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ABSTRACT

Quantum computation is commonly believed to have an advantage over classical one
for certain problems or situations. In the context of communication protocols, quantum
mechanics helps us to accomplish “unconditional security” that cannot be obtained by
any classical protocols. As quantum cryptographic systems come into commercial use,
there has been growing attention to formal verification technique for quantum protocols.
To formalize quantum systems, we employ the notion of coalgebra, which is a math-
ematical/categorical framework that captures a wide variety of state-based transition
systems. This abstract framework canonically extends some ideas in non-deterministic
or probabilistic systems to quantum systems. In the thesis, we focus on three instances
of such extensions. First, trace semantics and forward/backward simulation is defined
with regard to quantum labeled transition systems (QLTS) that we introduce as a quan-
tum counterpart of LTS or probabilistic LTS. We also illustrate them with some basic
examples, such as the superdense coding protocol and the quantum teleportation pro-
tocol. Next, we discuss about two different types of equivalence, namely bisimilarity
and behavioral equivalence. While it is known that the two notions coincide in prob-
abilistic systems, we show that they do not coincide in quantum systems. Finally, by
means of coalgebraic modal logic, we obtain modal logic that is expressive to recognize
an behavioral equivalence of two quantum systems.

論文要旨

量子計算は特定の問題において古典計算を凌ぐものとして信じられている。特に通信プ

ロトコルでは、量子力学の基本的な原理によって古典力学では達成し得ない完全な安全性

を可能にしている。量子暗号システムが商業的に実用化されるなか、量子プロトコルの安

全性を形式的に検証する手法についても重要性が高まってきている。そこで私達は量子的

なシステムを形式化する手法として余代数という概念を用いた。余代数とは数学の一分野

の圏論における概念であり、様々な種類の状態遷移系が抽象化して扱われる。この抽象的

な枠組みは非決定的、確率的システムにおける手法を自然に量子的なシステムに拡張する

ことが可能になり、この論文ではそのような拡張の例として次の三つを挙げる。一つ目と

して、軌跡意味論と順方向、逆方向の模倣関係を量子的ラベル付き遷移系に対して定義す

る。量子的ラベル付き遷移系とは非決定的ラベル付き遷移系や確率的ラベル付き遷移系の

量子版である。これらの概念を量子プロトコルの基本的な例である高密度符号化プロトコ

ルと量子テレポーテーションプロトコルをもとに解説する。二つ目として、二種類の等価

性の概念である、振る舞い等価性と双方向模倣性について議論する。確率的システムにお

いては、この二つの等価性は一致することが知られているが、私達は量子的なシステムに

おいてはこれらが一致しないことを示す。三つ目として、余代数様相論理という枠組みを

用いて、私達は振る舞い等価性と同等の表現力を持つ様相論理を得る。
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Chapter 1

Introduction

1.1 Quantum Computation

There have been wide interests in quantum computation and quantum communi-
cation. It is believed that quantum computation has potential to solve some
problems more faster than classical computation. For example, Shor’s algo-
rithm [30] solves integer factorization problem in polynomial time and Grovers’s
algorithm [12] solves the problem of searching an unsorted database faster than
classical algorithm. In terms of communication, a quantum cryptography has a
striking advantage over classical one. Quantum key distribution realizes that two
parties share a random secret key in an “unconditionally secure” way. These exam-
ples benefit from fundamental quantum principles such as a no-cloning principle
and entanglement of quantum data.

However, traditionally, in order to find new quantum algorithms or proto-
cols or verify the correctness, researchers have to engage in more elemental level
approach, for instance the quantum circuit model or quantum Turing machines.
To overcome this difficulty, there have been several high-level formalization for
quantum computation. One of these approaches is quantum programming lan-
guage with denotational semantics [15,29], which provides highly mathematically
abstract structure for quantum computation. Another one is qCCS [9], which
is a variant of Calculus of Communicating Systems (CCS ) with quantum flavor.
Originally, CCS is used to model concurrent processes that include communica-
tion or message passing, therefore the technique of CCS can be extended to the
verification of quantum communication protocols. Quantum Markov chain is also
a formal model of quantum computation. In [10], a model checking approach with
a quantum extension of probabilistic computation tree logic (PCTL) is adapted to
verify the property of quantum systems.

1.2 Coalgebra

A coalgebra—a categorical dual notion of algebra—has been used as a general
framework for modeling state-based transition systems. This abstract framework
covers different types of transition: for example, non-deterministic, probabilistic,
and some sort of values weighted transition. By using categorical terms, an F -
coalgebra is defined by an arrow X → FX in a category C for a functor F : C → C.
Its simplicity captures very wide and general situations. If we take a powerset
F = P, the functions of the form X → PX for a set X yield a family of non-
deterministic systems. The relationship between two systems X → FX and
Y → FY is also properly described in this categorical approach.

When we analyze a non-deterministic automaton, it is quite often the case
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for us to examine the accepted language as a good representation of the system’s
behavior. For a probabilistic automaton, a probabilistic distribution on the ac-
cepted language represents the behavior of the systems because each execution of
the system is determined by certain probability. There are a coalgebraic theory
of trace semantics [14] and a coalgebraic description for forward/backward sim-
ulations [16], which includes the two situations above. The soundness theorem
saying that “existence of a forward or backward simulation between two systems
implies trace inclusion” is proved in an abstract setting [16]. In case of a non-
deterministic situation, the inclusion relation of two systems’ accepted languages
is guaranteed by the existence of a simulation from one to another. In probabilis-
tic settings, the simulation-based approach is used for verification of anonymity
as a case study [17].

Whereas coalgebras capture various types of branching flavor, it has been
investigated how to get a modal logic relevant to the type of systems parametric
in a functor [27]. As one of the suitable criteria for logic, expressivity is sometimes
discussed. A modal logic is expressive means that two states satisfying the same
formulas are behaviorally equivalent. Saying the statement in contra-position,
if two states are not behaviorally equivalent there is a testing formula that is
satisfied by one but is not satisfied by the other one. This property is also called
Hennessy-Milner property because originally it is proved in the non-deterministic
setting by Hennessy and Milner [18]. In [22], the expressivity of modal logic for
non-deterministic and probabilistic systems is proved.

1.3 Contributions

There are some works that give a categorical understanding for quantum com-
putation [1, 20]. In the thesis, we present a coalgebraic modeling of quantum
systems by using the quantum branching monad Q, which is introduced by Ha-
suo and Hoshino [15] in order to obtain a denotational semantics of higher-order
quantum programming language. This monad captures the type of a system’s
transitions which are weighted by a quantum operation like [10] and thus this
formulation follows the principle of “quantum data, classical control” in [29]. We
define quantum labeled transition systems (QLTS ) and the abstract characteriza-
tion by coalgebras allows us to apply the general trace and simulation theory to
QLTS, too. We show that the simulation-based approach can be utilized to verify
the correctness of quantum protocols. Following a probabilistic situation in [17],
we also formalize the anonymity of a secret key in the BB84 protocol via QLTS
and verify it.

Another contribution of the thesis is that we analyze a difference and a similar-
ity between probabilistic systems and quantum systems in a coalgebraic perspec-
tive. A valuation functor is introduced in [22] to encompass ordinary multiset
functors and the distribution monad. We find that the valuation functor also
includes the quantum branching monad, therefore it enables us to examine the
quantum branching monad and the distribution monad in the same framework
with a suitable monoid respectively. we define two notions of bisimilarity for val-
uation functors. One is a standard characterization from a coalgebraic view in [3]
and the other one is an equivalence class based characterization from a comparison
with probabilistic systems [26]. In probabilistic systems, it is known that these
two formulation coincides [33], however we show that two notions are different in
quantum systems. In categorical terms, this result comes from the preservation of
weak pullback of the functor, which is also comes from a refinability of a monoid
(defined in [13]) that instantiates a valuation functor.
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Moreover, we investigate a modal logic for quantum systems. We use the
result of [22] and offer an expressive modal logic for quantum systems.

