Generic Forward & Backward Simulation III: Quantitative Simulation by Matrices

Natsuki Urabe, Ichiro Hasuo The University of Tokyo

Motivation

- Formal verification of quantitative systems
 - Verify that given quantitative system satisfies quantitative property
 - e.g. probability, time, energy, etc...

Motivation

- Formal verification of quantitative systems
 - Verify that given quantitative system satisfies quantitative property
 - e.g. probability, time, energy, etc...

Simulation-based verification

Preliminaries: Simulation-based Verification for Non-deterministic Systems

Preliminaries: Simulation-based Verification for Non-deterministic Systems

Simulation-Based Verification

Find <u>simulation</u> between *I* and *S* instead
step-wise language inclusion

Simulation-Based Verification

Find <u>simulation</u> between *I* and *S* instead
step-wise language inclusion

• Soundness:
$$\mathcal{I} \sqsubseteq_{sim} \mathcal{S} \implies Lang(\mathcal{I}) \subseteq Lang(\mathcal{S})$$

For two non-det. automata, fwd./ bwd. simulation is relation *R* between state spaces such that

For two non-det. automata, fwd./ bwd. simulation is relation *R* between state spaces such that

 For two non-det. automata, fwd./ bwd. simulation is relation *R* between state spaces such that

 For two non-det. automata, fwd./ bwd. simulation is relation *R* between state spaces such that

 For two non-det. automata, fwd./ bwd. simulation is relation *R* between state spaces such that

For two non-det. automata, fwd./ bwd. simulation is relation *R* between state spaces such that

For two non-det. automata, fwd./ bwd. simulation is relation *R* between state spaces such that

Thm (Soundness) :

A fwd. simulation exists

A bwd. simulation exists

7

 $\operatorname{Lang}(\mathcal{I}) \subseteq \operatorname{Lang}(\mathcal{S})$

Simulation-based Verification for Quantitative Systems

Simulation-based Verification for Quantitative Systems

Simulation-based Verification for Quantitative Systems

Examples of Quantitative Simulation

- For $S_{+,\times}$ -weighted automata (probabilistic system)
 - Simulation by Jonsson & Larsen (1991)

- For $S_{max,+}$ -weighted automata (system with cost)
 - Simulation by Chatterjee et al. (2010)

 We defined matrix simulation for semiring-weighted automaton

• We defined matrix simulation for

semiring-weighted automaton

Model for various quantitative systems

e.g. probability, cost, reward, ...

• We defined matrix simulation for

semiring-weighted automaton

Model for various quantitative systems

e.g. probability, cost, reward, ...

• We defined matrix simulation for

semiring-weighted automaton

Weak point: Sound but not complete
Our Result

We defined matrix simulation for

semiring-weighted automaton

Weak point: Sound but not complete

- Introduce fwd./ bwd. partial execution
 - Transformation of automaton that produces matrix simulation

Our Result

We defined matrix simulation for

semiring-weighted automaton

Weak point: Sound but not complete

- Introduce fwd./ bwd. partial execution
 - Transformation of automaton that produces matrix simulation
- Proof-of-concept implementation and experiment

Overview

- 1. Matrix Simulation
 - Motivation
 - Semiring-Weighted Automaton and Matrix Simulation
 - Origin: from Theory of Coalgebra
- 2. Partial Execution (to be More "Complete")
- 3. Specific Examples
 - Example 1 : $\mathcal{S}_{+,\times}$ -weighted Automaton
 - Example 2 : $\mathcal{S}_{\max,+}$ -weighted Automaton
- 4. Conclusion and Future Works

Overview

- 1. Matrix Simulation
 - Motivation
 - Semiring-Weighted Automaton and Matrix Simulation
 - Origin: from Theory of Coalgebra
- 2. Partial Execution (to be More "Complete")
- 3. Specific Examples
 - Example 1 : $\mathcal{S}_{+,\times}$ -weighted Automaton
 - Example 2 : $\mathcal{S}_{\max,+}$ -weighted Automaton
- 4. Conclusion and Future Works

Semiring Weighted Automaton: Automaton weighted with values in semiring

Semiring Weighted Automaton: Automaton weighted with values in semiring

Semiring Weighted Automaton: Automaton weighted with values in semiring

Semiring Weighted Automaton: Automaton weighted with values in semiring

Semiring Weighted Automaton: Automaton weighted with values in semiring

Various semirings for various systems

Weight: probability

$$\inf(\mathcal{A})(ba) = \begin{cases} 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 + 1 \cdot \frac{1}{2} \cdot 1 \\ \frac{1}{2} \cdot \frac{1}{2} \cdot 1 + 1 \cdot \frac{1}{2} \cdot 1 \\ \frac{1}{2} \cdot \frac{1}{2} \cdot 1 \\ \frac{1}{2} \cdot \frac{1}{2} \cdot 1 \\ \frac{1}{2} \cdot \frac$$

Weight: (worst case) resource consumption

Semiring Weighted Automaton: Automaton weighted with values in semiring

Various semirings for various systems

 $a,rac{1}{2}$

Lang(
$$\mathcal{A}$$
)(ba) =
$$\begin{cases} 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 + 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 \\ \max(1 + \frac{1}{2} + \frac{1}{2} + 1, 1 + \frac{1}{2} + \frac{1}{2} + 1) \end{cases}$$

