of (functional) program equivalence and compiler optimisation

$$
(\lambda x.t) w = t [w/x]
$$

Terms $t := x | \lambda x. t | t t | op(t, ..., t) | ...$

 $values \quad v ::= x | \land x.t | ...$

algebraic effects & handlers

golden standard of (functional) program equivalence and compiler optimisation

$$
(\lambda x.t) w = t [w/x]
$$

terms t := x | xx. t | tt | callect) | ... values $v := x | \lambda x.t | ...$ control operators

golden standard of (functional) program equivalence and compiler optimisation

$$
(\lambda x.t) w = t [w/x]
$$

tevms t := x | \lambda x.t |tt|...
values w == x | \lambda x.t | ...

golden standard of (functional) program equivalence and compiler optimisation

… respected by most intrinsic/extrinsic language extensions

justification by (operational) semantics, but how?

$$
(\lambda x.t) w = t [w/x]
$$

ferms t := x | \lambda x.t |tt|...
values w == x | \lambda x.t | ...

golden standard of (functional) program equivalence and compiler optimisation

... respected by most intrinsic/extrinsic language extensions

justification by (operational) semantics, but how?

 $(\lambda x.t) w = t [w/x]$

Terms t := x | xx. t | tt | ... values $v := x | \lambda x.t | ...$

Question

Given an extension of untyped λ-calculus,

what semantic property of the extension

validates the call-by-value beta-law?

 $(\lambda x.t) w = t [w/x]$

Terms t := x | xx. t | tt | ... values $v := x | \lambda x.t | ...$

Question

Given an extension of untyped λ-calculus,

what *operational-*semantic property of the extension

validates the call-by-value beta-law?

Question

Given an extension of untyped λ-calculus,

what *operational-*semantic property of the extension

validates the call-by-value beta-law?

Answer?

Question

Given an extension of untyped λ-calculus,

what *operational-*semantic property of the extension

validates the call-by-value beta-law?

Answer?

A formal answer is yet to be stated…

But a graph-rewriting perspective provides:

- a useful & robust method
- key observations

Methodology

$$
t ::= x | \lambda x.t | ttl | k | \overline{QQ} \overline{Q}
$$

Given an operational semantics of an extended λ-calculus:

closed	$t \Downarrow k$	basic
term	$t \Downarrow k$	constant

define the contextual equivalence by:

$$
t \approx t' \triangleq V_{C \text{st.}} \text{C[t]} \text{ and } \text{C[t]} \text{ are closed,}
$$

\n $C[t \exists \psi \models \Leftrightarrow \text{C[t'} \exists \psi \models'$
\nMoreover, $k = k'$

prove the beta-law:

$$
(\lambda x.t) w \simeq t [v/x]
$$

and **observe** *some sufficient condition*.

Methodology

$$
t ::= x | \lambda x.t | ttl | k | \overline{QQ} \overline{Q}
$$

Given an operational semantics of an extended λ-calculus:

closed	$+ \Downarrow k$	basic
term	$- \Downarrow k$	constant

define the contextual equivalence by:

$$
t \approx t'
$$
 \Leftrightarrow ${}^{\forall}C$ s.t. C[t] and C[t'] are closed,
CLtJ $\psi \models \Leftrightarrow C[t'J \Psi \models'$
Moreover, $k = k'$

prove the beta-law:

$$
(\lambda x.t) w \simeq t [v/x]
$$

and **observe** *some sufficient condition*.

- easy to extend (esp. by nondeterminism, observables)
- easy to prove a contextual equivalence

small-step reduction

$$
t \Downarrow k \Leftrightarrow t \rightarrow^* k
$$

small-step reduction

七业k 命 七→* k

… obscures a sub-term of interest :-(

… keeps a sub-term of interest traceable :-)

$$
\left(\text{C[t]}\right)^{\dagger} = \boxed{\text{C}^{\dagger} \left(\text{C}^{\dagger}\right)}
$$

small-step "token-quided" graph-rewriting

- visible interaction between the token \triangle and a sub-graph
	- redex searching
	- rewriting

step-wise reasoning to prove a contextual equivalence

Methodology

$$
t ::= x | \lambda x.t | \tau t | k | \overline{Q} \overline{Q} \overline{Q}
$$

Given operational semantics of an extended λ-calculus:

closed
term
the
coptextual equivalence by:

$$
x^* = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f_0 r \sin \theta \, dr
$$

define the contextual equivalence by:

$$
t \approx t' \triangleq V_{C \text{ s.t. } C[t]} \text{ and } C[t'] \text{ are closed,}
$$

\n $C[t \exists \forall k \Leftrightarrow C[t' \exists \forall k'$
\nMoreover, $k = k'$
\nsame basic
\nconstants

prove the beta-law:

$$
(\lambda x.t) w \simeq t[w/x]
$$

and **observe** *some sufficient condition*.