1.4 Organization of the Thesis

The thesis is structured as follows. In Chapter 2, we define quantum labeled tran-
sition systems (QLTS), and show that the trace semantics and forward/backward
simulations for QLTS are canonically obtained. To illustrate this modeling, we
describe with it some well-known protocols, for example, the superdense coding
protocol, the quantum teleportation protocol, and the BB84 protocol. In Chap-
ter 3, two notions of bisimulation is defined in terms of valuation functors which
generalizes the distribution functor and the quantum branching monad. We show
that the two notions do not coincide in the case of the quantum branching monad.
In Chapter 4, we recall a categorical setting which is called dual adjunction that
describes modal logic coalgebraically and the expressive modal logic for the quan-
tum branching monad is given, following [22]. In Chapter 5, we outline the main
results in the thesis and point out some future work.
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Chapter 2

Trace Semantics for Quantum Branching
Monad

Some types of state-based systems are characterized as a coalgebra X → TFX
with a monad T and a functor F . For example, when T = P (the powerset
monad) and F (X) = 1 + A × X, a coalgebra X → P(1 + A × X) gives rise to
a non-deterministic automaton or a labeled transition system (LTS). If we use
T = D (the distribution monad) instead of the powerset monad P, a coalgebra
X → D(1+A×X) identifies a probabilistic automaton, in which each transition
occurs by probability.

Each execution of an LTS yields a path over the label set. The set of the
system’s possible paths is called a trace set. In the case of a non-deterministic
automaton, this trace set is described as the accepted language. For a probabilistic
automaton, the trace of the system is as probabilistic distribution on the accepted
language.

In [16], a general theory for the trace semantics of these systems is presented.
The theory defines a trace semantics of X → TFX in Sets as a unique arrow
from X → FX to the final F -coalgebra in the Kleisli category Kℓ(T ) for a monad
M with a suitable order structure.

2.1 Quantum Branching Monad Q and Distributive Law

In order to apply these coalgebraic techniques to quantum systems, we first need
a monad with a quantum flavor.

Before we recall the definition of monad Q from [15], we fix some notations
for use of quantum theory.

Definition 2.1 (density matrix). An m-dimensional density matrix is an matrix
ρ ∈ Cm×m which is positive and satisfies tr(ρ) ∈ [0, 1]. We denote the set of all
m-dimensional density matrices by DMm.

Definition 2.2 (quantum operation). A quantum operation (QO) from a Hilbert
space Cm to Cn is a function E : DMm → DMn subject to the following axioms:

1. (Trace non-increasing) For all ρ ∈ DMm, wee have tr(E(ρ)) ≤ tr(ρ)

2. (Linearity) For ρi ∈ DMm and pi ∈ [0, 1] with
∑

i pi ≤ 1, we have E(
∑

i piρi) =∑
i piE(ρi).

3. (Complete positivity) An arbitrary “extension” of E of the form Ik⊗E maps
a positive matrix to a positive one.

We denote the set of QOs from Cm to Cn by QOm,n.
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There are alternative definitions other than the above one (see e.g. [28]). We
sometimes use the operator-sum representation of a quantum operation. When
a quantum operation E : DMm → DMn satisfies E(ρ) =

∑
iEiρ(Ei)

† for some
n×m matrices (Ei), We use the notation by denoting E = {Ei}.

Now, we review the monad Q [15].

Definition 2.3 (quantum branching monad Q). The quantum branching monad
Q : Sets → Sets is defined as follows:

QX := {c : X →
∏

m,n∈N
QOm,n

∣∣ the trace condition (2.1)}

(
Q(f)(c)(y)

)
m,n

:=
∑

x∈f−1(y)

(c(x))m,n

Here we denote the (m,n)-component of s ∈
∏

m,nQOm,n by (r)m,n. The trace
condition is:

∀m. ∀ρ ∈ DMm.
∑
x∈X

∑
n∈N

(tr(c(x))m,n(ρ)) ≤ 1 (2.1)

The unit and the multiplication are:

(ηX(x)(x′))m,n :=

{
{ Im } if x = x′ and m = n

0 otherwise

(µX(ϕ)(x′))m,n :=
∑

c∈QX

∑
k∈N

(
(c(x))k,n ◦ (ϕ(c))m,k

)
where Im is a m ×m identity matrix and 0 is a zero operator which maps any
density matrix to zero.

In Chapter 3 and 4, we also use the monad Qf , which is a finite support
variant of the original monad. The definition of quantum finite branching monad
Qf is slightly different from Q, which requires another condition for QfX in the
following way:

QfX := {c : X →
∏

m,n∈N
QOm,n

∣∣ supp(c) is finite and c satisfies (2.1)} (2.2)

where supp(c) = {x ∈ X
∣∣ c(x) ̸= {0}}.

The intuitive meaning of the coalgebra X → QY is well explained by a piping
analogy in [15]. This intuition is also crucial for defining a quantum system
coalgebraically in Section 2.2.

The three monads L,P,D is similarly dealt with in the context of trace se-
mantics [16] and the monad Q is also characterized the same as L,P,D because
the Kleisli category Kℓ(Q) has a suitable order structure [15].

However, we cannot follow the same path as in [15] (for L,P,D) because
the monad Q lacks commutativity unlike the others. This lack of commutativity
comes from that the multiplication of linear operators is not commutative.

Proposition 2.4. The monad Q is a strong monad, but is not a commutative
monad.

Proof. Every monad in Sets is strong and it is known that a strength stX,y :
QX × Y ⇒ Q(X × Y ) is uniquely determined. Now we show that the below
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diagram does not commute.

Q(X ×QY ) QQ(X × Y )

QX ×QY Q(X × Y )

Q(QX × Y ) QQ(X × Y )

stX,Q(Y )
55kkkkkkkkkkkkkk

Q(st′X,Y )
//

µX×Y

))SSS
SSSS

SSSS
SSS

st′Q(X),Y ))SSS
SSS

SSS
SSS

SS

Q(stX,Y )
//

µX×Y

55kkkkkkkkkkkkkk

The strength stX,Y : QX × Y ⇒ Q(X × Y ) of the monad Q is defined by:

stX,Y : Q(X)× Y −→ Q(X × Y )

(c, y) 7−→ λ(x, y′) ∈ X × Y.

{
c(x) if y′ = y

0 otherwise.

We take c ∈ QX and d ∈ QY , then the two ways from QX ×QY to Q(X × Y )
are calculated as follows:

(c, d)
stX,Q(Y )7−−−−−→ λ(x, d′) ∈ X ×Q(Y ).

{
c(x) if d′ = d

0 otherwise
(= ξ)

Q(st′X,Y )
7−−−−−−→ λe ∈ Q(X × Y ).

( ∑
(x′,d′)∈X×Q(Y )

st′(x′,d′)=e

ξ(x′, d′)m,n

)
m,n

= λe ∈ Q(X × Y ).

( ∑
x′∈X

st′(x′,d)=e

c(x′)m,n

)
m,n

µX×Y7−−−−→ λ(x, y) ∈ X × Y.