Weight: (worst case) resource consumption

Semiring Weighted Automaton: Automaton weighted with values in semiring

Various semirings for various systems

$$S_{+,\times} = ([0,\infty], +, 0, \times, 1, \leq)$$

Weight: **probability**
$$\text{Lang}(\mathcal{A})(ba) = \begin{cases} 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 + 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 \\ \max(1 + \frac{1}{2} + \frac{1}{2} + 1, 1 + \frac{1}{2} + \frac{1}{2} + 1) \end{cases}$$

Weight: (worst case) resource consumption

 $a, rac{1}{2}$

Semiring Weighted Automaton: Automaton weighted with values in semiring

Various semirings for various systems

$$\mathcal{S}_{+, imes} = ([0,\infty],+,0, imes,1,\leq)$$

$$\operatorname{Lang}(\mathcal{A})(ba) = \begin{cases} 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 + 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 \\ \max(1 + \frac{1}{2} + \frac{1}{2} + 1, 1 + \frac{1}{2} + \frac{1}{2} + 1) \end{cases}$$

Weight: (worst case) resource consumption

$${\mathcal S}_{\max,+}=([-\infty,\infty],\max,-\infty,+,0,\leq)$$

Def : For a commutative cppo-semiring $\mathcal{S}=(S,+_{\mathcal{S}},0_{\mathcal{S}}, imes_{\mathcal{S}},1_{\mathcal{S}},\sqsubseteq)$,

 ${\mathcal S}$ -weighted automaton ${\mathcal A}=(Q,\Sigma,M,lpha,eta)$ consists of

- a state space $oldsymbol{Q}$
- alphabet Σ
- transition matrices $M(a) \in \mathcal{S}^{Q imes Q}$
- a initial (row) vector $\alpha \in \mathcal{S}^Q$
- a final (column) vector $\boldsymbol{\beta} \in \mathcal{S}^Q$

Def : For a commutative cppo-semiring $\mathcal{S}=(S,+_{\mathcal{S}},0_{\mathcal{S}}, imes_{\mathcal{S}},1_{\mathcal{S}},\sqsubseteq)$,

 ${\mathcal S}$ -weighted automaton ${\mathcal A}=(Q,\Sigma,M,lpha,eta)$ consists of

- a state space $oldsymbol{Q}$
- alphabet Σ
- transition matrices $M(a) \in \mathcal{S}^{Q \times Q}$
- a initial (row) vector $\alpha \in \mathcal{S}^Q$
- a final (column) vector $\boldsymbol{\beta} \in \mathcal{S}^Q$
- Language of \mathcal{A} : Lang (\mathcal{A}) Lang $(\mathcal{A})(a_0a_1\dots a_n) := \alpha$ $M(a_0)$ $M(a_1)$ \dots $M(a_n)$

 $\boldsymbol{\beta}$

Def : For a commutative cppo-semiring $\mathcal{S}=(S,+_{\mathcal{S}},0_{\mathcal{S}}, imes_{\mathcal{S}},1_{\mathcal{S}},\sqsubseteq)$,

 ${\mathcal S}$ -weighted automaton ${\mathcal A}=(Q,\Sigma,M,lpha,eta)$ consists of

- a state space $oldsymbol{Q}$
- alphabet Σ
- transition matrices $M(a) \in \mathcal{S}^{Q \times Q}$
- a initial (row) vector $\alpha \in \mathcal{S}^Q$
- a final (column) vector $\boldsymbol{\beta} \in \mathcal{S}^Q$
- Language of \mathcal{A} : Lang (\mathcal{A}) Lang $(\mathcal{A})(a_0a_1\dots a_n) := \alpha$ $M(a_0)$ $M(a_1)$ \dots $M(a_n)$ β
- Language inclusion : $\operatorname{Lang}(\mathcal{A}) \sqsubseteq \operatorname{Lang}(\mathcal{B}) \stackrel{\operatorname{def}}{\Leftrightarrow} \forall w. \operatorname{Lang}(\mathcal{A})(w) \sqsubseteq \operatorname{Lang}(\mathcal{B})(w)$

Def : For a commutative cppo-semiring $\mathcal{S}=(S,+_{\mathcal{S}},0_{\mathcal{S}}, imes_{\mathcal{S}},1_{\mathcal{S}},\sqsubseteq)$,

 ${\mathcal S}$ -weighted automaton ${\mathcal A}=(Q,\Sigma,M,lpha,eta)$ consists of

- a state space $oldsymbol{Q}$
- alphabet Σ
- transition matrices $M(a) \in \mathcal{S}^{Q \times Q}$
- a initial (row) vector $\alpha \in \mathcal{S}^Q$
- a final (column) vector $\boldsymbol{\beta} \in \mathcal{S}^Q$
- Language of \mathcal{A} : Lang (\mathcal{A}) Lang $(\mathcal{A})(a_0a_1\dots a_n) := \alpha$ $M(a_0)$ $M(a_1)$ \dots $M(a_n)$ β • Language inclusion :

$$\operatorname{Lang}(\mathcal{A}) \sqsubseteq \operatorname{Lang}(\mathcal{B}) \stackrel{\operatorname{def}}{\Leftrightarrow} orall w. \operatorname{Lang}(\mathcal{A})(w) \sqsubseteq \operatorname{Lang}(\mathcal{B})(w)$$

What we want to prove

Matrix Simulation

Def: For weighted automata $\mathcal{A} = (Q_{\mathcal{A}}, \Sigma, M_{\mathcal{A}}, \alpha_{\mathcal{A}}, \beta_{\mathcal{A}})$ and $\mathcal{B} = (Q_{\mathcal{B}}, \Sigma, M_{\mathcal{B}}, \alpha_{\mathcal{B}}, \beta_{\mathcal{B}})$,

