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TT-lifting briefly

e Originates from the proof of strong norm. of Moggi's
comp. metalang. [Lindley, Stark]

e Semantic (categorical) formulation [Katsumata]

- lifting of a strong monad along a “nice” fibration
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TT-lifting w/ equiv.rel

+ we applied TT-lifting to 1 .

Sets
Def.

Given a monad T: Sets — Sets
a EM-alg. a: TA = A w/ cong.equiv.rel ~a C A XA,

we define =(@ ~a) : Sets = EqRel by:

t=xt <= Vvi: X2>A. a-Tf{t) ~a a-Tf(t)

where Xx —A  Sets

'
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TT-lifting w/ equiv.rel
Rel SRR

T(NA) %5 TA

e we applied TT-liffing to |, . l T(a') l

Sets
Def. (~a) A

v

a EM-alg. a: TA = A w/ cong.equiv.rel ~a C A XA,

Given a monad T: Sets — Sets -
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TT-lifting w/ equiv.rel
Rel (o)

o we applied TT-lifting to |, . Tlrea) == TA
Sets Hl lo‘
Def. (~a) —— A

v/

a EM-alg. a: TA = A w/ cong.equiv.rel ~a C A XA,

Given a monad T: Sets — Sets -

we define =@~ : Sets = EqRel by:

/ taxt e VXA a-Ti() ~a a-Tf ()

where Xx - A Sets

|

T e S g
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Quotient Monad via TT—liFg

e from the previous =@ ~» : Sets = EqRel, =
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Quotient Monad via TT—liFg

e from the previous =(@ ~4 : Sets = EqRel, «
Prop. T
We define T/ ) : Sets = Sets by T/q, ~a)(X) = TX/=x,

as in: Sets —  Sets
X +— =x 3 TX q;( T/(a, ~n)(X)
Then, * T/ ~» iS a monad,
* (gx)x forms a monad map q : T = T/(q, ~n).

proof.

Check Hino-sans condition (especially in Sets).

* substitutivity, congruencity.
Ogawa (Tokyo) 8



Ex. Quotient monad in Sets

X* > Mn(X) > P(X)
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Ex. Quotient monad in Sets

("List = (insupp) Multisel = (inite) Powerset

T = (—)*, the parameters for TT-lifting

rd=M2:(2) 22 w/ ~2» =(a‘*b=Db-a)
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Ex. Quotient monad in Sets

et = (insupp) Viset_ = (ke Poverset |

e > Mn(X) > P(X)

{x,y}

T =(—), the paramqfrers for TT-lifting

A= (2) 22 w/ ~2» =(a‘/)l=b-a)

- T = My, the parameters for TT-lifting

c =M1 MN(MN(T)) 2 Ma(1) W~y =(a+a=a)

Ogawa (Tokyo) 9



Ex. Quotient monad in Sets

X* > Mn(X) > P(X)

i e S S Rt

o X+y —

opr.
eq.
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Ex. Quotient monad in Sets

0D ST N P ¥
XXy

—>»

Mn(X) >

P(X)

eq.

\

Opr.

{e, *}
e unit
* asSSoC.

/ e Algebraic (Lawvere theoretic) view

{e, *}
e unit

® AaSSocC.
e comm.

~
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Ex. Quotient monad in Sets

X* > Mn(X) > P(X)

0PSB oo 2X +Y —

e e e
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Ex. Quotient monad in Sets

X*

—>»

Mn(X)

—>»

P(X)

0D ST N P ¥
XXy

/ e Algebraic (Lawvere theoretic) view

eq.

\

Opr.

{e,

")

{e,

* )

e unit
® ASSOC.

e unit
® ASSOC.

+(comm.

{e,

")

e unit
e ASSOC.

D —

Ccomm.
(idemp.