( ∑
e∈Q(X×Y )

∑
k∈N

e(x, y)k,n ◦
( ∑

x′∈X
st′(x′,d)=e

c(x′)m,k

))
m,n

= λ(x, y) ∈ X × Y.

( ∑
e∈Q(X×Y )

∑
k∈N

∑
x′∈X

st′(x′,d)=e

e(x, y)k,n ◦ c(x′)m,k

)
m,n

= λ(x, y) ∈ X × Y.

( ∑
e∈Q(X×Y )
st′(x,d)=e

∑
k∈N

e(x, y)k,n ◦ c(x)m,k

)
m,n

= λ(x, y) ∈ X × Y.

(∑
k∈N

d(y)k,n ◦ c(x)m,k

)
m,n

(= α(c, d)).

Similarly,

(c, d)
st′Q(X),Y7−−−−−→ . . .

stX,Y7−−−→ . . .

µX×Y7−−−−→ λ(x, y) ∈ X × Y.

(∑
k∈N

c(x)k,n ◦ d(y)m,k

)
m,n

(= β(c, d)).

These two functions are apparently different, as the following counter example
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shows:

X = Y := {∗}

(c(∗))m,n(ρ) :=

{
E(ρ)E† if m = n = 2

0 otherwise

(d(∗))m,n(ρ) : =

{
E′(ρ)E′† if m = n = 2

0 otherwise

E : =

(
0 0
0 1

)
E′ : =

1√
2

(
1 1
1 −1

)
ρ : = |0⟩⟨0|.

In this example, E is a projection operator to the basis |1⟩ and E′ is a Hadamard
operator. Then, two functions α(c, d), β(c, d) are not equal:

α(c, d)(∗, ∗)2,2(ρ) = EE′|0⟩⟨0|E′†E†

=
1

2

(
0 0
0 1

)
β(c, d)(∗, ∗)2,2(ρ) = E′E|0⟩⟨0|E†E′†

=

(
0 0
0 0

)
.

In [16, Lemma 2.4], a sufficient condition for the existence of a distributive law
between a monad T and a functor F is given. The condition requires T to be a
commutative monad and F to be a shapely functor [23]. We modify this lemma
in order to cover the monad Q that is not commutative.

Proposition 2.5. There is a distributive law λ : FT ⇒ TF for a strong monad
T : Sets → Sets and a linear-polynomial functor F : Sets → Sets. A linear-
polynomial functor is defined inductively by the following BNF notation:

F,G, Fi ::= id
∣∣ A ∣∣ A×G

∣∣ ⨿
i∈I

Fi.

where A denotes the constant functor into a set A.

Proof. In the proof of [16, Lemma 2.4], a double strength map dstX,Y : TX ×
TY → T (X × Y ) is needed for the case of F = F1 × F2 on the inductive
construction of a shapely functor F . However, we only use a strength map
stX,Y : TX × A → T (X × A) in order to get a distributive law with linear-
polynomial functors.

We only show the case of F = Σ× F of inductive construction of F . See [16,
Lemma 2.4] for the other cases. Assume FX = A×GX and there is a distributive
law λG : GT ⇒ TG. The distributive law λF : FT ⇒ TF is obtained as a
composition:

A×GTX A× TGX T (A×GX)
1A×λG

X //
st′A,GX //

7



where st′X,Y : X × FY → F (X × Y ) is defined as X × FY
⟨π′,π⟩−−−→ FY ×X

stY,X−−−→

F (Y ×X)
F (⟨π′,π⟩)−−−−−−→ F (X × Y ).

The two arrows 1A × λGX and st′A,GX are natural in X, and so λFX is. We check
that the natural transformation λF is compatible with T ′s monad structure. For
the unit,

λFX ◦ FηX = st′A,GX ◦ (1A × λGX) ◦ FηX
= st′A,GX ◦ (1A × ηGX)

= ηA×GX

= ηFX .

For the multiplication.

µFX ◦ FλFX ◦ λFTX = µA×GX ◦ T (st′A,GX) ◦ T (1A × λGX) ◦ st′A,GTX ◦ (1A × λGX)

= µA×GX ◦ T (st′A,GX) ◦ st′A,TGX ◦ (1A × TλGX) ◦ (1A × λGX)

= st′A,X ◦ (1A × µGX) ◦ (1A × TλGX) ◦ (1A × λGX)

= st′A,X ◦ (1A × λGX) ◦ (1A ×GµX)

= λFX ◦ FµX .

Every linear-polynomial functor F is isomorphic to the functor F ′ = A+B×id
for some fixed sets A,B. That is why we call this family of functors linear-
polynomial. The notion of linear-polynomial functor is a restricted one compared
to shapely functors, therefore the functor F = 1+id×id which specifies a signature
of a binary tree is not included in it. However, some interesting examples can be
written in this formulation as see later.

2.2 Trace Semantics for Quantum LTS

Our first aim is to apply a trace semantics by coinduction [16] to the quantum
branching monad Q.

Lemma 2.6. Let F : Sets → Sets be a linear-polynomial functor. The lifting
functor F : Kℓ(Q) → Kℓ(Q) induced by a distributive law constructed in Proposi-
tion 2.5 is locally continuous, and thus is locally monotone.

Proof. It is known that there is a bijection correspondence between a lifting func-
tor F : Kℓ(T ) → Kℓ(T ) and a distributive law λ : FT → TF for monad T . The
construction from one to another is in [14].

We only deal with the case of F = A × F . The other cases of the inductive
construction can be proved similarly in [16, Lemma 2.2.8]. We show F (

⊔
i fi) =⊔

i(Ffi) for an ω-chain (fi) of arrows X → Q(Y ) in Sets. A functor F : Kℓ(Q) →
Kℓ(Q) works on arrows:

F (X
f−→ Q(Y )) = (FX

Ff−−→ FQY
λF
Y−−→ QFY )

= (A×GX
1A×Gf−−−−→ A×GQY

1A×λG
Y−−−−→ A×QGY

st′A,GY−−−−→ Q(A×GY ))

= (A×GX
1A×Gf−−−−→ A×QGY

st′A,GY−−−−→ Q(A×GY ))

8



where f : X → Y in Kℓ(Q).
First, we show st′A,X : A × Q(X) → Q(A × X) is continuous, that is, for an
ω-chain (ui) ∈ Q(X)N and a ∈ A,

st′A,X(a,
⊔
i

ui) =
⊔
i

st′A,X(a, ui).

If a′ = a,

st′A,X(a,
⊔
i

ui)(a
′, x) = (

⊔
i

ui)(x)

=
⊔
i

(ui(x))

=
⊔
i

(st′A,X(a, ui)(a
′, x))

=
⊔
i

(st′A,X(a, ui))(a
′, x).

If a′ ̸= a,

st′A,X(a,
⊔
i

ui)(a
′, x) = 0

=
⊔
i

(st′A,X(a, ui))(a
′, x).

And now, for (a, s) ∈ A×GX,

(F (
⊔
i

fi))(a, s) = (st′A,GY ◦ (1A ×G(
⊔
i

fi)))(a, s)

= st′A,GY (a,G(
⊔
i

fi)(s))

= st′A,GY (a, (
⊔
i

(G(fi)))(s)) by the inductive hypothesis

= st′A,GY (a,
⊔
i

(G(fi)(s))) by the pointwise order

=
⊔
i

st′A,GY (a,G(fi)(s)) by the continuity of st

=
⊔
i

(st′A,GY ◦ (1A ×Gfi))(a, s)

= (
⊔
i

(st′A,GY ◦ (1A ×Gfi)))(a, s) by the pointwise order

= (
⊔
i

(Ffi))(a, s)

Proposition 2.7 (trace situation for Q). The monad Q, a linear-polynomial
functor F , and a distributive law λ : FQ ⇒ QF constructed in Proposition 2.5
satisfies the following three conditions; and therefore by [16, Theorem 3.3] the
initial F -algebra α : FA

∼=−→ A in Sets gives rise to a final F -coalgebra ηFA◦α−1 :
A→ FA in Kℓ(Q).

