
Muroya (U. B’ham.)

Efficient implementation of
evaluation strategies

via token-guided graph rewriting

Koko Muroya & Dan R. Ghica
(University of Birmingham)

WPTE (Oxford), 8 Sep. 2017

Muroya (U. B’ham.)

TARGET

balancing space cost & time cost
of program execution

2

abstract machines
for

lambda-calculus

Muroya (U. B’ham.)

● abstract machines of same end result

○ number of beta-reduction

Motivation: series of non-strict evaluation

3

Sestoft’s
abstract
machine

Crégut’s
lazy Krivine

abstract
machine

Bologna
optimal
abstract
machine

Krivine
abstract
machine

call by
name

call by
need

Lévy’s optimal
reduction

Muroya (U. B’ham.)

● abstract machines of same end result

○ number of beta-reduction
○ time cost

Motivation: series of non-strict evaluation

4

Krivine
abstract
machine

Sestoft’s
abstract
machine

Crégut’s
lazy Krivine

abstract
machine

Bologna
optimal
abstract
machine

call by
name

call by
need

Accattoli et al.

Lévy’s optimal
reduction

Muroya (U. B’ham.)

● abstract machines of same end result

○ number of beta-reduction
○ time cost
○ space cost

Motivation: series of non-strict evaluation

5

Krivine
abstract
machine

Sestoft’s
abstract
machine

Crégut’s
lazy Krivine

abstract
machine

Bologna
optimal
abstract
machine

call by
name

call by
need

Accattoli et al.

Lévy’s optimal
reduction

Muroya (U. B’ham.)

● abstract machines of same end result

○ space cost

Motivation: series of non-strict evaluation

6

Krivine
abstract
machine

call by
name

interaction
abstract
machine

[Danos & Regnier ‘99]

● GoI-style token passing
● fixed graph

● term rewriting

Muroya (U. B’ham.)

● abstract machines of same end result

○ space cost vs time cost… trade-off?

Question

7

Sestoft’s
abstract
machine

Crégut’s
lazy Krivine

abstract
machine

Bologna
optimal
abstract
machine

Krivine
abstract
machine

call by
name

call by
need

Lévy’s
optimal

interaction
abstract
machine

Muroya (U. B’ham.)

GOAL

unified framework
that can balance space cost & time cost

of program execution

8

Muroya (U. B’ham.)

GOAL

unified framework
that can balance space cost & time cost

of program execution

9

token-guided graph-rewriting abstract machine
for lambda-calculus

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

10

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

11

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

12

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

13

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

14

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

15

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

16

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

17

redex
detected

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

18

(1) trigger
rewriting

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

19

redex
detected

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

20

(2) keep
passing

Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

21

(1) trigger
rewriting

(2) keep
passing

Muroya (U. B’ham.)

Token-guided graph rewriting
for lambda-calculus

flexibility, by choices of:

● graph rewriting system, with token passing

○ proof nets

● interleaving strategy

○ trigger rewriting vs. keep passing

● translation of lambda-terms
○ !(A ⊸ B), (!A) ⊸ B

22

Muroya (U. B’ham.)

Token-guided graph rewriting
for lambda-calculus

flexibility, by choices of:

● graph rewriting system, with token passing

● interleaving strategy

● translation of lambda-terms

to…

● balance space cost & time cost

23

Muroya (U. B’ham.)

Non-strict evaluation:
time cost improvement

24

● graph rewriting system
with token passing

● interleaving strategy
● translation

of lambda-terms

● proof nets

● passes-only

● “call-by-value”

translation

interaction
abstract
machine

token passing
on fixed graph

call by
name

call by
need

Muroya (U. B’ham.)

call by
need

Non-strict evaluation:
time cost improvement

25

● graph rewriting system
with token passing

● interleaving strategy
● translation

of lambda-terms

interaction
abstract
machine

● proof nets

● passes-only

● !(A ⊸ B)

call-by-name time cost

token passing
on fixed graph

Muroya (U. B’ham.)

Non-strict evaluation:
time cost improvement

26

● graph rewriting system
with token passing

● interleaving strategy
● translation

of lambda-terms

interaction
abstract
machine

● proof nets

● passes-only

● !(A ⊸ B)

call-by-name time cost

● proof nets

● rewrites-first

● !(A ⊸ B)

call-by-need time cost

[- & Ghica, CSL ‘17]

time cost analysis
à la [Accattoli ’16]

token passing
on fixed graph

graph
rewriting

Muroya (U. B’ham.)

Non-strict evaluation:
space cost improvement?

27

● graph rewriting system
with token passing

● interleaving strategy
● translation

of lambda-terms

● proof nets

● passes-only

● “call-by-value”

translation

interaction
abstract
machine

token passing
on fixed graph

call by name

Krivine
abstract
machine

term
rewriting

Muroya (U. B’ham.)

Non-strict evaluation:
space cost improvement?

28

● graph rewriting system
with token passing

● interleaving strategy
● translation

of lambda-terms

● proof nets

● passes-only

● “call-by-value”

translation

interaction
abstract
machine

Krivine
abstract
machine

● proof nets

● passes-only

● !(A ⊸ B), (!A) ⊸ B

call-by-name time cost

token passing
on fixed graph

call by name

term
rewriting

Muroya (U. B’ham.)

Non-strict evaluation:
space cost improvement?

29

● graph rewriting system
with token passing

● interleaving strategy
● translation

of lambda-terms

● proof nets

● passes-only

● “call-by-value”

translation

interaction
abstract
machine

Krivine
abstract
machine

● proof nets

● passes-only

● !(A ⊸ B), (!A) ⊸ B

call-by-name time cost

token passing
on fixed graph

call by name

● proof nets

● rewrites-first

● (!A) ⊸ B

call-by-name time cost

graph
rewriting

Muroya (U. B’ham.)

Strict evaluation

30

● graph rewriting system
with token passing

● interleaving strategy
● translation

of lambda-terms

● proof nets

● passes-only

● “call-by-value”

translation

● -graphs

● rewrites-first

● !(A ⊸ B)

call-by-value time cost

[- & Ghica, WPTE ‘17]

time cost analysis
à la [Accattoli ’16]

graph
rewriting

Muroya (U. B’ham.)

Token-guided graph rewriting
for lambda-calculus

flexibility, by choices of:

● graph rewriting system, with token passing

● interleaving strategy

● translation of lambda-terms

to…

● balance space cost & time cost

31

series of
● non-strict evaluation
● strict evaluation

Muroya (U. B’ham.)

Analyse token-guided graph rewriting

via term rewriting + explicit redex searching [Sinot ‘05]

32

https://cwtsteven.github.io/GoI-Visualiser/CBV-with-CBV-embedding/index.html

https://docs.google.com/file/d/0B22znsKgyCHwRE9fRmRfVlliY0U/preview
https://cwtsteven.github.io/GoI-Visualiser/CBV-with-CBV-embedding/index.html

Muroya (U. B’ham.)

Token-guided graph rewriting
for lambda-calculus

flexibility, by choices of:

● graph rewriting system, with token passing

● interleaving strategy

● translation of lambda-terms

to…

● balance space cost & time cost

33

series of
● non-strict evaluation
● strict evaluation

analysis via
term rewriting