~

v
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Ex. Quotient monad in Sets

X* > Mn(X) > P(X)

i e S S Rt

o X+y —

/ e Algebraic (Lawvere theoretic) view \
opr. {e, *} {e, -} {e, -}

eq. e unit e unit e unit
e aSSoC. e asSocC. e assocC.

Ceomm) < com:
\ "adding certain equations!” ' /

Ogawa (Tokyo)




Outline

e Coincidence of
- Quotient Monad via TT-lifting (top top lifting)

- Quotient Lawvere theory via observational-
algebra

e Kantorovich Meftric via observational-algebra

e Conclusion / Future work

Ogawa (Tokyo)

11



Outline

e Coincidence of
- Quotient Monad via TT-lifting (top top lifting)

- Quotient Lawvere theory via observational-
algebra

e Kantorovich Meftric via observational-algebra

e Conclusion / Future work

Ogawa (Tokyo)

12



Lawvere Theory briefly

e Categorical approach to Universal Algebra [Lawvere]
(e.g. Monoid, Group, Vect.Space)

e Correspondense w/ finitary monads on Sets

e Comp. effect from opr. and eq. [Plotkin, Power]
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Lawvere Theory briefly

e Categorical approach to Universal Algebra [Lawvere]
(e.g. Monoid, Group, Vect.Space)

e Correspondense w/ finitary monads on Sets

e Comp. effect from opr. and eq. [Plotkin, Power]

Def. A Law. th. is a cat. T s.t. ...

:
Def. A (7 |Sets)-model is a functor N: T — Sets s.t. ...

1 Mod(GrpTh, Sets) |
Th G = G
MonTh — GrpTh \ /

/ the category of (GrpTh, Sets)-models
the category of law. ths. (= the category of groups)
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Lawvere Theory briefly

e Correspondense w/ finitary monads on Sets

Thm. [Barr, Wells]

There exists an equivalence betw. FinMon(Sets) and Th,

—~

as in: FinMon(Sets) — Th

T — TT7 = KE(T)noP

7 Thm. [Barr, Wells]

There exists an equivalence as:
em(T) —>  Mod(7T, Sets)
(a: TA = A) LN Ma

\_

WV,
~

Ogawa (Tokyo)
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Lawvere Theory briefly

Thm. [Borceux]

o

The cat. of models Mod(T, Sets) admits quotient.

J
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Lawvere Theory briefly

Thm. [Borceux]

o

The cat. of models Mod(T, Sets) admits quotient.

_/

e Thus, we get a quotient model Q(q, ~a) from the

assumptions of TT-lifting as in:

Ogawa (Tokyo)

em(T) — Mod(7T, Sets)

~Aa 3 a +— M(~a) 2 Ma » Qq, ~»

A
4 T () )

T(NA) —: TA

T(7")
Ell o

18
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Quotient Lawvere theory
via observation-algebra [Power]

Rem. an observation-algebra

a (T, Sets)-model

Prop.
Given T : Law. Th,

N : (T, Sets)-model (thus, N : T — Sets),

we define a cat. T7/N as follows:
kernel pair Ker(N) = T & Sets,
coequalizer Ker(N) = T > TIN.
Then, T/N is a Law. th.
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Why “observation” ?

e If two terms s, t are “observed” similarly in the

model N, then T/N includes an additional eq. s = t.

T l Sets \
n Nn
sjlt — |
m Nm
>N
\ n
|

Ogawa (Tokyo)
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Why “observation” ?

e If two terms s, t are “observed” similarly in the
model N, then T/N includes an additional eq. s = t.
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terms in the theory T
\ theory T3,
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model N, then T/N includes an additional eq. s = t.
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\ theory T3,
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Coincidence of two quotients

Thm.
Given a monad T: Sets — Sets

a EM-alg. a: TA = A w/ cong.equiv.rel ~a C AxA,

Then, we have T(T/a ) = (T7)/Q, ~a) as in:

FinMon A=t Th

T

Ogawa (Tokyo)
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Kantorovich Metric briefly

e Metric on prob. measure/distribution
 Quantitative behavioural equiv. betw. prob. sys.
[Breugel, Worrel]

E AL S s’

1/2 +W2-8 1/2 1/2
'é ‘e
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Kantorovich Metric briefly

e Metric on prob. measure/distribution

 Quantitative behavioural equiv. betw. prob. sys.
[Breugel, Worrel]

E AL S s’

1/2 +.w:2-e 1/2 1/2
s s
' Q. Are s and s’ behavioural equivalent??