1. The Kleisli category Kℓ(Q) is Cppo-enriched and composition in Kℓ(Q) is
left-strict.
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2. The lifting functor F : Kℓ(Q) → Kℓ(Q) induced by the distributive law λ is
locally monotone.

3. The functor F preserves ω-colimits in Sets.

Proof. (1) is shown in [15]. (2) is from Lemma 2.6. (3) is established because any
shapely functor is so [14].

Now, we introduce the notion of quantum labeled transition system (QLTS),
which is given as an instance of (T, F )-systems in [14] for the choice of parameters
T = Q and F = 1 + Σ × id. QLTS is corresponds to LTS or probabilistic LTS
(PLTS) at a categorical level of abstraction.

Definition 2.8 (quantum LTS and its trace semantics). A QLTS (X, s, c) is
specified by a set X and a pair of functions s : 1 → QX and c : X → Q(1+Σ×X),
which is also a pair of arrows in Kℓ(Q):

1
s−→ X

c−→ 1 + Σ×X.

The trace semantics of a QLTS (X, s, c) is defined by the composed arrow
traces,c in the diagram:

FX FΣ∗

X Σ∗

1

c

OO

s

OO

ηFA ◦α−1

OO

traces,c

88ppppppp

h //______

F (h) //_____

in Kℓ(Q), F = 1 + Σ× id

Here α : 1 + Σ × Σ∗ → Σ∗ is the initial algebra in Sets with the carrier set Σ∗

of finite words on Σ and the arrow h : X → A is the unique homomorphism
induced by the final F -coalgebra. This coincidence of a initial algebra and a final
coalgebra is just explained in Proposition 2.7.

To give an illustrative explanation, we follow one execution of a QLTS. Here
we use the word “state” for two distinct meaning. One indicates a “quantum
state” as a density matrix. The other one indicates a state in a “state space”
of the system. This contrast of two “state” is just the principle “quantum data,
classical control” in [29].

One execution of a QLTS is as follows. First we prepare any initial quantum
state ρ ∈ DMm. The quantum state ρ is taken into some state x ∈ X of the
system and evolves into ρ′ = (s(x))m,n(ρ) ∈ DMn. Then, in each step of the
transition between states x, x′ ∈ X, some action a ∈ Σ occurs and the quantum
states evolves into (c(x)(a, x′))n,l(ρ

′) ∈ DMl. After iteration of such transitions,
finally the system terminates and the last quantum state is obtained as ρ′′ =
(c(x′)(✓))l,k(ρ

′) ∈ DMk.
As each transition of a probabilistic system e.g. Markov chain is determined

by probabilistic distribution, each step of a QLTS is determined by “quantum
distribution” which is from the trace condition (2.1).

In Definition 2.8, trace semantics is described abstractly as an arrow 1 → Σ∗ in
Kℓ(Q). However, this definition yields a concrete one which is a feasible notion for
QLTS. From now, we identify a function 1 → X as an element of X. The trace
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semantics is calculated recursively (corecursively) as follows. First the unique
homomorphism h : X → Σ∗ is here: for σ ∈ Σ∗,

(h(x)(⟨⟩))m,n = (c(x)(✓))m,n

(h(x)(a · σ))m,n =
∑
x′∈X

∑
k∈N

(h(x′)(σ′))k,n ◦ (c(x)(a, x′))m,k

Then, the trace semantics is obtained:

(traces,c(σ))m,n =
∑
x∈X

∑
k∈N

(h(x)(σ))k,n ◦ (s(x))m,k.

This operator (traces,c(σ))m,n can be seen as an accumulated quantum operation
along paths that cause a sequence of actions σ through the system. Therefore,
the probability of observing the actions σ ∈ Σ∗ with an initial state ρ ∈ DMm is
also represented as the trace value∑

n∈N
tr

((
traces,c(σ)

)
m,n

(ρ)

)
∈ [0, 1].

To further illustrate this modeling of QLTS and its trace semantics, we present
some examples.

Example 2.9 (quantum teleportation protocol). The first example is the quan-
tum teleportation protocol. We show two different representation of the quantum
teleportation protocol; one is by the quantum circuits:

|ψ⟩ • H 


 •

|0⟩ 




|0⟩ H • X Z |ψ⟩

and the other one is by the QLTS (when Σ = {τ}) with s : QX and c : X →
Q(1 +X):

(s(xo))2,8 = λρ ∈ DM2. ρ⊗
∣∣ϕ+⟩⟨ϕ+∣∣ (= E0)

(c(x0)(xi))8,2 =


{ (⟨ϕ+| ⊗ I2) } (= E00) if i = 00

{ (⟨ϕ−| ⊗ I2) } (= E01) if i = 01

{ (⟨ψ+| ⊗ I2) } (= E10) if i = 10

{ (⟨ψ−| ⊗ I2) } (= E11) if i = 11

(c(xi)(✓))2,2(ρ) =


{ I2 } (= E ′00) if i = 00

{X } (= E ′01) if i = 01

{Z } (= E ′10) if i = 10

{ZX } (= E ′11) if i = 11

where H is a Hadamard matrix, X,Z are respectively the Pauli-X matrix and the
Pauli-Z matrix, and |ϕ+⟩, |ϕ−⟩, |ψ+⟩, |ψ−⟩ are Bell states. Here some omitted part
of the function definition means that a zero operator is assigned for it, for example
c(x0)(x1)m,n = 0 if m ̸= 8 or m ̸= 8. The QLTS is also depicted informally as an
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automaton with explicit termination: GFED@ABCx00

start ?>=<89:;x0 GFED@ABCx01 ✓

GFED@ABCx10

GFED@ABCx11

E0 //

E00 00

E01 //

E10
..

E11 ,,

E ′00

  E ′01 //

E ′10

>>

E ′11

LL

oo
prepare

an EPR-pair |ϕ+⟩

// oo
Alice’s Bell

measurement

// oo
Bob’s

modification

//

This automaton-like representation may be very intuitive for the reader.
Then, we obtain the trace semantics of the QLTS calculated as below:

(traces,c(τ
2))2,2 =

( ∑
i∈{00,01,10,11}

E ′i ◦ Ei
)
◦ E1 ◦ Eo

= { I2 }

This result of the identity operation means that for any qubit Alice starts with,
Bob finally recovers the original qubit after the execution of this protocol.

