Quotient and Kantorovich Metric via Observation-Algebra in Lawvere Theory

Hiroshi Ogawa University of Tokyo (Hasuo lab. M1)

CSCAT 2015 3/14

Quotient and <u>Kantorovich Metric</u> via Observation-Algebra in Lawvere Theory

Hiroshi Ogawa University of Tokyo (Hasuo lab. M1)

CSCAT 2015 3/14

Outline

- Coincidence of
 - Quotient Monad via TT-lifting (top top lifting)
 - Quotient Lawvere theory via observationalalgebra

- Kantorovich Metric via observational-algebra
- Conclusion / Future work

Outline

- Coincidence of
 - Quotient Monad via TT-lifting (top top lifting)
 - Quotient Lawvere theory via observationalalgebra

- Kantorovich Metric via observational-algebra
- Conclusion / Future work

- Originates from the proof of strong norm. of Moggi's comp. metalang. [Lindley, Stark]
- Semantic (categorical) formulation [Katsumata]
 - lifting of a strong monad along a "nice" fibration

- logical predicates/relations
- enumerating the order-enrichment on $\mathcal{K}\ell(T)$

- Originates from the proof of strong norm. of Moggi's comp. metalang. [Lindley, Stark]
- Semantic (categorical) formulation [Katsumata]
 - lifting of a strong monad along a "nice" fibration

- logical predicates/relations
- enumerating the order-enrichment on $\mathcal{K}\ell(T)$

- Originates from the proof of strong norm. of Moggi's comp. metalang. [Lindley, Stark]
- Semantic (categorical) formulation [Katsumata]
 - lifting of a strong monad along a "nice" fibration

- logical predicates/relations
- enumerating the order-enrichment on $\mathcal{K}\ell(T)$

- Originates from the proof of strong norm. of Moggi's comp. metalang. [Lindley, Stark]
- Semantic (categorical) formulation [Katsumata]
 - lifting of a strong monad along a "nice" fibration

- logical predicates/relations
- enumerating the order-enrichment on $\mathcal{K}\ell(T)$

- Originates from the proof of strong norm. of Moggi's comp. metalang. [Lindley, Stark]
- Semantic (categorical) formulation [Katsumata]
 - lifting of a strong monad along a "nice" fibration

- logical predicates/relations
- enumerating the order-enrichment on $\mathcal{K}\ell(T)$

• we applied TT-lifting to ${
m Rel} \atop \psi_p$

• we applied TT-lifting to $\begin{array}{c} \operatorname{Rel} \\ \psi_p \end{array}$. Sets

Def.

Given a monad T: Sets → Sets

a $\mathcal{E}M$ -alg. α : TA \rightarrow A w/ cong.equiv.rel $\sim_A \subseteq A \times A$,

we define $\approx^{(\alpha, \sim_A)}$: Sets \rightarrow EqRel by:

$$t \approx_X t' \iff \forall f : X \to A$$
. $\alpha \cdot Tf(t) \sim_A \alpha \cdot Tf(t')$

where
$$X \xrightarrow{f} A$$
 Sets $TX \xrightarrow{Tf} TA \xrightarrow{\alpha} A$

• we applied TT-lifting to $\begin{array}{c} \operatorname{Rel} \\ \downarrow_p \end{array}$.

Sets

Given a monad T: Sets → Sets

a $\mathcal{E}M$ -alg. a: TA \rightarrow A w/ cong.equiv.rel $\sim_A \subseteq A \times A$,

we define $\approx^{(\alpha, \sim_A)}$: Sets \rightarrow EqRel by:

$$t \approx_X t' \iff \forall f : X \to A$$
. $\alpha \cdot Tf(t) \sim_A \alpha \cdot Tf(t')$

where
$$X \xrightarrow{f} A$$
 Sets

$$TX \xrightarrow{Tf} TA \xrightarrow{\alpha} A$$

 $T(\sim_{A}) \xrightarrow{T(\pi)} TA$ $\exists \bigvee_{T(\pi')} \bigvee_{\alpha} \alpha$ $(\sim_{A}) \xrightarrow{\pi'} A$

• we applied TT-lifting to $\begin{array}{c} \operatorname{Rel} \\ \downarrow_p \end{array}$.

Sets

Def.