Given operational semantics:

closed term

define the contextual equivalence by:

$$
t \approx t' \triangleq V_{C \text{ s.t. } C[t]} \text{ and } C[t'] \text{ are closed,}
$$

\n $C[t \exists \forall k \Leftrightarrow C[t' \exists \forall k'$
\nMoreover, $k = k'$
\nsame basic
\nconstants

prove the beta-law:

$$
(\lambda x.t) w \simeq t[w/x]
$$

and **observe** *some sufficient condition*.

Given operational semantics:

Case study: linear λ-calculus + "linear" recursion $t := x \mid \lambda x. t \mid t t \mid k \mid \mu x. t$ $v := x | \lambda x.t | k$ **Given** operational semantics:

closed for some G. σ +4k 今上t → 下 term

define the contextual equivalence by:

prove the beta-law:

$$
(\lambda x.t) w \simeq t[w/x]
$$

and **observe** *some sufficient condition*.

… **prove** the beta-law:

… **prove** the beta-law *by step-wise reasoning*:

… **prove** the beta-law *by step-wise reasoning*:

- 1. redex searching "within" graph-context
- 2. rewriting "in" graph-context
- 3. visiting the hole

1. redex searching "within" graph-context (1/6)

1. redex searching "within" graph-context (2/6)

1. redex searching "within" graph-context (3/6)

Muroya (U. B'ham. & RIMS, Kyoto U.)

1. redex searching "within" graph-context (4/6)

1. redex searching "within" graph-context (5/6)

1. redex searching "within" graph-context (6/6)

1. redex searching within graph-context (6 cases)

observation: only one node is inspected at each step

2. rewriting "in" graph-context (1/3)

2. rewriting "in" graph-context (2/3)

2. rewriting "in" graph-context

observation: the hole is not involved

2. rewriting "in" graph-context (3/3)

Muroya (U. B'ham. & RIMS, Kyoto U.)

2. rewriting "in" graph-context

observation: the hole is not involved, or is duplicated *as a whole*

observation 2: each rewriting step is "history-free"

3. visiting the hole $(1/1)$

3. visiting the hole $(1/1)$

Muroya (U. B'ham. & RIMS, Kyoto U.)

3. visiting the hole (1 case)

observation: the hole is reduced

Case study: linear λ-calculus + "linear" recursion $t := x | \lambda x. t | t t | k | \mu x. t$ $v := x | \lambda x.t | k$

Given operational semantics: closed β $t \psi \models \Leftrightarrow \boxed{t^t}$

define the contextual equivalence by:

term

$$
t \approx t' \triangleq V_{C \text{ s.t. } C[t]} \text{ and } C[t'] \text{ are closed,}
$$

\n $C[t \exists \forall k \Leftrightarrow C[t'] \Downarrow k'$
\n $Moveover, k = k'$
\nsame basic
\nconstants

prove the beta-law *by step-wise reasoning*:

 $(\lambda x.t) w \simeq t [v/x]$

and **observe** *some sufficient condition*.

for some G.

… **prove** the beta-law *by step-wise reasoning*,

and **observe** *that*:

- 1. *redex searching* only inspects one node at each step
- 2. *rewriting* preserves, duplicates or simply reduces a beta-redex.
- 3. *rewriting* is "history-free".

Case studies so far

… **prove** the beta-law *by step-wise reasoning*,

and **observe** *that*:

- 1. *redex searching* only inspects one node at each step
- 2. *rewriting* preserves, duplicates or simply reduces a beta-redex.
- 3. *rewriting* is "history-free".
- untyped pure λ-calculus
- ✓ basic operations, recursion, if-statement
- ✓ control operators: call/cc, shift/reset
- algebraic effects & handlers

method needs to be slightly adjusted

Question

Given an extension of untyped λ-calculus,

what *operational-*semantic property of the extension

validates the call-by-value beta-law?

Answer?

A formal answer is yet to be stated…

But a graph-rewriting perspective provides:

- a useful & robust method
- key observations