Example 2.10 (quantum loop programs). We show another example of QLTS for
describing quantum programs with output. Here we use similar example like [10],
in which a qMC is given to interpret the meaning of a simple quantum loop
program without output. A quantum program is here:

- function (q0 : 1-qubit)
- while Meas|0⟩,|1⟩(q0) == |0⟩ do

- output a; q0 := H(q0);

- end

- return q0;

This program (function) means as follows: first any qubit is given as qo; a pro-
jective measurement in the bases |0⟩, |1⟩ is applied to qo; if the outcome of the
measurement is |1⟩, then this function returns a quantum bit qo; otherwise it
prints a symbol a and the Hadamard operator is applied to qo and another while
iteration continues. The QLTS that describes the behavior or the program is
constructed with s : 1 → QX and c : X → Q(1 + {a} ×X):

(s(x))2,2 = { I2 } (= E0)
(c(x)(a, x))2,2 = {HP|0⟩ } (= E1)
(c(x)(✓))2,2 = {P|1⟩ } (= E2)

12



where P⟨i| is a projection matrix of ⟨i|. We show the QLTS as an automaton:

/.-,()*+x
✓

[E0]
��

a[E1]

mm
[E2]

~~~~
~~
~~
~

Then, the trace semantics of the QLTS is obtained:

((traces,c)(a
n))2,2 = E2 ◦ En

1 ◦ E0.

If we start with a qubit |ψ⟩ = 1√
2
(|0⟩+ |1⟩) and the program outputs “a . . . a︸ ︷︷ ︸

n

”,

then the last quantum state is calculated as follows:

ρ =
(
(traces,c)(a

n)
)
2,2

(|ψ⟩⟨ψ|)

= |ϕ⟩⟨ϕ|
with |ϕ⟩ =

(
1√
2

)n(
0
1

)
Therefore, we observe the words “a . . . a︸ ︷︷ ︸

n

” by the probability tr(|ϕ⟩⟨ϕ|) =
(
1
2

)n.

2.3 Simulation for Quantum LTS

We follow [14] and further examine QLTS in terms of a simulation for two systems.
we write down concretely a forward/backward simulation for QLTS.

Definition 2.11 (simulation for QLTS). Let (X, s, d) and (Y, t, d) be two QLTS.
A forward simulation from (Y, t, d) to (X, s, c) is a function f : X → Q(Y )
satisfies: ∑

x∈X

∑
k∈N

(f(x)(y))k,n ◦ (s(x))m,k ⊒ (t(y))m,n∑
x′∈X

∑
k∈N

(f(x′)(y))k,n ◦ (c(x)(a, x′))m,k ⊒
∑
y′∈Y

∑
k∈N

(d(y′)(a, y))k,n ◦ f(x)(y′)m,k

(c(x)(✓))m,n ⊒
∑
y∈Y

∑
k∈N

(d(y)(✓))k,n ◦ (f(x)(y))m,k

where a ∈ Σ. A backward simulation from (X, s, c) to (Y, t, d) is a function
f : X → Q(Y ) satisfies:∑

x∈X

∑
k∈N

(f(x)(y))k,n ◦ (s(x))m,k ⊑ (t(y))m,n∑
x′∈X

∑
k∈N

(f(x′)(y))k,n ◦ (c(x)(a, x′))m,k ⊑
∑
y′∈Y

∑
k∈N

(d(y′)(a, y))k,n ◦ f(x)(y′)m,k

(c(x)(✓))m,n ⊑
∑
y∈Y

∑
k∈N

(d(y)(✓))k,n ◦ (f(x)(y))m,k

where a ∈ Σ. We denote (X, s, c) ⊑F (Y, t, d) ((X, s, c) ⊑B (Y, t, d)) if there is a
forward simulation (backward simulation) from (s, c) to (t, d).

The existence of simulation—forward or backward—between two systems guar-
antees that the behavior of one system is simulated by another one.

13



Proposition 2.12 (simulation is a sound condition for trace inclusion). Let 1 s−→
X

c−→ FX and 1
t−→ Y

d−→ FY be two QLTSs with F = 1 + Σ×X.

1. (s, c) ⊑F (t, d) =⇒ traces,c ⊑ tracet,d

2. (s, c) ⊑B (t, d) =⇒ traces,c ⊑ tracet,d

Proof. See [14, Theorem 6.1].

At the end of this chapter, we show two protocols—superdense coding protocol
and quantum teleportation protocol—and prove the correctness of the protocols
by giving simulations with specification systems.

Example 2.13 (superdense coding protocol). We first model the superdense cod-
ing protocol in the QLTS framework. The label set Σ = {a1, a2, a3, a4, b1, b2, b3, b4}
is a set of messages that Alice sends and Bob receives. We assume that Alice’s
choice of a message is dependent on the probabilities {p1, p2, p3, p4}; Alice sends ai
by the probability pi. The superdense coding protocol is described by the QLTS
(X, s, c):

(s(x0))1,4 = {
∣∣ϕ+⟩ }

(c(x0)(ai, x1))4,4 =


{√p1 I4 } if i = 1

{√p2 (Z ⊗ I2) } if i = 2

{√p3 (X ⊗ I2) } if i = 3

{√p4 (iY ⊗ I2) } if i = 4

(c(x1)(bi, x2))4,1(ρ) =


{ ⟨ϕ+| } if i = 1

{ ⟨ϕ−| } if i = 2

{ ⟨ψ+| } if i = 3

{ ⟨ψ−| } if i = 4

(c(x2)(✓))1,1 = { I1 }

where Y is the Pauli-Y matrix. The automaton-like representation is here:

start ?>=<89:;x0 ?>=<89:;x1 ?>=<89:;x2 ✓//
a1

''a2 ,,
a3

22
a4

77

b1
''b2 ,,

b3
22

b4

77 //

oo
share

the Bell state

// oo
Alice chooses
a message and

applies an operator

// oo
Bob measures
and receives
a message

//

The trace semantics of the QLTS is obtained:

(traces,c(ai · bj))1,1 =

{
{√pi I1 } if i = j

0 otherwise.

This means that Bob receive the Alice’s message whatever message Alice wants
to send.

Next, we give a specification system suitable to the superdense protocol. A
specification is given as a QLTS (Y, t, d):

(t(y0))1,1 = { I1 }
(d(y0)(ai, yi))1,1 = {√pi I1 }
(d(yi)(bi, y

′
i))1,1 = { I1 }

(d(y′i)(✓))1,1 = { I1 }
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This QLTS can be described as a simple probabilistic automaton:?>=<89:;y1 ?>=<89:;y′1

start ?>=<89:;y0 ?>=<89:;y2 ?>=<89:;y′2 ✓

?>=<89:;y3 ?>=<89:;y′3

?>=<89:;y4 ?>=<89:;y′4

//

a1[p1]

00

a2[p2] //

a3[p3]
..

a4[p4]

,,

b1 //

b2 //

b3 //

b4 //

��
//
@@ MM

There is a function f : Y → QX which makes (X, s, c) ⊑F (Y, t, d) and (Y, t, d) ⊑B

(X, s, c):

(f(y0)(x0))1,4 = {
∣∣ϕ+⟩ }

(f(yi)(x1))1,4 =


{√p1 I4|ϕ+⟩ } if i = 1

{√p2 (Z ⊗ I2)|ϕ+⟩ } if i = 2

{√p3 (X ⊗ I2)|ϕ+⟩ } if i = 3

{√p4 (iY ⊗ I2)|ϕ+⟩ } if i = 4

(f(y′i)(x2))1,1 = { I1 }

Therefore, we establish that the trace semantics of two systems—the protocol and
its specification—coincides, i.e. traces,c = tracet,d.

Example 2.14 (quantum teleportation protocol revisited). We recall Exam-
ple 2.9 and find a simulation between a specification systems. A specification
is given as a QLTS (Y, t, d):

(t(y0))2,2 = { I2 }
(d(y0)(y1))2,2 = { I2 }
(d(y1)(✓))2,2 = { I2 }

the automaton-like representation is so simple:

start ?>=<89:;y0 ?>=<89:;y1 ✓I // I // I //

Then, we find a simulation f : Y → QX:

(f(y0)(x0))2,8 = ρ ∈ DM2. ρ⊗
∣∣ϕ+⟩⟨ϕ+∣∣ (= F)

(f(y1)(xi))2,2 =


{ (⟨ϕ+| ⊗ I2) } ◦ F if i = 00

{ (⟨ϕ−| ⊗ I2) } ◦ F if i = 01

{ (⟨ψ+| ⊗ I2) } ◦ F if i = 10

{ (⟨ψ−| ⊗ I2) } ◦ F if i = 11