Given a monad T: Sets → Sets

a $\mathcal{E}M$ -alg. $\alpha: TA \to A$ w/ cong.equiv.rel $\sim_A \subseteq A \times A$,

we define $\approx^{(\alpha, \sim_A)}$: Sets \rightarrow EqRel by:

$$\begin{array}{ccc} & & \approx_X \\ X & \mapsto & \bigvee_{t} \\ & TX \times TX \end{array}$$

$$t \approx_X t' \iff \forall f : X \to A. \ \alpha \cdot Tf(t) \sim_A \alpha \cdot Tf(t')$$

where
$$X \xrightarrow{f} A$$
 Sets $TX \xrightarrow{Tf} TA \xrightarrow{\alpha} A$

Quotient Monad via TT-lifting

• from the previous $\approx^{(\alpha, \sim_A)}$: Sets \rightarrow EqRel,

$$X \mapsto \bigvee_{TX \times TX}^{\approx_X}$$

Quotient Monad via TT-lifting

Prop.

We define $T/_{(\alpha, \sim_A)}$: Sets \rightarrow Sets by $T/_{(\alpha, \sim_A)}(X) := TX/\approx_X$,

- Then, $T/(\alpha, \sim_A)$ is a monad,
 - $(q_X)_X$ forms a monad map $q: T \Rightarrow T/_{(\alpha, \sim A)}$.

proof.

Check Hino-san's condition (especially in Sets).

substitutivity, congruencity.

List \Rightarrow (fin.supp.) Multiset \Rightarrow (finite) Powerset

$$X^*$$
 \rightarrow $\mathcal{M}_N(X)$ \rightarrow $\mathcal{P}(X)$

List \Rightarrow (fin.supp.) Multiset \Rightarrow (finite) Powerset

$$X^*$$
 \rightarrow $\mathcal{M}_N(X)$ \rightarrow $\mathcal{P}(X)$

$$x \cdot y \cdot x$$

$$x \cdot x \cdot y$$

List \Rightarrow (fin.supp.) Multiset \Rightarrow (finite) Powerset

$$X^*$$
 \twoheadrightarrow $\mathcal{M}_N(X)$ \twoheadrightarrow $\mathcal{P}(X)$
 $x \cdot y \cdot x$
 $x \cdot x \cdot y$

$$X^*$$
 \rightarrow $\mathcal{M}_N(X)$ \rightarrow $\mathcal{P}(X)$
 $X \cdot y \cdot X$ \longrightarrow $2x + y$
 $X \cdot x \cdot y$ \longrightarrow $X + y$

List ⇒ (fin.supp.) Multiset ⇒ (finite) Powerset

• $T = (-)^*$

the parameters for TT-lifting

$$\cdot \alpha = \mu_2 : (2^*)^* \to 2^* \quad \text{w/} \quad \sim_{2^*} = \{ a \cdot b = b \cdot a \}$$

List ⇒ (fin.supp.) Multiset ⇒ (finite) Powerset

$$\mathcal{P}(X)$$

•
$$T = (-)^*$$
,

$$\cdot \alpha = \mu_2 : (2^*)^* \to 2^* \quad \text{w/} \quad \sim_{2^*} = \{ a \cdot | = b \cdot a \}$$

the parameters for TT-lifting

$$= b \cdot a$$

•
$$T = \mathcal{M}_N$$
,

the parameters for TT-lifting

•
$$\alpha = \mu_1 : \mathcal{M}_N(\mathcal{M}_N(1)) \rightarrow \mathcal{M}_N(1)$$
 w/ $\sim_{\mathcal{M}(1)} = \{ a + a = a \}$

List ⇒ (fin.supp.) Multiset ⇒ (finite) Powerset

· Algebraic (Lawvere theoretic) view

opr.

eq.

List ⇒ (fin.supp.) Multiset ⇒ (finite) Powerset

$$X^* \longrightarrow \mathcal{M}_{N}(X) \longrightarrow \mathcal{P}(X)$$

$$X \cdot y \cdot X \longrightarrow 2x + y \longrightarrow \{x, y\}$$

$$X \cdot x \cdot y \longrightarrow X + y \longrightarrow X + y \longrightarrow X + y$$

· Algebraic (Lawvere theoretic) view

```
opr. {e, · }eq. • unit• assoc.
```

List ⇒ (fin.supp.) Multiset ⇒ (finite) Powerset

· Algebraic (Lawvere theoretic) view

opr. {e, ·}

eq. • unit • unit

assoc. • assoc.

· comm.