- a forward simulation matrix is $X \in S^{Q_{\mathcal{B}} imes Q_{\mathcal{A}}}$ such that

 $\alpha_{\mathcal{A}} \sqsubseteq \alpha_{\mathcal{B}} X$, $X \cdot M_{\mathcal{A}}(a) \sqsubseteq M_{\mathcal{B}}(a) \cdot X$ ($\forall a \in \Sigma$), and $X \beta_{\mathcal{A}} \sqsubseteq \beta_{\mathcal{B}}$

- a backward simulation matrix is $X \in S^{Q_{\mathcal{A}} imes Q_{\mathcal{B}}}$ such that

 $\alpha_{\mathcal{A}} X \sqsubseteq \alpha_{\mathcal{B}}$, $M_{\mathcal{A}}(a) \cdot X \sqsubseteq X \cdot M_{\mathcal{B}}(a)$ ($\forall a \in \Sigma$), and $\beta_{\mathcal{A}} \sqsubseteq X \beta_{\mathcal{B}}$

- Two types: Forward and Backward
- Both defined as matrix satisfying certain inequalities

Matrix Simulation

Def: For weighted automata $\mathcal{A} = (Q_{\mathcal{A}}, \Sigma, M_{\mathcal{A}}, \alpha_{\mathcal{A}}, \beta_{\mathcal{A}})$ and $\mathcal{B} = (Q_{\mathcal{B}}, \Sigma, M_{\mathcal{B}}, \alpha_{\mathcal{B}}, \beta_{\mathcal{B}})$,

- a forward simulation matrix is $X \in S^{Q_{\mathcal{B}} imes Q_{\mathcal{A}}}$ such that

 $\alpha_{\mathcal{A}} \sqsubseteq \alpha_{\mathcal{B}} X$, $X \cdot M_{\mathcal{A}}(a) \sqsubseteq M_{\mathcal{B}}(a) \cdot X$ ($\forall a \in \Sigma$), and $X \beta_{\mathcal{A}} \sqsubseteq \beta_{\mathcal{B}}$

- a backward simulation matrix is $X \in S^{Q_{\mathcal{A}} imes Q_{\mathcal{B}}}$ such that

 $\alpha_{\mathcal{A}} X \sqsubseteq \alpha_{\mathcal{B}}$, $M_{\mathcal{A}}(a) \cdot X \sqsubseteq X \cdot M_{\mathcal{B}}(a)$ ($\forall a \in \Sigma$), and $\beta_{\mathcal{A}} \sqsubseteq X \beta_{\mathcal{B}}$

- Two types: Forward and Backward
- Both defined as matrix satisfying certain inequalities

Matrix Simulation

Def: For weighted automata $\mathcal{A} = (Q_{\mathcal{A}}, \Sigma, M_{\mathcal{A}}, \alpha_{\mathcal{A}}, \beta_{\mathcal{A}})$ and $\mathcal{B} = (Q_{\mathcal{B}}, \Sigma, M_{\mathcal{B}}, \alpha_{\mathcal{B}}, \beta_{\mathcal{B}})$,

- a forward simulation matrix is $X \in S^{Q_{\mathcal{B}} imes Q_{\mathcal{A}}}$ such that

 $\alpha_{\mathcal{A}} \sqsubseteq \alpha_{\mathcal{B}} X$, $X \cdot M_{\mathcal{A}}(a) \sqsubseteq M_{\mathcal{B}}(a) \cdot X$ ($\forall a \in \Sigma$), and $X \beta_{\mathcal{A}} \sqsubseteq \beta_{\mathcal{B}}$

- a backward simulation matrix is $X \in S^{Q_{\mathcal{A}} imes Q_{\mathcal{B}}}$ such that

 $\alpha_{\mathcal{A}} X \sqsubseteq \alpha_{\mathcal{B}}$, $M_{\mathcal{A}}(a) \cdot X \sqsubseteq X \cdot M_{\mathcal{B}}(a)$ ($\forall a \in \Sigma$), and $\beta_{\mathcal{A}} \sqsubseteq X \beta_{\mathcal{B}}$

Overview

- 1. Matrix Simulation
 - Motivation
 - Semiring-Weighted Automaton and Matrix Simulation
 - Origin: from Theory of Coalgebra
- 2. Partial Execution (to be More "Complete")
- 3. Specific Examples
 - Example 1 : $\mathcal{S}_{+,\times}$ -weighted Automaton
 - Example 2 : $\mathcal{S}_{\max,+}$ -weighted Automaton
- 4. Conclusion and Future Works

Theory behind Matrix Simulation

Matrix simulation

- Matrix simulation is obtained via Kleisli simulation [Hasuo, 2006]
 - Kleisli Simulation :

Categorical generalization of simulation by Lynch & Vaandrager (1995)

- Using theory of coalgebra, we can prove soundness in general

Theory behind Matrix Simulation

Matrix simulation is obtained via Kleisli simulation [Hasuo, 2006]

- Kleisli Simulation :

Categorical generalization of simulation by Lynch & Vaandrager (1995)

Using theory of coalgebra, we can prove soundness in general

Theory behind Matrix Simulation

Matrix simulation is obtained via Kleisli simulation [Hasuo, 2006]

- Kleisli Simulation :