This makes (X, s, c) ⊑F (Y, t, d) and (Y, t, d) ⊑B (X, s, c), therefore the trace
equivalence of two systems is proved.
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2.4 Anonymity Analysis via QLTS

In this section, we analyze the probabilistic anonymity [7,17] of a key distribution
in the BB84 protocol [6]. In [17], it is shown that the Dining Cryptographers
protocol satisfies probabilistic anonymity and the Crowds protocol satisfies the
probable innocense—weaker notion of probabilistic anonymity—by searching a
simulation with a specification. Here, however, the simulation based verification
technique is not applied to the BB84 protocol. We only induce the idea of prob-
abilistic anonymity to the BB84 protocol and calculate them by hand. As future
work, we aim to verify some quantum protocols with simulation based approach
because this approach might be more scalable.

The BB84 protocol serves as a secure way of sharing a secret key between two
parties (Alice and Bob). We follow the simple procedure of the protocol in [10].
The protocol goes in the following way:

1. Alice generates two random n-bit strings KA
1 . . .K

A
n and BA

1 . . . B
A
n .

2. Alice prepares an n-qubit string Q1 . . . Qn, according to the two strings
previously generated, like Qi = H

∣∣KA
i

⟩
.

3. Alice sends qubits Q1 . . . Qn to Bob via the quantum channel.

4. Bob generates a random n-bit string BB
1 . . . B

B
n .

5. Bob measures each qubit Qi received from Alice by {|0⟩, |1⟩} if BB
i = 0 or

by {|+⟩, |−⟩} if BB
i = 1 and let the results of the measurements be an n-bit

string KB
1 . . .KB

n .

6. Bob announces his choice of measurement bases BB
1 . . . B

B
n to Alice via the

classical channel, and then Alice also announces her bases BA
1 . . . B

A
n to Bob

via the classical channel.

7. Alice and Bob discard the bits in KA
1 . . .K

A
n and KB

1 . . .KB
n where the

corresponding bits of bases are not equal, that is, BA
i ̸= BB

i and they share
the remaining bits as a secret key.

In this procedure, there is an observer (Eve) of classical messages through the
classical channel. For simplicity we assume that the observer do not touch the
quantum channel and no noise occurs in the quantum channel. To deal with more
practical situations is our future work.

The behavior of the protocol is determined by the probability. Here we give
an informal definition of probabilistic anonymity.

Definition 2.15 (anonymity). The protocol satisfies probabilistic anonymity if
for any observation o and for any keys k, k′,

Pr( k | o ) = Pr( k′ | o )

Here Pr( k | o ) denotes the conditional probability for the event “given that Alice
and Bob communicate classical messages o, they share the key k at the last of the
protocol.”

This definition of anonymity represents that there is no leaking of the infor-
mation about the key shared by Alice and Bob, therefore Eve cannot determine
the key from the classical messages Alice and Bob communicate.
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First we present a QLTS which describes the BB84 protocol in the simplest
case of n = 1, and next we formalize the anonymity of the secret key via the
QLTS. Finally the anonymity of the protocol is verified.

Now, the QLTS of the BB84 protocol is given:

start

GFED@ABCx0

GFED@ABCx1

ONMLHIJKx′0

ONMLHIJKx′1

ONMLHIJKx00

ONMLHIJKx01

ONMLHIJKx10

ONMLHIJKx11

WVUTPQRSfail

WVUTPQRSfail

ONMLHIJKy0,1

WVUTPQRSy+,−

WVUTPQRSkey0 WVUTPQRSkey1

✓

oo
Alice choices
KA ∈ {0, 1}

// oo
Alice choices
BA ∈ {0, 1}

and prepares Q

//
oo //
oo

Bob choices
BB ∈ {0, 1}

//
oo //
oo
Bob measures
Q by BB

//

[ 1
2
I1]

??���������

[ 1
2
I1] ��?

??
??

??
??

kA0 [S0]
FF�������

kA1 [S1] ��2
22
22
22

bA0 [ 1
2
I2]

99ssssssssssss

bA1 [ 1
2
H] %%KK

KKK
KKK

KKK
K

bA0 [ 1
2
I2]

99ssssssssssss

bA1 [ 1
2
H] %%KK

KKK
KKK

KKK
K

bB0 [ 1
2
I2]

))TTT
TTTT

TTTT
TTTT

TTTT
TTT

bB1 [ 1
2
I2] !!B

BB
BB

BB
BB

B

bB0 [ 1
2
I2]

::uuuuuuuuu

bB1 [ 1
2
I2]

��=
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
bB0 [ 1

2
I2]

@@���������������������������������

bB1 [ 1
2
I2]

$$I
III

III
II

bB1 [ 1
2
I2]

==|||||||||| bB1 [ 1
2
I2]

55jjjjjjjjjjjjjjjjjjjjj

kB0 [E0]

��.
..
..
..
..
..
..
..

kB1 [E1]

��=
==

==
==

==
==

==
==

==
==

=

kB0 [E+]

HH���������������
kB1 [E−]

@@��������������������

[I1]

��2
22

22
22

22
22

22
22

22
22

22
22

22
22

22
2

[I1]

��)
))
))
))
))
))
))
))
))
))
))
))
))
))

where Ii is a identity operator from DMi to DMi, H = {H } (a Hadamard
operation), Si = { |i⟩ } (a preparation operation), and Ei = { ⟨i| } (a measurement
operation). The zero operator is assigned for the other component omitted in the
edges of the diagram.

The actions Σ in the QLTS are defined as follows:

Σ := Sec+Obs

Sec := {kA0 , kA1 , kB0 , kB1 }
Obs := {bA0 , bA1 , bB0 , bB1 }

The two superscripts A,B stand for Alice and Bob, respectively. Each kXi ∈ Sec
indicates that X ∈ {A,B} intends to share a key i ∈ {0, 1}, and each bXi ∈ Obs
stands for a basis i ∈ {0, 1} chosen by X ∈ {A,B}. In this formalization, we
assume that Eve can observe only Obs = {bA0 , bA1 , bB0 , bB1 } of actions.

Each state of the QLTS has a concrete meaning as annotated by ←→. . . at the
bottom of the QLTS. The state xi,j specifies the step of the protocol in which Alice
randomly generates KA = i and BA = j. The state fail means that if Alice’s
basis BA and Bob’s basis BB are not equal then the protocol unsuccessfully
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terminates. The states y0,1, y+,− are the steps in which Bob is ready to measure a
qubit by bases {|0⟩, |1⟩} and {|+⟩, |−⟩}, respectively. The states keyo, key1 means
that the protocol successfully terminates with a secret key 0 and 1, respectively.

We obtain the probabilistic behavior of the protocol from the trace semantics
of the QLTS, which is a probability distribution on the sequence of actions. We