List \Rightarrow (fin.supp.) Multiset \Rightarrow (finite) Powerset

· Algebraic (Lawvere theoretic) view

opr. {e, ·} {e, ·}

eq. • unit • unit • unit

• assoc. • assoc. • assoc.

• comm. • comm.

• idemp.

List \Rightarrow (fin.supp.) Multiset \Rightarrow (finite) Powerset

· Algebraic (Lawvere theoretic) view

opr. {e, ·} {e, ·}

eq. • unit • unit • unit

• assoc. • assoc. • assoc.

comm.comm.idemp.

List \Rightarrow (fin.supp.) Multiset \Rightarrow (finite) Powerset

· Algebraic (Lawvere theoretic) view

opr. {e, ·} {e, ·}

eq. • unit • unit • unit

• assoc. • assoc. • assoc.

• comm. • comm • idemp.

List \Rightarrow (fin.supp.) Multiset \Rightarrow (finite) Powerset

· Algebraic (Lawvere theoretic) view

opr. {e, ·} {e, ·}

eq. • unit • unit • unit

assoc.
assoc.
assoc.

• comm. • comm

"adding certain equations!" • idemp.

Outline

- Coincidence of
 - Quotient Monad via TT-lifting (top top lifting)
 - Quotient Lawvere theory via observationalalgebra

- Kantorovich Metric via observational-algebra
- Conclusion / Future work

Outline

- Coincidence of
 - Quotient Monad via TT-lifting (top top lifting)
 - Quotient Lawvere theory via observationalalgebra

Kantorovich Metric via observational-algebra

Conclusion / Future work

Lawvere Theory briefly

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

Lawvere Theory briefly

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

Def. A Law. th. is a cat. T s.t. ...

Lawvere Theory briefly

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

Def. A Law. th. is a cat. T's.t. ...

<u>Def.</u> A $(\mathcal{T}, Sets)$ -model is a functor N: $\mathcal{T} \to Sets s.t. ...$

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

```
Def. A Law. th. is a cat. \mathcal{T} s.t. ...

Def. A (\mathcal{T} Sets)-model is a functor N: \mathcal{T} \to Sets s.t. ...

MonTh
```

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

```
Def. A Law. th. is a cat. T s.t. ...

Def. A (T Sets)-model is a functor N: T \to S ets s.t. ...
```

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

```
<u>Def.</u> A Law. th. is a cat. T s.t. ...
```

<u>Def.</u> A (\mathcal{T} Sets)-model is a functor N: $\mathcal{T} \to Sets s.t. ...$

```
\frac{\text{Th}}{\text{MonTh}} \rightarrow \text{GrpTh}
```

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

```
<u>Def.</u> A Law. th. is a cat. T s.t. ...
```

<u>Def.</u> A (\mathcal{T} Sets)-model is a functor N: $\mathcal{T} \to Sets s.t. ...$

```
\frac{\mathrm{Th}}{\mathrm{MonTh}} \to \mathrm{GrpTh}
```

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

```
Def. A Law. th. is a cat. T s.t. ...

Def. A (T Sets)-model is a functor N: T \to S ets s.t. ...

Mod(GrpTh, Sets)

G \Rightarrow G'

MonTh \to GrpTh
```

- Categorical approach to Universal Algebra [Lawvere] (e.g. Monoid, Group, Vect.Space)
- Correspondense w/ finitary monads on Sets
- · Comp. effect from opr. and eq. [Plotkin, Power]

```
<u>Def.</u> A Law. th. is a cat. T s.t. ...

<u>Def.</u> A (T Sets)-model is a functor N: T \to S ets s.t. ...

<u>Mod(GrpTh, Sets)</u>

G \Rightarrow G'

the category of (GrpTh, Sets)-models
the category of law. ths.

(\simeq the category of groups)
```

Correspondense w/ finitary monads on Sets

Thm. [Barr, Wells]

There exists an equivalence betw. FinMon(Sets) and Th,

as in: $\underline{\text{FinMon}(\text{Sets})} \xrightarrow{\simeq} \underline{\text{Th}}$

 $\mathsf{T} \longmapsto \mathcal{T}_\mathsf{T} := \mathcal{K}\ell(\mathsf{T})_\mathsf{N}^\mathsf{op}$

Thm. [Barr, Wells]

There exists an equivalence as:

$$\underline{\mathcal{E}m}(\mathsf{T}) \xrightarrow{\simeq} \underline{\mathsf{Mod}}(\underline{\mathcal{T}}_\mathsf{T}, \underline{\mathsf{Sets}})$$

 $(a: TA \rightarrow A) \stackrel{M}{\longmapsto} Ma$

Thm. [Borceux]

The cat. of models $Mod(\mathcal{T}, Sets)$ admits quotient.