Categorical generalization of simulation by Lynch & Vaandrager (1995)

Using theory of coalgebra, we can prove soundness in general

Coalgebraic Modeling of Transition System

- Represented system as coalgebra $\, c: X
ightarrow TFX$

Coalgebraic Modeling of Transition System

- Represented system as coalgebra $c: X \to TFX$
- T: Monad representing branching type

Coalgebraic Modeling of Transition System

- Represented system as coalgebra $c: X \to (TF)X$
- T: Monad representing branching type

F: Functor representing transition type

Coalgebraic Modeling of **Transition System**

- · Represented system as coalgebra $c: X \rightarrow (T)$
 - T: Monad representing branching type

 $T = \mathcal{P}$ (powerset monad) : non-deterministic system $T = \mathcal{D}$ (subdistribution monad) : probabilistic system e.g. $T = \mathcal{M}_{\mathcal{S}}$ (multiset monad) : \mathcal{S} -weighted system

F: Functor representing transition type

- e.g. $F = 1 + \Sigma \times (_)$: automaton for finite-length word $F = 1 + \Sigma \times (_) \times (_)$: automaton for finite-depth tree

 - Various choice for T and F

We can represent various systems

Coalgebraic Modeling of Transition System

- Represented system as coalgebra $c: X \to TFX$
- T: Monad representing branching type

e.g. $T = \mathcal{P}$ (powerset monad) : non-deterministic system $T = \mathcal{D}$ (subdistribution monad) : probabilistic system

 $= \mathcal{M}_{\mathcal{S}}$ (multiset monad) : \mathcal{S} -weighted system

F : Functor representing transition typeOur settinge.g. $F = 1 + \Sigma \times (_)$: automaton for finite-length word $F = 1 + \Sigma \times (_) \times (_)$: automaton for finite-depth tree

- Various choice for T and F

We can represent various systems

Transition System as Kleisli Arrow

- Represented system as coalgebra $\, c: X
 ightarrow TFX$
- This arrow can be regarded as Kleisli arrow

$$c: X \to TFX \text{ in Set} \ c: X \to FX \text{ in } \mathcal{K}\ell(T)$$

Def: Kleisli arrow
$$f: X \to TY$$
 in Set $f: X \to Y$ in $\mathcal{K}\ell(T)$

Kleisli Simulation [Hasuo 2006]

 Forward / Backward Kleisli simulation is a Kleisli arrow satisfying a certain diagram

Kleisli Simulation [Hasuo 2006]

 Forward / Backward Kleisli simulation is a Kleisli arrow satisfying a certain diagram

Kleisli Simulation to Matrix Simulation

 $T = \mathcal{M}_{\mathcal{S}}$ (multiset monad) : \mathcal{S} -weighted system

Summary of Matrix Simulation

S-weighted automaton is

automaton whose transitions are weighted with values in \mathcal{S}

- Matrix simulation between two weighted automata is <u>matrix that satisfies some inequalities</u> $\begin{array}{l} \alpha_{\mathcal{A}} \sqsubseteq \alpha_{\mathcal{B}} X \\ X \cdot M_{\mathcal{A}}(a) \sqsubseteq M_{\mathcal{B}}(a) \cdot X \\ X \beta_{\mathcal{A}} \sqsubseteq \beta_{\mathcal{B}} \end{array}$
 - Soundness: $A_{\mathcal{A}}X \sqsubseteq \alpha_{\mathcal{B}}$ $M_{\mathcal{A}}(a) \cdot X \sqsubseteq X \cdot M_{\mathcal{B}}(a) \quad (\forall a \in \Sigma)$ $\beta_{\mathcal{A}} \sqsubseteq X \beta_{\mathcal{B}}$

Existence of simulation matrix implies language inclusion

 Matrix simulation is specialization of Kleisli simulation, which uses <u>coalgebraic theory</u>

Overview

- 1. Matrix Simulation
 - Motivation
 - Semiring-Weighted Automaton and Matrix Simulation
 - Origin: from Theory of Coalgebra
- 2. Partial Execution (to be More "Complete")
- 3. Specific Examples
 - Example 1 : $\mathcal{S}_{+,\times}$ -weighted Automaton
 - Example 2 : $\mathcal{S}_{\max,+}$ -weighted Automaton
- 4. Conclusion and Future Works

Language inclusion is undecidable for ${S_{+,\times}-\text{weighted automata}_{[Blondel & Canterni, 2003]}}$ ${S_{\max,+}-\text{weighted automata}_{[Krob, 1992]}}$

 Existence of Fwd. / Bwd. matrix simulation is decidable for them [Tarski, 1951]

Transformation of weighted automata

- Transformation of weighted automata
- Two types :
 Forward Partial Execution (FPE) Backward Partial Execution (BPE)

- Transformation of weighted automata
- Two types :
 Forward Partial Execution (FPE) Backward Partial Execution (BPE)
 - Produce matrix simulation

•

- Transformation of weighted automata
- Two types : {
 Forward Partial Execution (FPE)
 Backward Partial Execution (BPE)
- Produce matrix simulation
 - i.e. It can be that

```
Lang(\mathcal{A}) \sqsubseteq Lang(\mathcal{B})
but \mathcal{A} \not\sqsubseteq_F \mathcal{B}
```

 $Lang(\mathcal{A}) \sqsubseteq Lang(\mathcal{B})$ but $\mathcal{A} \not\sqsubseteq_{\mathrm{B}} \mathcal{B}$

