
Muroya (U. B’ham.)

Towards abductive
functional programming

Koko Muroya
Steven Cheung & Dan R. Ghica

(University of Birmingham)

ML Family workshop (Oxford), 7 Sep. 2017

Muroya (U. B’ham.)

Parameter tuning via
targeted abduction

Koko Muroya
Steven Cheung & Dan R. Ghica

(University of Birmingham)

ML Family workshop (Oxford), 7 Sep. 2017

Muroya (U. B’ham.)

A programming idiom for optimisation & ML

3

model

output

input

updated model

data

use
model

train
model

Muroya (U. B’ham.)

Example: parameter optimisation in TensorFlow

4

model

Build inference graph.
Create and initialise variables W and b.
W = tf.Variable(...)
b = tf.Variable(...)
y = W * x_data + b #NOTE: Nothing actually computed here!

https://www.tensorflow.org/
https://github.com/sherrym/tf-tutorial

https://www.tensorflow.org/
https://github.com/sherrym/tf-tutorial

Muroya (U. B’ham.)5

model

output

input

use
model

Create a session.
sess = tf.Session()
sess.run(init)
y_initial_values = sess.run(y)
Compute some y values

W = tf.Variable(...)
b = tf.Variable(...)
y = W * x_data + b

Example: parameter optimisation in TensorFlow

Muroya (U. B’ham.)

data

6

model

updated model

train
model

Build training graph.
loss = tf.some_loss_function(y, y_data)
Create an operation that calculates loss.
tf.train.some_optimiser.minimize(loss)
Create an operation that minimizes loss.
init = tf.initialize_all_variables()
Create an operation initializes variables.

sess = tf.Session()
sess.run(init)

Perform training:
for step in range(201):
 sess.run(train)

W = tf.Variable(...)
b = tf.Variable(...)
y = W * x_data + b

Example: parameter optimisation in TensorFlow

Muroya (U. B’ham.)7

● shallow embedded DSL

○ lack of integration with host language
○ cannot use libraries in graphs
○ difficult to debug / type graphs

● imperative “variable” update

TensorFlow

Muroya (U. B’ham.)8

● shallow embedded DSL

○ lack of integration with host language
○ cannot use libraries in graphs
○ difficult to debug / type graphs

● imperative parameter (“variable”) update

TensorFlow

● simple & uniform programming language

○ full integration with base language
○ typed in ML-style
○ well-defined operational semantics

● funcional parameter update

Proper functional language?

Muroya (U. B’ham.)

Key idea:
Abductive reasoning

9

Muroya (U. B’ham.)

● logical inference

○ deduction (specialisation)
○ induction (generalisation)
○ abduction (explanation)

● previous applications

○ abductive logic programming
○ program verification (http://fbinfer.com/)

Abductive inference: background

10

A

B
A⇒B

http://fbinfer.com/

Muroya (U. B’ham.)

● logical inference

○ deduction (specialisation)
○ induction (generalisation)
○ abduction (explanation)

● previous applications

○ abductive logic programming
○ program verification (http://fbinfer.com/)

Abductive inference: background

11

A

B
A⇒B

http://fbinfer.com/

Muroya (U. B’ham.)

● logical inference

○ deduction (specialisation)
○ induction (generalisation)
○ abduction (explanation)

● previous applications

○ abductive logic programming
○ program verification (http://fbinfer.com/)

Abductive inference: background

12

A

B
A⇒B

http://fbinfer.com/

Muroya (U. B’ham.)

Abductive inference: our use

● possible deductive rule for abduction

13

“abduct” explanation P of A

in “targeted”
way

Muroya (U. B’ham.)

“Parameter tuning via targeted abduction”

14

model

output updated model

trainuse

let m x = {2} * x + {3};;

m 0;; let f @ p = m in
let q = optimise p in
f q;;

Muroya (U. B’ham.)

“Parameter tuning via targeted abduction”

15

model

let m x = {2} * x + {3};;

provisional constants
(“targets”)

cf. definitive constants
0,1,2,...

Muroya (U. B’ham.)

Parameter tuning via targeted abduction

16

model

output

use

let m x = {2} * x + {3};;

m 0;;
(* simply function application *)

provisional
constants

Muroya (U. B’ham.)

“Parameter tuning via targeted abduction”

17

model

updated model

train

let m x = {2} * x + {3};;

let f @ p = m in (* “decouple” model f and parameters p *)
let q = optimise p in (* compute “better” parameter values *)
Let m’ = f q in (* “improve” model using new parameters *)
...

provisional
constants

abductive
decoupling

Muroya (U. B’ham.)