Thm. [Borceux]

The cat. of models $\mathsf{Mod}(\mathcal{T},\mathsf{Sets})$ admits quotient.

• Thus, we get a quotient model $Q_{(\alpha, \sim A)}$ from the assumptions of TT-lifting as in:

$$\mathcal{E}M(T) \longrightarrow \mathsf{Mod}(T\mathsf{T},\mathsf{Sets})$$
 $\sim_{\mathsf{A}} \Rightarrow \alpha \longmapsto \mathsf{M}(\sim_{\mathsf{A}}) \Rightarrow \mathsf{M}\alpha \twoheadrightarrow \mathsf{Q}_{(\alpha,\sim_{\mathsf{A}})}$
 $T(\sim_{\mathsf{A}}) \xrightarrow{T(\pi')} TA$
 $T(\sim_{\mathsf{A}}) \xrightarrow{\pi} A$

Rem. an observation-algebra a (T, Sets)-model

Rem. an observation-algebra a (\mathcal{T} , Sets)-model

Prop.

Given \mathcal{T} : Law. Th,

 $N: (\mathcal{T}, Sets)$ -model (thus, $N: \mathcal{T} \to Sets$),

we define a cat. T/N as follows:

<u>kernel pair</u> $Ker(N) \Rightarrow \mathcal{T} \xrightarrow{N} Sets,$

coequalizer $Ker(N) \Rightarrow T \rightarrow T/N$.

Then, T/N is a Law. th.

Rem. an observation-algebra a (T, Sets)-model

Prop.

Given \mathcal{T} : Law. Th,

 $N: (\mathcal{T}, Sets)$ -model (thus, $N: \mathcal{T} \to Sets$),

we define a cat. T/N as follows:

<u>kernel pair</u> $Ker(N) \Rightarrow \mathcal{T} \xrightarrow{N} Sets,$

coequalizer $Ker(N) \Rightarrow T' \rightarrow T'N$.

Then, T/N is a Law. th.

• If two terms s, t are "observed" similarly in the model N, then T/N includes an additional eq. s = t.

• If two terms s, t are "observed" similarly in the model N, then T/N includes an additional eq. s = t.

• If two terms s, t are "observed" similarly in the model N, then T/N includes an additional eq. s = t.

• If two terms s, t are "observed" similarly in the model N, then T/N includes an additional eq. s = t.

• If two terms s, t are "observed" similarly in the model N, then T/N includes an additional eq. s = t.

Thm.

Given a monad T: Sets → Sets

a $\mathcal{E}M$ -alg. a: TA \rightarrow A w/ cong.equiv.rel $\sim_A \subseteq A \times A$,

Then, we have $\mathcal{T}(T/_{(\alpha, \sim A)}) \simeq (\mathcal{T}_T)/Q_{(\alpha, \sim A)}$ as in:

$$\underline{\underline{FinMon}} \quad \stackrel{\simeq}{\longrightarrow} \quad \underline{\underline{Th}}$$

Т

Thm.

Given a monad T: Sets → Sets

a $\mathcal{E}M$ -alg. a: TA \rightarrow A w/ cong.equiv.rel $\sim_A \subseteq A \times A$,

Thm.

Given a monad T: Sets → Sets

a $\mathcal{E}M$ -alg. a: TA \rightarrow A w/ cong.equiv.rel $\sim_A \subseteq A \times A$,

Thm.

Given a monad T: Sets → Sets

a $\mathcal{E}M$ -alg. a: TA \rightarrow A w/ cong.equiv.rel $\sim_A \subseteq A \times A$,

Thm.

Given a monad T: Sets → Sets

a $\mathcal{E}M$ -alg. a: TA \rightarrow A w/ cong.equiv.rel $\sim_A \subseteq A \times A$,

Thm.