- Transformation of weighted automata
- Two types : {
 Forward Partial Execution (FPE)
 Backward Partial Execution (BPE)
- Produce matrix simulation

i.e. It can be that

Lang(\mathcal{A}) \sqsubseteq Lang(\mathcal{B}) but $\mathcal{A} \not\sqsubseteq_{\mathbf{F}} \mathcal{B}$ FPE(\mathcal{A}) $\sqsubseteq_{\mathbf{F}}$ BPE(\mathcal{B}) where Lang(\mathcal{A}) = Lang(FPE(\mathcal{A})) Lang(\mathcal{B}) = Lang(BPE(\mathcal{B})) Lang(\mathcal{A}) \sqsubseteq Lang(\mathcal{B}) but $\mathcal{A} \not\sqsubseteq_{B} \mathcal{B}$ BPE(\mathcal{A}) \sqsubseteq_{B} FPE(\mathcal{B}) where Lang(\mathcal{A}) = Lang(BPE(\mathcal{A})) Lang(\mathcal{B}) = Lang(FPE(\mathcal{B}))

Forward Partial Execution

Pictorially,

•

 Split backward Merge backward Eliminate dead end Ο

Backward Partial Execution

• Pictorially,

Usage of Execution

 FPE and BPE can increase matrix simulation only if applied to proper side of proper simulation

$$\mathcal{A} \sqsubseteq_{\mathbf{F}} \mathcal{B} \qquad \mathcal{A} \sqsubseteq_{\mathbf{B}} \mathcal{B}$$

Usage of Execution

FPE and BPE can increase matrix simulation

only if applied to proper side of proper simulation

Usage of Execution

FPE and BPE can increase matrix simulation

only if applied to proper side of proper simulation

Soundness and Adequacy

Soundness

 $Lang(\mathcal{A}) \sqsubseteq Lang(\mathcal{B})$

Adequacy

Soundness and Adequacy

Soundness

$$FPE(\mathcal{A}) \sqsubseteq_{\mathbf{F}} BPE(\mathcal{B}) \xrightarrow{} Lang(\mathcal{A}) \sqsubseteq Lang(\mathcal{B})$$
$$BPE(\mathcal{A}) \sqsubseteq_{\mathbf{B}} FPE(\mathcal{B}) \xrightarrow{} Lang(\mathcal{A}) \sqsubseteq Lang(\mathcal{B})$$

Properly applied transformation maintains soundness

Adequacy

Soundness and Adequacy

Soundness

$$FPE(\mathcal{A}) \sqsubseteq_{\mathbf{F}} BPE(\mathcal{B}) \xrightarrow{} Lang(\mathcal{A}) \sqsubseteq Lang(\mathcal{B})$$
$$BPE(\mathcal{A}) \sqsubseteq_{\mathbf{B}} FPE(\mathcal{B}) \xrightarrow{} Lang(\mathcal{A}) \sqsubseteq Lang(\mathcal{B})$$

Properly applied transformation maintains soundness

Adequacy

$$\mathcal{A} \sqsubseteq_{\mathbf{F}} \mathcal{B} \implies \operatorname{FPE}(\mathcal{A}) \sqsubseteq_{\mathbf{F}} \operatorname{BPE}(\mathcal{B})$$

 $\mathcal{A} \sqsubseteq_{\mathrm{B}} \mathcal{B} \implies \mathrm{BPE}(\mathcal{A}) \sqsubseteq_{\mathrm{B}} \mathrm{FPE}(\mathcal{B})$

Properly applied transformation does not destroy simulation

Matrix simulation

• We can define **fwd**. partial execution for **Kleisli simulation**

- We can define fwd. partial execution for Kleisli simulation
- How about bwd. partial execution?
 - "Opposite automaton" should be defined?

Overview

- 1. Matrix Simulation
 - Motivation
 - Semiring-Weighted Automaton and Matrix Simulation
 - Origin: from Theory of Coalgebra
- 2. Partial Execution (to be More "Complete")
- 3. Specific Examples
 - Example 1 : $S_{+,\times}$ -weighted Automaton
 - Example 2 : $\mathcal{S}_{\max,+}$ -weighted Automaton
- 4. Conclusion and Future Works

Comparison with Other Simulations for $\mathcal{S}_{+,\times}$ -Weighted Automata

 $\mathcal{S}_{+, imes} = ([0,\infty],+,0, imes,1,\leq)$

Model for probabilistic system

Comparison with Other Simulations for $\mathcal{S}_{+,\times}$ -Weighted Automata

$$\mathcal{S}_{+, imes} = ([0,\infty],+,0, imes,1,\leq)$$

Model for probabilistic system

Simulation by Jonsson & Larsen (1991) (JL-simulation)

Comparison with Other Simulations for $\mathcal{S}_{+,\times}$ -Weighted Automata

$$\mathcal{S}_{+, imes} = ([0,\infty],+,0, imes,1,\leq)$$
 .

