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TARGET

balancing space cost & time cost
of program execution
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● abstract machines of same end result

○ number of beta-reduction

Motivation: series of non-strict evaluation
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● abstract machines of same end result

○ number of beta-reduction
○ time cost
○ space cost

Motivation: series of non-strict evaluation
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● abstract machines of same end result

○ space cost

Motivation: series of non-strict evaluation
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● GoI-style token passing
● fixed graph

● term rewriting
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● abstract machines of same end result

○ space cost vs time cost… trade-off?

Question

7

Sestoft’s
abstract
machine

Crégut’s
lazy Krivine

abstract
machine

Bologna
optimal
abstract
machine

Krivine
abstract
machine

call by
name

call by
need

Lévy’s 
optimal

interaction
abstract
machine



Muroya (U. B’ham.)

GOAL

unified framework
that can balance space cost & time cost

of program execution
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token-guided graph-rewriting abstract machine
for lambda-calculus
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Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

10



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

11



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

12



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

13



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

14



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

15



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

16



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

17

redex 
detected



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

18

(1) trigger 
rewriting



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

19

redex 
detected



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting

20

(2) keep 
passing



Muroya (U. B’ham.)

Token-guided graph rewriting

GoI-style token passing,

interleaved with graph rewriting
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Token-guided graph rewriting
for lambda-calculus

flexibility, by choices of:

● graph rewriting system, with token passing

○ proof nets

● interleaving strategy

○ trigger rewriting vs. keep passing

● translation of lambda-terms
○ !(A ⊸ B), (!A) ⊸ B
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● balance space cost & time cost
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Non-strict evaluation:
time cost improvement
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Non-strict evaluation:
space cost improvement?
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Strict evaluation
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Token-guided graph rewriting
for lambda-calculus

flexibility, by choices of:

● graph rewriting system, with token passing

● interleaving strategy

● translation of lambda-terms

to…

● balance space cost & time cost
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Analyse token-guided graph rewriting

via term rewriting + explicit redex searching [Sinot ‘05]
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https://cwtsteven.github.io/GoI-Visualiser/CBV-with-CBV-embedding/index.html 

https://docs.google.com/file/d/0B22znsKgyCHwRE9fRmRfVlliY0U/preview
https://cwtsteven.github.io/GoI-Visualiser/CBV-with-CBV-embedding/index.html
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