Given a monad T: Sets → Sets

a $\mathcal{E}M$ -alg. a: TA \rightarrow A w/ cong.equiv.rel $\sim_A \subseteq A \times A$,

Then, we have $\mathcal{T}(T/_{(\alpha, \sim A)}) \simeq (\mathcal{T}_T)/Q_{(\alpha, \sim A)}$ as in:

Outline

- Coincidence of
 - Quotient Monad via TT-lifting (top top lifting)
 - Quotient Lawvere theory via observationalalgebra

- Kantorovich Metric via observational-algebra
- Conclusion / Future work

Outline

- Coincidence of
 - Quotient Monad via TT-lifting (top top lifting)
 - Quotient Lawvere theory via observationalalgebra

Kantorovich Metric via observational-algebra

Conclusion / Future work

- · Metric on prob. measure/distribution
 - Quantitative behavioural equiv. betw. prob. sys.
 [Breugel, Worrel]

- Metric on prob. measure/distribution
 - Quantitative behavioural equiv. betw. prob. sys.
 [Breugel, Worrel]

Q. Are s and s' behavioural equivalent??

- Metric on prob. measure/distribution
 - Quantitative behavioural equiv. betw. prob. sys.
 [Breugel, Worrel]

Q. Are s and s' behavioural equivalent??

Ansl. [Larsen, Skou] : No!

- Metric on prob. measure/distribution
 - Quantitative behavioural equiv. betw. prob. sys.
 [Breugel, Worrel]

Q. Are s and s' behavioural equivalent??

Ansl. [Larsen, Skou] : No!

Ans 2. [Breugel, Worrel]: No... but the distance is c-E.

Kantorovich metric def.

```
\begin{array}{ll} \underline{\text{Def.}} \; [\text{Kantorovich}] & \text{usual categorical setting } (\text{dx:} \; X \times X \rightarrow [0,1]) \\ \\ \text{For } (X,\,\text{d}_X) \; : \; (\text{1-bounded}) \; \text{metric sp.} \\ \\ \mathcal{B}(X) \; : \; \text{the set of Borel prob. meas. on } X, \\ \\ \text{the Kantorovich metric } \; \text{d}_K \; \text{on } \; \mathcal{B}(X) \; \text{is defined by:} \\ \\ \text{d}_K(\mu,\,\mu') = \sup_{\substack{f:\, X \rightarrow [0,1] \\ \text{non. exp.}}} \big| \int_{f} f \, \text{d}\mu \; - \; \int_{f} f \, \text{d}\mu' \big| \\ \\ \end{array}
```

Kantorovich metric def.

```
Def. [Kantorovich] usual categorical setting (dx: X \times X \rightarrow [0,1]) For (X, d_X): (1-bounded) metric sp. \mathcal{B}(X): the set of Borel prob. meas. on X, the Kantorovich metric d_K on \mathcal{B}(X) is defined by: d_K(\mu, \mu') = \sup_{\substack{f: X \rightarrow [0,1] \\ \text{non. exp.}}} \int f \, d\mu - \int f \, d\mu' |
```

• (intuition) d_K is the dual of transportation problem.

Thm. [Kantorovich]

```
We also define a metric d_L on \mathcal{B}(X) by: d_L(\mu,\,\mu')=\inf\left\{\int_{x\times x}d_x(x,\,y)\;dv_{(x,y)}\mid \begin{array}{c}v:\text{prob.meas. on }X\times X\\\mu,\,\mu'\text{ are marginal of }v\end{array}\right\} Then, d_K=d_L.
```

Kantorovich metric def.

```
Def. [Kantorovich] usual categorical setting (dx: X \times X \rightarrow [0,1]) For (X, d_X): (1-bounded) metric sp. \mathcal{B}(X): the set of Borel prob. meas. on X, the Kantorovich metric d_K on \mathcal{B}(X) is defined by: d_K(\mu, \mu') = \sup_{\substack{f: X \rightarrow [0,1] \\ \text{non. exp.}}} |\int f d\mu - \int f d\mu'|
```

• (intuition) d_K is the dual of transportation problem.