denote it by Pr : Σ∗ → [0, 1]: for σ ∈ Σ∗, Pr(σ) = (trace(σ))1,1(1).

The following notations for predicates on Σ∗ are defined: for i, j ∈ {0, 1},

Ki,j = { . . . kAi . . . kBj . . . ∈ Σ∗}
Oi,j = { . . . bAi . . . bBj . . . ∈ Σ∗},

Each predicate on Σ∗ specifies a certain set of execution paths through the pro-
tocol. For example, the predicate K0,0 is a set of a protocol execution in which
Alice and Bob accomplish to share the secret key 0. The predicate O0,1 is a set
of a protocol execution in which Eve observes the announcements of bases, Al-
ice’s 0 and Bob’s 1. We also denote the probability of the predicate P ⊆ Σ∗ by
Pr(P ) =

∑
σ∈P Pr(σ).

The correctness of the protocol—Alice and Bob share the same bit—is de-
scribed by the two conditions:

Pr(K0,1) = 0 and Pr(K1,0) = 0. (2.3)

Moreover, the anonymity of a secret key in the BB84 protocol is formally
defined, which is induced from Definition 2.15.

Pr(K0,0

∣∣ Oi,j) = Pr(K1,1

∣∣ Oi,j), for all i, j ∈ {0, 1}. (2.4)

Here the conditional probability Pr(P1

∣∣ P2) represents Pr(P1 ∩ P2)/Pr(P2) for
two predicates P1, P2.

Eventually, the probability distribution Pr is calculated as follows:

Pr(kA0 · bA0 · bB0 · kB0 ) =
(
I1 ◦ E0 ◦

1

2
I2 ◦

1

2
I2 ◦ S0 ◦

1

2
I1
)
(1) = 1/8,

P r(kA0 · bA0 · bB0 · kB1 ) =
(
I1 ◦ E1 ◦

1

2
I2 ◦

1

2
I2 ◦ S0 ◦

1

2
I1
)
(1) = 0,

P r(kA0 · bA1 · bB1 · kB0 ) =
(
I1 ◦ E+ ◦ 1

2
I2 ◦

1

2
H ◦ S0 ◦

1

2
I1
)
(1) = 1/8,

P r(kA0 · bA1 · bB1 · kB1 ) =
(
I1 ◦ E− ◦ 1

2
I2 ◦

1

2
H ◦ S0 ◦

1

2
I1
)
(1) = 0,

P r(kA1 · bA0 · bB0 · kB0 ) =
(
I1 ◦ E0 ◦

1

2
I2 ◦

1

2
I2 ◦ S1 ◦

1

2
I1
)
(1) = 0,

P r(kA1 · bA0 · bB0 · kB1 ) =
(
I1 ◦ E1 ◦

1

2
I2 ◦

1

2
I2 ◦ S1 ◦

1

2
I1
)
(1) = 1/8,

P r(kA1 · bA1 · bB1 · kB0 ) =
(
I1 ◦ E+ ◦ 1

2
I2 ◦

1

2
H ◦ S1 ◦

1

2
I1
)
(1) = 0,

P r(kA1 · bA1 · bB1 · kB1 ) =
(
I1 ◦ E− ◦ 1

2
I2 ◦

1

2
H ◦ S1 ◦

1

2
I1
)
(1) = 1/8.

For other σ ∈ Σ∗, the probability 0 is assigned.
Therefore, the two properties—correctness (2.3) and anonymity (2.4)—of the

BB84 protocol is verified. As for the correctness,

Pr(K0,1) = Pr(K1,0) = 0.

18



As for the anonymity,

Pr(K0,0

∣∣ O0,0) = Pr(K1,1

∣∣ O0,0) = 1/8,

P r(K0,0

∣∣ O0,1) = Pr(K1,1

∣∣ O0,1) = 0,

P r(K0,0

∣∣ O1,0) = Pr(K1,1

∣∣ O1,0) = 0,

P r(K0,0

∣∣ O1,1) = Pr(K1,1

∣∣ O1,1) = 1/8.
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Chapter 3

Bisimilarity and Behavioral Equivalence

We devoted the previous chapter to QLTS as a model of quantum systems, which
is a generative system with explicit termination. From now, in order to examine
more fundamental aspects of this modeling, we deal with a quantum system as
a coalgebra X → QX (or X → QfX) instead of X → Q(1 + Σ ×X). Here Qf

is a finite support variant of the monad Q (see (2.2)). This type of a coalgebra
X → QX is much like a quantum Markov chain in [10].

In this chapter, we discuss some types of equivalence for two quantum systems.
One is the trace equivalence that is explained in the previous chapter. Another is
bisimilarity whose coalgebraic characterization is given by Aczel and Mendler [3].

Definition 3.1 (F -bisimulation and F -bisimilarity). Let F : Sets → Sets be an
endofunctor on Sets and c : X → FX and d : Y → FY be two coalgebras of the
functor F . A relation R ∈ X × Y is a F -bisimulation for two coalgebras c, d if
there exists a map e : R→ FR that makes two projections π, π′ homomorphisms
to respective coalgebras:

FX
Q(π)oo Q(π′) //

c

OO

e

OO

d

OO

πoo π′
//

FR FY

X R Y .

Two states x ∈ X and y ∈ Y are F -bisimilar if there is a F -bisimulation R which
satisfies (x, y) ∈ R.

This abstract definition yields concrete ones for different types of systems.
For example, for probabilistic systems or Markov chains, which are represented
by D-coalgebras, a relation R ∈ X × Y is a D-bisimulation for c : X → DX
and d : Y → DY if for each pair (x, y) ∈ R there is a weight function w : R →
[0, 1] which is added up to 1 with c(x)(x′) =

∑
(x′,y′)∈R w(x

′, y′) for all x′ ∈ X

and d(y)(y′) =
∑

(x′,y′)∈R w(x
′, y′) for all y′ ∈ Y . This weight-function-based

description is the well-known concrete definition e.g. in [4]. A Q-bisimulation (or
Qf -bisimulation) is defined in the same manner, except that the range of a weight
function w becomes the set QO of quantum operations with the trace condition.

For probabilistic systems, there is an alternative formulation of equivalence
by Larsen and Skou [26]. Larsen and Skou define “probabilistic bisimulation” as
follows: an equivalence relation R ∈ X × X is a probabilistic bisimulation for
two systems c, d : X → DX with the same carrier if for each pair (x, y) ∈ R the
following sums probabilities coincide:∑

x′∈Q
c(x)(x′) =

∑
x′∈Q

d(y)(x′), for each R-equivalence class Q ∈ X/R.

20



In [33], it is shown that two notions of bisimulation—bisimulation in Defini-
tion 3.1, and probabilistic bisimulation by Larsen and Skou—coincides.

In the first section of this chapter, we will also defined this Larsen and Skou’s
equivalence-class-based bisimulation for quantum systems, and we will show that
the two notions do not coincide unlike a probabilistic situation.

3.1 Two notions of Bisimulation for Valuation Functor

First, we employ a useful idea in [22], which generalize a multiset functor to
encompass the distribution functor D and the monad Qf . This generic notion of
multiset functor is also used in next chapter to describe a modal logic for quantum
systems.

Definition 3.2 (valuation functor VO). For M and O where

• (M,+, 0,≤) is a partially ordered commutative monoid and satisfies:

∀x, y ∈M.x ≤ x+ y; (3.1)

• O is a downward-closed subset of M ,

a valuation functor VO : Sets → Sets is defined by:

VOX = {ϕ : X → O
∣∣ supp(ϕ) is finite and

∑
x∈X

ϕ(x) ∈ O}

VO(f)(ϕ) = λy ∈ Y.
∑

x∈f−1(y)

ϕ(x)

where X is a set, f : X → Y is a function, and ϕ ∈ VOX is a valuation.