Model for probabilistic system

Simulation by Jonsson & Larsen (1991) (JL-simulation)

Linear inequalities for matrix simulation are "ordinal" linear inequalities We implemented using linear programming solver

Linear inequalities for matrix simulation are "ordinal" linear inequalities We implemented using linear programming solver

• Verification of anonymity of Grade protocol [Kiefer et al. 2011]

Linear inequalities for matrix simulation are "ordinal" linear inequalities We implemented using linear programming solver

- Verification of anonymity of Grade protocol [Kiefer et al. 2011]
- In [Kiefer et al. 2011],

Linear inequalities for matrix simulation are "ordinal" linear inequalities We implemented using linear programming solver

Verification of anonymity of Grade protocol [Kiefer et al. 2011]

Program of Grade protocol

- In [Kiefer et al. 2011], Obviously satisfies anonymity
 - Programs P and S are introduced
 - Equivalence of P and S implies anonymity of P

Linear inequalities for matrix simulation are "ordinal" linear inequalities We implemented using linear programming solver

Verification of anonymity of Grade protocol [Kiefer et al. 2011]

Program of Grade protocol

- In [Kiefer et al. 2011], Obviously satisfies anonymity
 - Programs P and S are introduced
 - Equivalence of P and S implies anonymity of P
 - APEX (tool that change program to $s_{+,\times}$ -weighted automaton) is implemented

 $\mathsf{P}\mapsto \mathcal{A}_\mathsf{P}\qquad \mathsf{S}\mapsto \mathcal{A}_\mathsf{S}$
Linear inequalities for matrix simulation are "ordinal" linear inequalities We implemented using linear programming solver

Verification of anonymity of Grade protocol [Kiefer et al. 2011]

Program of Grade protocol

- In [Kiefer et al. 2011], Obviously satisfies anonymity
 - Programs P and S are introduced
 - Equivalence of P and S implies anonymity of P
 - APEX (tool that change program to $s_{+,\times}$ -weighted automaton) is implemented $\mathbf{P} \mapsto \mathcal{A}_{\mathbf{P}} \qquad \mathbf{S} \mapsto \mathcal{A}_{\mathbf{S}}$
 - Experiment on equivalence check of produced $S_{+,\times}$ -weighted automata $Lang(\mathcal{A}_P) = Lang(\mathcal{A}_S)$

Linear inequalities for matrix simulation are "ordinal" linear inequalities We implemented using linear programming solver

Verification of anonymity of Grade protocol [Kiefer et al. 2011]

- In [Kiefer et al. 2011],
 Program of Grade protocol

 Obviously satisfies anonymity
 - Programs P and S are introduced
 - Equivalence of P and S implies anonymity of P
 - APEX (tool that change program to $s_{+,\times}$ -weighted automaton) is implemented $\mathsf{P} \mapsto \mathcal{A}_{\mathsf{P}} \qquad \mathsf{S} \mapsto \mathcal{A}_{\mathsf{S}}$
 - Experiment on equivalence check of produced $S_{+,\times}$ -weighted automata $Lang(\mathcal{A}_{\mathbf{P}}) = Lang(\mathcal{A}_{\mathbf{S}})$
- We proved this equivalence by two-way language inclusion $\operatorname{Lang}(\mathcal{A}_{\mathsf{P}}) = \operatorname{Lang}(\mathcal{A}_{\mathsf{S}}) \Leftarrow \begin{cases} \operatorname{Lang}(\mathcal{A}_{\mathsf{P}}) \sqsubseteq \operatorname{Lang}(\mathcal{A}_{\mathsf{S}}) \text{ and} \\ \operatorname{Lang}(\mathcal{A}_{\mathsf{P}}) \sqsupseteq \operatorname{Lang}(\mathcal{A}_{\mathsf{S}}) \end{cases}$

param.		\mathcal{A}_{P}		\mathcal{A}_{S}			direction,	time	space
G	old S	#st.	#tr.	#st.	#tr.	Σ	fwd./bwd.	(sec)	(GB)
2	8	578	1522	130	642	11	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	1.77	1.21
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	1.72	1.22
2	10	1102	2982	202	1202	13	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	9.42	4.05
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	9.25	4.09
2	12	1874	5162	290	2018	15	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	38.60	11.51
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	38.34	11.63
3	8	1923	7107	243	2163	20	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	44.43	12.26
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	44.11	12.64
4	6	1636	7468	196	1924	23	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	30.28	10.39
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	29.94	10.49

param.		\mathcal{A}_{P}		\mathcal{A}_{S}			direction,	time	space
G	\boldsymbol{S}	#st.	#tr.	#st.	#tr.	Σ	fwd./bwd.	(sec)	(GB)
2	8	578	1522	130	642	11	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	1.77	1.21
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	1.72	1.22
2	10	1102	2982	202	1202	13	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	9.42	4.05
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	9.25	4.09
2	12	1874	5162	290	2018	15	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	38.60	11.51
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	38.34	11.63
3	8	1923	7107	243	2163	20	$\mathcal{A}_{P}{\sqsubseteq}_{\mathrm{F}}\mathcal{A}_{S}$	44.43	12.26
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	44.11	12.64
4	6	1636	7468	196	1924	23	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	30.28	10.39
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	29.94	10.49

Two-way inclusion could be checked for all parameters

- $\mathcal{A}_P \sqsubseteq_F \mathcal{A}_S$ and $\mathcal{A}_S \sqsubseteq_B \mathcal{A}_P$ were found

param.		\mathcal{A}_{P}		\mathcal{A}_{S}			direction,	time	space
G	$oldsymbol{S}$	#st.	#tr.	#st.	#tr.	Σ	fwd./bwd.	(sec)	(GB)
2	8	578	1522	130	642	11	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	1.77	1.21
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	1.72	1.22
2	10	1102	2982	202	1202	13	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	9.42	4.05
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	9.25	4.09
2	12	1874	5162	290	2018	15	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	38.60	11.51
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	38.34	11.63
3	8	1923	7107	243	2163	20	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	44.43	12.26
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	44.11	12.64
4	6	1636	7468	196	1924	23	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	30.28	10.39
							$\mathcal{A}_{P} \square_{\mathrm{B}} \mathcal{A}_{S}$	29.94	10.49