Thm. [Kantorovich]

We also define a metric d_L on $\mathcal{B}(X)$ by:

$$d_L(\mu, \mu') = \inf \left\{ \int_{x \times x} d_x(x, y) \ dv_{(x,y)} \ \middle| \ \begin{array}{l} v : \text{prob.meas. on } X \times X \\ \mu, \ \mu' \text{ are marginal of } v \end{array} \right\}$$

Then, $d_K = d_L$.

minimize the cost $c = \sum dist_i \times mass_i$

intuition (transport. problem)

intuition (transport. problem)

- fix the Law. th. as $\mathcal{T}_{\mathcal{D}}$ (the th. of convex sp.)
- replace Sets w/ Met (the cod. of model)
 - · each model has a met. sp. as its carrier

- fix the Law. th. as $\mathcal{T}_{\mathcal{D}}$ (the th. of convex sp.)
- replace Sets w/ Met (the cod. of model)

corresponds to

· each model has a met. sp. as its carrier

$$\begin{array}{ccc} & \xrightarrow{N} & \xrightarrow{N} & \underline{Met} \\ & n & & Nn \\ & \mu {\downarrow} \downarrow \mu' & \longmapsto & N(\mu) {\downarrow} \downarrow N(\mu') \\ & 1 & & N1 \end{array}$$

- fix the Law. th. as $\mathcal{T}_{\mathcal{D}}$ (the th. of convex sp.)
- replace Sets w/ Met (the cod. of model)

corresponds to

· each model has a met. sp. as its carrier

• fix the Law. th. as $\mathcal{T}_{\mathcal{D}}$ (the th. of convex sp.)

 $\mathcal{D}(n) = \{\mu : n \to [0,1] \mid \Sigma \mu = 1\}$ / Met (the cod. of model) corresponds to has a met. sp. as its carrier $\mathbf{A} = \mathbf{A} = \mathbf{$

$$\begin{array}{ccc} \underline{\mathcal{T}_{\mathcal{D}}} & \xrightarrow{IN} & \underline{Met} \\ & n & & Nn \\ \mu & & \downarrow \downarrow \mu' & \longmapsto & N(\mu) \downarrow \downarrow N(\mu') \\ & 1 & & N1 \end{array}$$

• fix the Law. th. as $\mathcal{T}_{\mathcal{D}}$ (the th. of convex sp.)

 $\begin{array}{ccc} \underline{\mathcal{T}_{\mathcal{D}}} & \longrightarrow & \underline{\text{Met}} \\ & n & & \text{Nn} \\ & \mu \! \downarrow \! \downarrow \! \mu' & \longmapsto & N(\mu) \! \! \downarrow \! \downarrow \! N(\mu') \\ & 1 & & N1 \end{array}$

measure the dist. in Met

• not only adding equations, we can also induce a distance betw. two terms μ , μ ' by:

$$d_{O}(\mu, \mu') := d_{(Nn \Rightarrow N1)}(N(\mu), N(\mu'))$$

• For now, we deal with only "finite, discr." case...

Kantrovich metric

· X: a fin. set w/ discr. met.

•
$$\mathcal{D}(X) = \{\mu : X \to [0,1] \mid \Sigma \mu = 1\},$$

$$d_{K}(\mu, \mu') = \sup_{f: X \to [0,1]} | \int_{f: X \to [0,1]} f d\mu - \int_{f: X \to [0,1]} f d\mu' |$$

$$= \sup_{f: X \to [0,1]} | \Sigma f(x) \mu(x) - \Sigma f(x) \mu'(x) |$$

• For now, we deal with only "finite, discr." case...

Kantrovich metric

- X: a fin. set w/ discr. met.
- $\mathcal{D}(X) = \{\mu : X \to [0,1] \mid \Sigma \mu = 1\},$ $d_{K}(\mu, \mu') = \sup_{f: X \to [0,1]} | \int_{f: X \to [0,1]} f d\mu \int_{f: X \to [0,1]} f d\mu' |$ $= \sup_{f: X \to [0,1]} | \Sigma f(x) \mu(x) \Sigma f(x) \mu'(x) |$

• For now, we deal with only "finite, discr." case...

Kantrovich metric

- · X: a fin. set w/ discr. met.
- $\mathcal{D}(X) = \{\mu : X \to [0,1] \mid \Sigma \mu = 1\},$ $d_{K}(\mu, \mu') = \sup_{f: X \to [0,1]} |\int_{f: X \to [0,1]} f d\mu \int_{f: X \to [0,1]} f d\mu' |$ $= \sup_{f: X \to [0,1]} |\Sigma f(x) \mu(x) \Sigma f(x) \mu'(x) |$

·
$$X \in |\mathcal{T}_{\mathcal{D}}|$$

• For now, we deal with only "finite, discr." case...