Abductive decoupling: informal semantics

18

val m = fun x -> {2} * x + {3} model with
 provisional constants

val f = fun (p1,p2) -> fun x -> p1 * x + p2 parameterised model

val p = (2,3) parameter vector

let m x = {2} * x + {3};;

let f @ p = m in
let q = optimise p in
f q;;

Muroya (U. B’ham.)

Abductive decoupling: informal semantics

19

val m = fun x -> {2} * x + {3} model with
 provisional constants

val f = fun (p1,p2) -> fun x -> p1 * x + p2 parameterised model

val p = (2,3) parameter vector

let m x = {2} * x + {3};;

let f @ p = m in
let q = optimise p in
f q;;

abduction rule

Muroya (U. B’ham.)

Promoting provisional to definitive constants

20

val m = fun x -> {2} * x + {3} model with
 provisional constants

val f = fun (p1,p2) -> fun x -> p1 * x + p2 parameterised model

val p = (2,3) parameter vector

val q = (2,3) (trivially updated)
 parameter vector
- = fun x -> 2 * x + 3 result: model with
 definitive constants

let m x = {2} * x + {3};;

let f @ p = m in
let q = p in
f q;;

Muroya (U. B’ham.)

Parameter tuning via targeted abduction

21

model

output updated model

trainuse

let m x = {2} * x + {3};;

m 0;; let f @ p = m in
let q = optimise p in
f q;;

provisional
constants

abductive
decoupling

Muroya (U. B’ham.)

Targeted abduction: syntax & types

22

provisional
constant abduction

opaque vector space,
representing(fixed) field

let f@x = u in t ≡ (abd f@x -> t) u

Muroya (U. B’ham.)

Targeted abduction: syntax & types

23

provisional
constant abduction

(fixed) field

(* abduction of open terms *)
let m x = {2} * x + n in
let f @ p = m in
...

opaque vector space,
representing

Muroya (U. B’ham.)

● size determined dynamically

● order of coordinates unknown

○ … yet we want deterministic programs
○ always point-free (no access to bases/coordinates)
○ only symmetric operations (invariant over permutation

of bases/coordinates)

Targeted abduction: opaque vectors

24

● possible in theory
○ symmetric tensors

● reasonable in practice
○ not all, but most, optimisation algorithms

are symmetric

Muroya (U. B’ham.)

standard vector operations

Targeted abduction: symmetric vector operations

25

iterated vector operations

Muroya (U. B’ham.)

Targeted abduction: example use
numerical gradient descent

26

let m x = {2} * x + {3};;

let f @ p = m in
let q = grad_desc f p loss 0.001 in
f q;;

(* least square on some reference data *)
let loss f p = ...;;

(* numerical gradient descent *)
let grad_desc f p loss rate =
 let d = 0.001 in
 let g e =
 let old = loss f p in
 let new = loss f (p ⊞ (d ⊠ e)) in
 (((old - new) / d) * rate) ⊠ e in
 g |⊞ p;;

folding over standard basis

Muroya (U. B’ham.)

Targeted abduction: syntax & types

27

provisional
constant abduction

opaque vector space,
representing(fixed) field

let f@x = u in t ≡ (abd f@x -> t) u

only symmetric
operations
on vectors

Muroya (U. B’ham.)

Targeted abduction: operational semantics

● provisional constants are linear!

● graph rewriting semantics

○ … based on Geometry of Interaction
○ http://www.cs.bham.ac.uk/~drg/goa/visualiser/
○ determinism
○ soundness of execution
○ safety of garbage-collection
○ call-by-value evaluation

28

let m x = {0} * x + {0};; let p = {0} in
let m x = p * x + p;;

vs

http://www.cs.bham.ac.uk/~drg/goa/visualiser/

Muroya (U. B’ham.)

● a fully-integrated language for parameter tuning

○ abductive decoupling “abd”
○ simply-typed + abduction rule
○ formal operational semantics

■ call-by-value
■ determinism
■ sound execution & safe garbage-collection

● open problems

○ actual ML compiler extension
■ abduction is dynamic & complex
■ … but not computationally dominant

○ stochastical machinary

Conclusions

29

http://www.cs.bham.ac.uk/~drg/goa/visualiser/

http://www.cs.bham.ac.uk/~drg/goa/visualiser/