- Two-way inclusion could be checked for all parameters
 - $\mathcal{A}_P \sqsubseteq_F \mathcal{A}_S$ and $\mathcal{A}_S \sqsubseteq_B \mathcal{A}_P$ were found
- Space is serious problem

para	am.	\mathcal{A}_{P}		\mathcal{A}_{S}			direction,	time	space
G	$oldsymbol{S}$	#st.	#tr.	#st.	#tr.	Σ	fwd./bwd.	(sec)	(GB)
2	8	578	1522	130	642	11	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	1.77	1.21
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	1.72	1.22
2	10	1102	2982	202	1202	13	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	9.42	4.05
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	9.25	4.09
2	12	1874	5162	290	2018	15	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	38.60	11.51
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	38.34	11.63
3	8	1923	7107	243	2163	20	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	44.43	12.26
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	44.11	12.64
4	6	1636	7468	196	1924	23	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	30.28	10.39
							$\mathcal{A}_{P} \Box_{\mathrm{B}} \mathcal{A}_{S}$	29.94	10.49

- Two-way inclusion could be checked for all parameters
 - $\mathcal{A}_P \sqsubseteq_F \mathcal{A}_S$ and $\mathcal{A}_S \sqsubseteq_B \mathcal{A}_P$ were found
- Space is serious problem
- Slower than implementation in [Kiefer et al. 2011]
 - Inclusion is harder to check than equivalence undecidable [Blondel & Canterni, 2003]
 P [Kiefer et al. 2011]

Verification of probable innocence of Crowds protocol

[Konstantinos et al. 2006]

[Reiter et al. 1998]

- Probable innocence : a kind of anonymity
- Probable innocence can be proved by checking language inclusion [Hasuo et al. 2010] (not language equivalence)

Verification of probable innocence of Crowds protocol

[Konstantinos et al. 2006]

[Reiter et al. 1998]

- Probable innocence : a kind of anonymity
- Probable innocence can be proved by checking language inclusion [Hasuo et al. 2010] (not language equivalence)
- We tried to prove for various parameters

Verification of probable innocence of Crowds protocol

[Konstantinos et al. 2006]

[Reiter et al. 1998]

- Probable innocence : a kind of anonymity
- Probable innocence can be proved by checking language inclusion [Hasuo et al. 2010] (not language equivalence)
- We tried to prove for various parameters

Simulation was not found for many parameters

Verification of probable innocence of Crowds protocol

[Konstantinos et al. 2006]

[Reiter et al. 1998]

- Probable innocence : a kind of anonymity
- Probable innocence can be proved by checking language inclusion [Hasuo et al. 2010] (not language equivalence)
- We tried to prove for various parameters

para	am.		$ \mathcal{A}_{P} $		$ \mathcal{A}_{S} $			direction	time	space	d
n	С	p_f	#st.	#tr.	#st.	#tr.	Σ	fwd./bwd.	(sec)	(GB)	
5	1	$\frac{9}{10}$	7	44	7	56	18	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	52.48	0.01	2
								$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.01	0.01	2
7	1	$\frac{3}{4}$	9	88	9	118	26	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	0.15	0.03	2
		-						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.02	0.01	2
10	2	$\frac{4}{5}$	12	224	12	280	54	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	802.47	0.35	2
		U						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.05	0.03	2
20	6	$\frac{4}{5}$	22	1514	22	1696	238	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	T/O		2
		U						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	1.32	0.78	2
30	6	$\frac{4}{5}$	32	4732	32	5112	550	$\mathcal{A}_{P}\sqsubseteq_{\mathrm{F}}\mathcal{A}_{S}$	S/F		
		0						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	11.84	5.99	2

para	am.		$ \mathcal{A}_{P}$		\mathcal{A}_{S}			direction	time	space	$\mid d$
n	С	p_{f}	#st.	#tr.	#st.	#tr.	Σ	fwd./bwd.	(sec)	(GB)	
5	1	$\frac{9}{10}$	7	44	7	56	18	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	52.48	0.01	2
		10						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.01	0.01	2
7	1	$\frac{3}{4}$	9	88	9	118	26	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	0.15	0.03	2
		-						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.02	0.01	2
10	2	$\frac{4}{5}$	12	224	12	280	54	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	802.47	0.35	2
		J.						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.05	0.03	2
20	6	$\frac{4}{5}$	22	1514	22	1696	238	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	T/O		2
		0						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	1.32	0.78	2
30	6	$\frac{4}{5}$	32	4732	32	5112	550	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	S/F		
		2						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	11.84	5.99	2

Simulation finally found for many parameters

para	am.		\mathcal{A}_{P}		\mathcal{A}_{S}			direction	time	space	d
n	С	p_f	#st.	#tr.	#st.	#tr.	Σ	fwd./bwd.	(sec)	(GB)	
5	1	$\frac{9}{10}$	7	44	7	56	18	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	52.48	0.01	2
								$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.01	0.01	2
$\overline{7}$	1	$\frac{3}{4}$	9	88	9	118	26	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	0.15	0.03	2
		-						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.02	0.01	2
10	2	$\frac{4}{5}$	12	224	12	280	54	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	802.47	0.35	2
		_						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.05	0.03	2
20	6	$\frac{4}{5}$	22	1514	22	1696	238	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	T/O		2
		_						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	1.32	0.78	2
30	6	$\frac{4}{5}$	32	4732	32	5112	$\overline{550}$	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	S/F		
		_						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	11.84	5.99	2