Kantrovich metric

- · X: a fin. set w/ discr. met.
- $\mathcal{D}(X) = \{\mu : X \to [0,1] \mid \Sigma \mu = 1\},$ $d_{K}(\mu, \mu') = \sup_{f: X \to [0,1]} |\int_{f: X \to [0,1]} f d\mu \int_{f: X \to [0,1]} f d\mu' |$ $= \sup_{f: X \to [0,1]} |\Sigma f(x) \mu(x) \Sigma f(x) \mu'(x) |$

$$\cdot X \in |\mathcal{T}_{\mathcal{D}}|$$

•
$$\mathcal{D}(X) = Sets(1, \mathcal{D}(X)) = \mathcal{T}_{\mathcal{D}}(X, 1)$$

• For now, we deal with only "finite, discr." case...

Kantrovich metric

· X: a fin. set w/ discr. met.

 $f: X \to [0,1]$

• $\mathcal{D}(X) = \{\mu : X \to [0,1] \mid \Sigma \mu = 1\},$ $d_{K}(\mu, \mu') = \sup_{f: X \to [0,1]} | \int_{f: X \to [0,1]} f d\mu - \int_{f: X \to [0,1]} f d\mu' |$ $= \sup_{f: X \to [0,1]} | \sum_{f: X \to [0,1]} f(x) \mu(x) - \sum_{f: X \to [0,1]} f(x) - \sum_{f: X$

$$\cdot X \in |\mathcal{T}_{\mathcal{D}}|$$

•
$$\mathcal{D}(X) = Sets(1, \mathcal{D}(X)) = \mathcal{T}_{\mathcal{D}}(X, 1)$$

$$d_{O}(\mu, \mu') = d_{(Nn \Rightarrow N1)}(N(\mu), N(\mu'))$$

• For now, we deal with only "finite, discr." case...

Kantrovich metric

- · X: a fin. set w/ discr. met.
- $\mathcal{D}(X) = \{\mu : X \to [0,1] \mid \Sigma \mu = 1\},$ $d_{K}(\mu, \mu') = \sup_{f: X \to [0,1]} |\int_{f: X \to [0,1]} f d\mu \int_{f: X \to [0,1]} f d\mu' |$ $= \sup_{f: X \to [0,1]} |\Sigma f(x) \mu(x) \Sigma f(x) \mu'(x) |$

$$\begin{array}{l} \cdot \quad X \in \mid \mathcal{T}_{\mathcal{D}} \mid \\ \\ \cdot \quad \mathcal{D}(X) = Sets(1, \, \mathcal{D}(X)) = \mathcal{T}_{\mathcal{D}}(X, \, 1) \\ \\ d_{O}(\mu, \, \mu') = d_{(Nn \, \Rightarrow \, N1)}(N(\mu), \, N(\mu')) \\ \\ = \sup_{f: \, X \, \rightarrow \, N1} d_{N1}(N(\mu)(f), \, N(\mu')(f)) \\ \end{array}$$

• For now, we deal with only "finite, discr." case...

Kantrovich metric

- · X: a fin. set w/ discr. met.
- $\mathcal{D}(X) = \{\mu : X \to [0,1] \mid \Sigma \mu = 1\},$ $d_{K}(\mu, \mu') = \sup_{f: X \to [0,1]} |\int_{f: X \to [0,1]} f d\mu \int_{f: X \to [0,1]} f d\mu' |$ $= \sup_{f: X \to [0,1]} |\Sigma f(x) \mu(x) \Sigma f(x) \mu'(x) |$

observation metric

·
$$X \in |\mathcal{T}_{\mathcal{D}}|$$

$$\mathcal{D}(X) = Sets(1, \mathcal{D}(X)) = \mathcal{T}_{\mathcal{D}}(X, 1)$$

$$d_{O}(\mu, \mu') = d_{(Nn \Rightarrow N1)}(N(\mu), N(\mu'))$$

$$= \sup_{f: X \rightarrow N1} d_{N1}(N(\mu)(f), N(\mu')(f))$$

instanciate N as [0,1]

• For now, we deal with only "finite, discr." case...