Ansl. [Larsen, Skou] : No!
Ans2. [Breugel, Worrel] : No... but the distance is c- €.

Ogawa (Toky)
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Kantorovich metric def.

Def. [Kantorovich] usual categorical setting (dx: X x X—[0,1])
For (X, dx) : (1-bounded) metric sp.
B(X) : the set of Borel prob. meas. on X,

the Kantorovich metric dk on ‘B(X) is defined by:
dk(p, W) =sup | [fdu - [ fdu]

f: X = [0,1] /
non. exp.
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Kantorovich metric def.

Def. [Kantorovich] usual categorical setting (dx: X x X—[0,1])
For (X, dx) : (1-bounded) metric sp.
B(X) : the set of Borel prob. meas. on X,

the Kantorovich metric dk on ‘B(X) is defined by:
dk(, ) =sup | [ fdu - [ fdy|
o e /
e (intuition) dkis the dual of ftransportation problem.
Thm. [Kantorovich]
We also define a metric d. on ‘B(X) by:

V . prob.meas. on XxX
du(, 1) = Inf{fxxdx(X, y) dvix | I, 1’ are marginal of v ;
Then, dk=d..
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Kantorovich metric def.

Def. [Kantorovich] usual categorical setting (dx: X x X—q>[0,1])
For (X, dx) : (1-bounded) metric sp.
B(X) : the set of Borel prob. meas. on X,
the Kantorovich metric dk on ‘B(X) is defined by:
dk(k, W) =sup | [ fdu - [ fdy|
o e -
e (intuition) dkis the dual of transportation problem.
Thm. [Kantorovich]

We also define a metric d. on ‘B(X) by:

V . prob.meas. on XxX
du, ) = Inf{fxxdx(X, y) dvix lu, W are marginal of v ;

Then, dk=d..
minimize the cost ¢ = ) dist; x mass;
Ogawa (Tokyo) 22




intuition (fransport. problem)
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intuition (frans

di(pM, W’) = cost of v’
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Observation metric in T

e fix the Law. th. as Tp (the th. of convex sp.)
e replace Sets w/ Met (the cod. of model)

e each model has a met. sp. as its carrier

N
(1-)@ —> Met

E
iy NG NG
N1

| /
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Observation metric in T

e fix the Law. th. as Ty (the th. of convex sp.)
(D(n) = {u:n— [0,1] | Zu=1}j/ Met (the cod. of model) ™ corresponds fo

{ corresponds to |
| , -

T@(n, 1)

has a met. sp. as its carrierho ]

\\ N e _{ a [Tp, Met]-model is a metric convex ?:

T)@ — Mt

n

Nn
ul lw — N@)|| Nw)
1 N1
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Observation metric in T

e fix the Law. th. as Ty (the th. of convex sp.)
(@(n) ={L:n=[0,1] | Spu= 1j// Met (1'he cod. of rresponds to |

] correponds to
I : . :

 —

T)@ —_— M

\

a [Tp, Met]-model is a metric convex

et

- measure the dist. in Met

NN
ul lw — N Nw) L
N1

. v

* not only adding equations, we can also induce a
distance betw. two terms |, |’ by:

dO(IJ., IJ«,) = d(Nn=>N1)(N(|J')! N(“,))
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Coincidence of distances

e For now, we deal with only “finite, discr’ case...