- Simulation finally found for many parameters
- Space is serious problem

para	am.		$ \mathcal{A}_{P} $		$ \mathcal{A}_{S} $			direction	time	space	d
n	c	p_f	#st.	#tr.	#st.	#tr.	Σ	fwd./bwd.	(sec)	(GB)	
5	1	$\frac{9}{10}$	7	44	7	56	18	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	52.48	0.01	2
		20						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.01	0.01	2
7	1	$\frac{3}{4}$	9	88	9	118	26	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	0.15	0.03	2
		-						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.02	0.01	2
10	2	$\frac{4}{5}$	12	224	12	280	54	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	802.47	0.35	2
		C						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	0.05	0.03	2
20	6	$\frac{4}{5}$	22	1514	22	1696	238	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	T/O		2
		C						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	1.32	0.78	2
30	6	$\frac{4}{5}$	32	4732	32	5112	550	$\mathcal{A}_{P} \sqsubseteq_{\mathrm{F}} \mathcal{A}_{S}$	S/F		
		•						$\mathcal{A}_{P} \sqsubseteq_{\mathrm{B}} \mathcal{A}_{S}$	11.84	5.99	2

- Simulation finally found for many parameters
- Space is serious problem
- Bwd. simulation is much faster than fwd. simulation
 - Due to peculiar shape of automaton?

Overview

- 1. Matrix Simulation
 - Motivation
 - Semiring-Weighted Automaton and Matrix Simulation
 - Origin: from Theory of Coalgebra
- 2. Partial Execution (to be More "Complete")
- 3. Specific Examples
 - Example 1 : $S_{+,\times}$ -weighted Automaton
 - Example 2 : $\mathcal{S}_{max,+}$ -weighted Automaton
- 4. Conclusion and Future Works

Comparison with Other Simulations for
$$S_{\max,+}$$
-Weighted Automata $S_{\max,+} = ([-\infty,\infty], \max, -\infty, +, 0, \leq)$

- Simulation by Chatterjee et al. (2010) (G-simulation)
 - Game-theoretic simulation
 - Simulation for automata for infinite-length words
 - Easy to modify for automata for finite-length words

Thm: If \mathcal{A} has no trap states (i.e. every states can reach the final state), $\mathcal{A} \sqsubseteq_{\mathbf{F}} \mathcal{B} \Leftrightarrow \mathcal{A} \sqsubseteq_{\mathbf{G}} \mathcal{B}$

Algorithm for linear inequalities on $S_{max,+}$ is introduced by Butkovic et al.

We implemented using the algorithm

•

[Butkovic et al. 2006]

Algorithm for linear inequalities on $S_{max,+}$ is introduced by Butkovic et al. [Butkovic et al. 2006]

We implemented using the algorithm

•

We could not find good benchmark

Test max +-sim for
$$\begin{cases} \mathcal{A} \sqsubseteq_{F/B} \mathcal{A} \text{ (almost always yes)} \\ \mathcal{A} \sqsubseteq_{F/B} \mathcal{B} \text{ (almost always no)} \end{cases}$$

 $(\mathcal{A}, \mathcal{B}: \text{randomly generated automata})$

Algorithm for linear inequalities on $S_{max,+}$ is introduced by Butkovic et al. [Butkovic et al. 2006]

We implemented using the algorithm

We could not find good benchmark

Test max +-sim for
$$\begin{cases} \mathcal{A} \sqsubseteq_{F/B} \mathcal{A} \ \mathcal{A} \end{cases}$$
 (almost always yes) $\mathcal{A} \sqsubseteq_{F/B} \mathcal{B}$ (almost always no)

 $(\mathcal{A}, \mathcal{B}: randomly generated automata)$

Algorithm for linear inequalities on $S_{max,+}$ is introduced by Butkovic et al. [Butkovic et al. 2006]

We implemented using the algorithm

We could not find good benchmark

Test max +-sim for
$$\begin{cases} \mathcal{A} \sqsubseteq_{F/B} \mathcal{A} \text{ (almost always yes)} \\ \mathcal{A} \sqsubseteq_{F/B} \mathcal{B} \text{ (almost always no)} \end{cases}$$

 $(\mathcal{A}, \mathcal{B}: randomly generated automata)$

Overview

- 1. Matrix Simulation
 - Motivation
 - Semiring-Weighted Automaton and Matrix Simulation
 - Origin: from Theory of Coalgebra
- 2. Partial Execution (to be More "Complete")
- 3. Specific Examples
 - Example 1 : $S_{+,\times}$ -weighted Automaton
 - Example 2 : $\mathcal{S}_{\max,+}$ -weighted Automaton
- 4. Conclusion and Future Works

Conclusion

- Matrix-based simulation (matrix simulation) to prove language inclusion between weighted automata
- Transformation of automata (partial execution) that increases matrix simulations
- Study for specific semirings $\mathcal{S}_{+,\times} \text{and} \ \mathcal{S}_{\max,+}$

Future Works

- Matrix simulation can be defined for other transition types by its generality
 - → Change F to other polynomial functors e.g. $F = 1 + \Sigma \times (_) \times (_)$ (Automaton that accepts trees)
- Matrix simulation for automaton for infinite-length words
- Optimization of implementation