Kantrovich metric

- · X: a fin. set w/ discr. met.
- $\mathcal{D}(X) = \{\mu : X \to [0,1] \mid \Sigma \mu = 1\},$ $d_{K}(\mu, \mu') = \sup_{f: X \to [0,1]} |\int_{f: X \to [0,1]} f d\mu \int_{f: X \to [0,1]} f d\mu' |$ $= \sup_{f: X \to [0,1]} |\Sigma f(x) \mu(x) \Sigma f(x) \mu'(x) |$

observation metric

·
$$X \in |\mathcal{T}_{\mathcal{D}}|$$

$$\mathcal{D}(X) = Sets(1, \mathcal{D}(X)) = \mathcal{T}_{\mathcal{D}}(X, 1)$$

$$d_{O}(\mu, \mu') = d_{(Nn \Rightarrow N1)}(N(\mu), N(\mu'))$$

$$= \sup_{f: X \rightarrow N1} d_{N1}(N(\mu)(f), N(\mu')(f))$$

instanciate N as [0,1]

$$\begin{split} d_O(\mu,\,\mu') &= \sup_{f:\,X\,\to\,[0,1]} d_{[0,1]}([0,1](\mu)(f),[0,1](\mu')(f)) \\ &= \sup_{f:\,X\,\to\,[0,1]} \big[0,1](\mu)(f) - [0,1](\mu')(f) \big] \end{split}$$

• For now, we deal with only "finite, discr." case...

Kantrovich metric

- · X: a fin. set w/ discr. met.
- $\mathcal{D}(X) = \{\mu : X \to [0,1] \mid \Sigma \mu = 1\},$

$$d_{K}(\mu, \mu') = \sup_{f: X \to [0,1]} \int f d\mu - \int f d\mu' |$$

$$= \sup_{f: X \to [0,1]} \sum f(x)\mu(x) - \sum f(x)\mu'(x) |$$

$$f: X \to [0,1]$$

Thm. $d_k = d_O$

observation metric

·
$$X \in |\mathcal{T}_{\mathcal{D}}|$$

•
$$\mathcal{D}(X) = Sets(1, \mathcal{D}(X)) = \mathcal{T}_{\mathcal{D}}(X, 1)$$

$$d_O(\mu,\;\mu')=d_{(Nn\;\Rightarrow\;N1)}(N(\mu),\;N(\mu'))$$

=
$$\sup_{f: X \to N1} d_{N1}(N(\mu)(f), N(\mu')(f))$$

instanciate N as [0,1]

$$d_{O}(\mu, \mu') = \sup_{f: X \to [0,1]} d_{[0,1]}([0,1](\mu)(f),[0,1](\mu')(f))$$

$$= \sup_{f: X \to [0,1]} [0,1](\mu)(f) - [0,1](\mu')(f) + [0,1]($$

Outline

- Coincidence of
 - Quotient Monad via TT-lifting (top top lifting)
 - Quotient Lawvere theory via observationalalgebra

- Kantorovich Metric via observational-algebra
- Conclusion / Future work

Outline

- Coincidence of
 - Quotient Monad via TT-lifting (top top lifting)
 - Quotient Lawvere theory via observationalalgebra

Kantorovich Metric via observational-algebra

Conclusion / Future work

Conclusion/Future work

- Coincidence of
 - Quotient Monad via TT-lifting (top top lifting)
 - Quotient Lawvere theory via obs.-algebra
- enumerate quotients of Law. th. followed by the preordered case [Katsumata]
 application to program semantics (opr. and eq.)

 - Kantorovich Metric via observational-algebra
- how to derive the original def. (not only fin. discr.)
 generalized Kantorovich metric [Chatzikokolakis et.al] (corresponds to changing a [TD, Met]-model.)

Conclusion/Future work

- · Coincidence of
 - Quotient Monad via TT-lifting (
 - Quotient Lawvere theory victorial sebra

- enumerate quotients of Law. th. followed by the preordered case [Katsumata]
 application to program semantics (opr. and eq.)
- Kantorovich Metric via observational-algebra
- how to derive the original def. (not only fin. discr.) generalized Kantorovich metric [Chatzikokolakis et.al] (corresponds to changing a $[\mathcal{T}_{\mathcal{D}}, \text{Met}]$ -model.)

Conclusion/Future work

- Coincidence of
 - Quotient Monad via TT-lifting (

- enumerate quotients of Law. th. followed by the preordered case [Katsumata] application to program semantics (opr. and eq.)
- Kantorovich Metric via observational-algebra
 - how to derive the original def. (not only fin. discr.)
 - generalized Kantorovich metric [Chatzikokolakis et.al] (corresponds to changing a [$\mathcal{T}_{\mathcal{D}}$, Met]-model.)