Kantrovich metric

- X :a fin. set w/ discr. met.
+ DX) ={u: X = [0,1] | Zu=1},
dk(M, ') = sup ]ffdu - [fdy|

f: X = [0,1

= sup [ ZHRO)-Z N0 |

f: X = [0,1]
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- X :a fin. set w/ discr. met. + Xe |Top]
- D) ={u:X = [0,1]] Su=1;  i- D(X) = Sets(1, DX)) = Tin(X, 1)
dx(y, W) = sup [fdu - [fdy| do(M, K') = dnn = N1)(N(R), N(IL))
f:;XS:J[[Iz,’1]]Zf(X)H(X)-Zf(X)u’(X)|

Ogawa (Tokyo) 25



Coincidence of distances

e For now, we deal with only “finite, discr’ case...

Kantrovich metric : observation metric
- X :a fin. set w/ discr. met. - Xe |Tol
DX) ={p: X~ [01] [ Zpn=1}, . D(X) = Sets(1, D(X)) = Tp(X, 1)
i, W) =sup | ffdu - [fdw] do(, ) = din - nny(N(R), N(W))
fzzxsf['g,ﬂ S FOO(X)-Z FX) U (X) | S Iﬂm(N(u)() N(W')(F))

Ogawa (Tokyo)



Coincidence of distances

e For now, we deal with only “finite, discr’ case...

Kantrovich metric : observation metric
- X :a fin. set w/ discr. met. - Xe |Tol
DX) ={p: X~ [01] [ Zpn=1}, . D(X) = Sets(1, D(X)) = Tp(X, 1)
i, W) =sup | ffdu - [fdw] do(, ) = din - nny(N(R), N(W))
fzzxsf['g,ﬂ S FOO(X)-Z FX) U (X) | S Iﬂm(N(u)() N(W')(F))

l instanciate N as [0,1]

Ogawa (Tokyo)



Coincidence of distances

e For now, we deal with only “finite, discr’ case...

Kantrovich metric : observation metric
- X :a fin. set w/ discr. met. - Xe |Tol
DX) ={p: X~ [01] [ Zpn=1}, . D(X) = Sets(1, D(X)) = Tp(X, 1)
i, W) =sup | ffdu - [fdw] do(, ) = din - nny(N(R), N(W))
fzzxsf['g,ﬂ S FOO(X)-Z FX) U (X) | S Iﬂm(N(u)() N(W')(F))

l instanciate N as [0,1]

 dolk, 1) = sup do (0, 1(WD,0.11w)(N)
' sup | [0,111)(M - [0, 1) (M

= I
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Coincidence of distances

e For now, we deal with only “finite, discr’ case...

Kantrovich metric . observation meftric
- X :a fin. set w/ discr. met. + X € |{1JCD|
DX) ={u:X = [0,1] | Zu=1}, . DX)=Sets(1, DX)) = Tp(X, 1)

1) = sup | [ - ] - do(l, 1) = dinn = N (N(R), N(W))
= sup | S-S IO LY = sup d1(N() (), N(W)(H)
f: X = [0,1] : rseigint
. Q) instanciate N as [0,1]

[Thm dk_doj  do(u, 1) = sup d[o1]([01]( )(F),[0,1] (W
' - sup |][01] () - [0,1](w

|
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Outline

e Coincidence of
- Quotient Monad via TT-lifting (top top lifting)

- Quotient Lawvere theory via observational-
algebra

e Kantorovich Meftric via observational-algebra

e Conclusion / Future work
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Conclusion/Future work

e Coincidence of
- Quotient Monad via TT-lifting (top top lifting)
- Quotient Lawvere theory via obs.-algebra

* enumerate quotients of Law. th. followed by the
preordered case [Katsumatad]

sty

 application to program semantics (opr. and eq.)

e Kantorovich Meftric via observational-algebra
e how to derive the original def. (not only fin. discr.)

» e generalized Kantorovich metric [Chatzikokolakis et.al]
(corresponds to changing a [T 5, Met]-model.)
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