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A programming idiom for optimisation & ML
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Example: parameter optimisation in TensorFlow
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model

# Build inference graph.
# Create and initialise variables W and b.
W = tf.Variable(...)
b = tf.Variable(...)
y = W * x_data + b #NOTE: Nothing actually computed here!

https://www.tensorflow.org/ 
https://github.com/sherrym/tf-tutorial 

https://www.tensorflow.org/
https://github.com/sherrym/tf-tutorial
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# Create a session.
sess = tf.Session()
sess.run(init)
y_initial_values = sess.run(y)
# Compute some y values

W = tf.Variable(...)
b = tf.Variable(...)
y = W * x_data + b

Example: parameter optimisation in TensorFlow
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data
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# Build training graph.
loss = tf.some_loss_function(y, y_data)
# Create an operation that calculates loss.
tf.train.some_optimiser.minimize(loss)
# Create an operation that minimizes loss.
init = tf.initialize_all_variables()
# Create an operation initializes variables.

sess = tf.Session()
sess.run(init)

# Perform training:
for step in range(201):
    sess.run(train)

W = tf.Variable(...)
b = tf.Variable(...)
y = W * x_data + b

Example: parameter optimisation in TensorFlow
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● shallow embedded DSL

○ lack of integration with host language
○ cannot use libraries in graphs
○ difficult to debug / type graphs

● imperative “variable” update

TensorFlow
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● shallow embedded DSL

○ lack of integration with host language
○ cannot use libraries in graphs
○ difficult to debug / type graphs

● imperative parameter (“variable”) update

TensorFlow

● simple & uniform programming language

○ full integration with base language
○ typed in ML-style
○ well-defined operational semantics

● funcional parameter update

Proper functional language?
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Key idea: 
Abductive reasoning
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● logical inference

○ deduction (specialisation)
○ induction (generalisation)
○ abduction (explanation)

● previous applications

○ abductive logic programming
○ program verification (http://fbinfer.com/)

Abductive inference: background
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Abductive inference: our use

● possible deductive rule for abduction
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“abduct” explanation P of A

in “targeted” 
way
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“Parameter tuning via targeted abduction”
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model

output updated model

trainuse

let m x = {2} * x + {3};;

m 0;; let f @ p = m in
let q = optimise p in
f q;;
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“Parameter tuning via targeted abduction”
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model

let m x = {2} * x + {3};;

provisional constants
(“targets”)

cf. definitive constants
0,1,2,...
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Parameter tuning via targeted abduction
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let m x = {2} * x + {3};;

m 0;;
(* simply function application *)

provisional 
constants
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“Parameter tuning via targeted abduction”
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train

let m x = {2} * x + {3};;

let f @ p = m in    (* “decouple” model f and parameters p *) 
let q = optimise p in (* compute “better” parameter values *)
Let m’ = f q in    (* “improve” model using new parameters *)
...

provisional 
constants

abductive 
decoupling
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Abductive decoupling: informal semantics
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val m = fun x -> {2} * x + {3}              model with
                                            provisional constants
-----------------------------------------------------------------
val f = fun (p1,p2) -> fun x -> p1 * x + p2 parameterised model

val p = (2,3)                               parameter vector

let m x = {2} * x + {3};;

let f @ p = m in
let q = optimise p in
f q;;
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Abductive decoupling: informal semantics
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val m = fun x -> {2} * x + {3}              model with
                                            provisional constants
-----------------------------------------------------------------
val f = fun (p1,p2) -> fun x -> p1 * x + p2 parameterised model

val p = (2,3)                               parameter vector

let m x = {2} * x + {3};;

let f @ p = m in
let q = optimise p in
f q;;

abduction rule
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Promoting provisional to definitive constants
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val m = fun x -> {2} * x + {3}              model with
                                            provisional constants
-----------------------------------------------------------------
val f = fun (p1,p2) -> fun x -> p1 * x + p2 parameterised model

val p = (2,3)                               parameter vector
-----------------------------------------------------------------
val q = (2,3)                               (trivially updated) 
                                            parameter vector
- = fun x -> 2 * x + 3                      result: model with
                                            definitive constants

let m x = {2} * x + {3};;

let f @ p = m in
let q = p in
f q;;
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Parameter tuning via targeted abduction
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model

output updated model

trainuse

let m x = {2} * x + {3};;

m 0;; let f @ p = m in
let q = optimise p in
f q;;

provisional 
constants

abductive 
decoupling
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Targeted abduction: syntax & types

22

provisional 
constant abduction

opaque vector space, 
representing(fixed) field

let f@x = u in t  ≡  (abd f@x -> t) u
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Targeted abduction: syntax & types
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provisional 
constant abduction

(fixed) field

(* abduction of open terms *)
let m x = {2} * x + n in
let f @ p = m in
...

opaque vector space, 
representing
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● size determined dynamically

● order of coordinates unknown

○ … yet we want deterministic programs
○ always point-free (no access to bases/coordinates)
○ only symmetric operations (invariant over permutation 

of bases/coordinates)

Targeted abduction: opaque vectors
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● possible in theory
○ symmetric tensors

● reasonable in practice
○ not all, but most, optimisation algorithms 

are symmetric
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standard vector operations

Targeted abduction: symmetric vector operations
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iterated vector operations
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Targeted abduction: example use
numerical gradient descent
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let m x = {2} * x + {3};;

let f @ p = m in
let q = grad_desc f p loss 0.001 in
f q;;

(* least square on some reference data *)
let loss f p = ...;;

(* numerical gradient descent *)
let grad_desc f p loss rate =
  let d = 0.001 in
  let g e =
    let old = loss f p in
    let new = loss f (p ⊞ (d ⊠ e)) in
    (((old - new) / d) * rate) ⊠ e in
  g |⊞ p;;

folding over standard basis
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Targeted abduction: syntax & types
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provisional 
constant abduction

opaque vector space, 
representing(fixed) field

let f@x = u in t  ≡  (abd f@x -> t) u

only symmetric 
operations
on vectors
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Targeted abduction: operational semantics

● provisional constants are linear!

● graph rewriting semantics

○ … based on Geometry of Interaction
○ http://www.cs.bham.ac.uk/~drg/goa/visualiser/ 
○ determinism
○ soundness of execution
○ safety of garbage-collection
○ call-by-value evaluation
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let m x = {0} * x + {0};; let p = {0} in
let m x = p * x + p;;

vs

http://www.cs.bham.ac.uk/~drg/goa/visualiser/
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● a fully-integrated language for parameter tuning

○ abductive decoupling “abd”
○ simply-typed + abduction rule
○ formal operational semantics

■ call-by-value
■ determinism
■ sound execution & safe garbage-collection

● open problems

○ actual ML compiler extension
■ abduction is dynamic & complex
■ … but not computationally dominant

○ stochastical machinary

Conclusions
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http://www.cs.bham.ac.uk/~drg/goa/visualiser/ 

http://www.cs.bham.ac.uk/~drg/goa/visualiser/