As shown in the original paper [22], an ordinary multiset functor is indeed ac-
quired by O =M and the distribution functor D is obtained withM = (R≥0, 0,+)
and O = [0, 1] ⊆ R≥0. We can also get a functor Qf as an instance of a valuation
functor VO.

Proposition 3.3. The functor Qf is a valuation functor.

Proof. The trace condition (2.1) is used to define Qf . This normlizing factor can
be gained in terms of a monoid with partial order and its downward-closed subset.

We have a commutative monoid M =
∏

m,n Sm,n. Here Sm,n is a set of
completely positive super-operators from a Hilbert space C2m to C2n , which
are not required to be trace non-increasing (unlike quantum operations). The
addition operation, the unit, and the partial order are defined pointwise: for
s, s′ ∈

∏
m,n Sm,n,

(s+ s′)m,n(ρ) := (s)m,n(ρ) + (s′)m,n(ρ)

(0)m,n(ρ) := 0

s ≤ s′
def⇐⇒ ∀m ∈ N. ∀ρ ∈ DMm. ∀n ∈ N. (s)m,n(ρ) ⊑ (s′)m,n(ρ)

where 0 at the right side is a zero matrix and ⊑ is the Löwner partial order.
The subset TrQO of

∏
m,n Sm,n is defined as:

s ∈ TrQO def⇐⇒ ∀m ∈ N. ∀ρ ∈ DMm.
∑
n∈N

(
tr
(
(s)m,n(ρ)

))
≤ 1
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Now, we show that
∏

m,n Sm,n and TrQO satisfy the condition in Defini-
tion 3.2. For two elements s, s′ ∈

∏
m,n Sm,n,

(s+ s′)m,n(ρ)− (s)m,n(ρ) = ((s)m,n(ρ) + (s′)m,n(ρ))− (s)m,n(ρ))

= (s′)m,n(ρ).

The super-matrix (s′)m,n(ρ) is positive, therefore s ≤ s+ s′.
If we take s, s′ ∈

∏
m,n Sm,n with s ≤ s′ and s′ ∈ TrQO, the inequality

(s)m,n(ρ) ⊑ (s′)m,n(ρ) implies tr
(
(s)m,n(ρ)

)
≤ tr

(
(s′)m,n(ρ)

)
, thus:∑

n∈N

(
tr
(
(s)m,n(ρ)

))
≤

∑
n∈N

(
tr
(
(s)m,n(ρ)

))
≤ 1,

therefore s ∈ TrQO.

We review a bisimulation in Definition 3.1 for a valuation functor VO.

Definition 3.4 (VO-bisimulation). Let VO be a valuation functor, and c : X →
VOX and d : Y → VOY be two coalgebras. A relation R ∈ X × Y is a VO-
bisimulation for c, d if for each pair (x, y) ∈ R, there is a weight function w :
X × Y → O for c(x) and d(y) w.r.t R. Here a weight function w : X × Y → O of
µ ∈ VOX and ν ∈ VOY w.r.t R is satisfying:

• supp(w) ⊆ R;

•
∑

(x,y)∈X×Y w(x, y) ∈ O;

• µ(x) =
∑

y∈Y w(x, y), for all x ∈ X;

• ν(y) =
∑

x∈X w(x, y), for all y ∈ Y .

Now, the notion of probabilistic bisimulation by Larsen and Skou is extended
to a valuation functor VO. To avoid the confusion, we call this type of bisimulation
LS-bisimulation.

Definition 3.5 (LS-bisimulation). Let VO be a valuation functor and c, d : X →
VOX be two coalgebras of VO with the same carrier X. An equivalence relation
R ⊆ X ×X is an LS-bisimulation for c, d if R satisfies: for all x, y ∈ X,

(x, y) ∈ R

=⇒
∑
x′∈Q

c(x)(x′) =
∑
x′∈Q

d(y)(x′), for each R-equivalence class Q ∈ X/R.

At first sight, it seems to be difficult to categorically formalize this equivalence-
class-based characterization, but this can be identified as a behavioral equivalence
which is another notion of coalgebraic equality [21].

Definition 3.6 (behavioral equivalence). Let F : Sets → Sets be an endofunctor
on Sets and c : X → FX and d : Y → FY be two coalgebras. Two elements
x ∈ X and y ∈ Y are called behaviorally equivalent if there are a coalgebra e :
Z → FZ and a cospan of coalgebra homomorphisms h : X → Z and k : Y → Z:

FX FZ FY

X Z Y

c

OO

e

OO

d

OO

h // koo

F (h) // F (k)oo

with h(x) = k(y).
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An LS-bisimulation can be described as a quotient coalgebra b : X/R →
VOX/R which forms a cospan with a quotient map q : X → X/R:

VOX VO(X/R) VOX

X X/R X

c

OO

b

OO

d

OO

q // qoo

VO(q) // VO(q)oo

by taking b : X/R → VOX/R as b([x])(Q) =
∑

x′∈Q c(x)(x
′) =

∑
x′∈Q d(x)(x

′)
where x is a representative element of an equivalence class [x]. The well-definedness
of a function b is ensured by the condition of LS-bisimulation. Thus, this diagram
shows that each element (x, y) ∈ R is behaviorally equivalent.

It is well known that the two notions—F -bisimilarity in Definition 3.1 and be-
havioral equivalence—are coincide for functors that preserve weak pullbacks [31] [21].
Therefore, it is natural to obtain the relationship of two notions of bisimulation—
VO-bisimulation and LS-bisimulation—to the following form.

Proposition 3.7. Let VO be a valuation functor and c, d : X → VOX be two
coalgebras. For an equivalence relation R ∈ X ×X, consider the following condi-
tions:

1. R is a VO-bisimulation for c, d;

2. R is an LS-bisimulation for c, d.

We have 1 implies 2; moreover, 2 implies 1 in case VO preserves weak pullbacks.

Proof. For an equivalence relation R ∈ X × X, the below diagram forms both
pullback and pushout with q : X → X/R is a quotient map:

R

X X

X/R

π

||yy
yy
yy
yy
y

π′

""E
EE

EE
EE

EE

q !!D
DD

DD
DD

D

q}}zz
zz
zz
zz

First we show 1⇒2. Assume that there is a coalgebra e : R → VOR and two
projections π, π′ are homomorphisms, then a pushout b : X/R → VOX/R is ob-
tained by using that the forgetful functor U : Coalg(D) → Sets creates colimits.
The pushout equalizes two projection homomorphisms with the quotient map q,
hence we get q ◦ π = q ◦ π′ as a homomorphism from q to b.
Then, for all (x, y) ∈ R,

λQ ∈ X/R.
∑
x′∈Q

c(x)(x′) = λQ ∈ X/R.
∑

x′∈q−1(Q)

c(x)(x′)

= (D(q) ◦ c)(x)
= (b ◦ q)(x)
= (b ◦ q ◦ π′)(x, y)
= (b ◦ q ◦ π)(x, y)
= (b ◦ q)(y)
= (D(q) ◦ d)(y)

= λQ ∈ X/R.
∑
x′∈Q

c(x)(x′)
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Next we show 2⇒1 using that VO preserves weak-pullbacks. Conversely, we as-
sume LS-bisimulation and then we obtain a quotient coalgebra with a cospan
homomorphism q. We get a pullback π, π′ : R→ X from q : X → X/R and then
VO(π),VO(π

′) : VOR → VOX becomes a weak-pullback because VO preserves
weak-pullbacks. Consequently, a mediating map e : R → DR is obtained by the
role of a weak pullback:

R

VOR

VOX VOX

VOX/R

c◦π

��

d◦π′

��

e
���
�
�

VO(π)

yyttt
tt
tt
tt VO(π′)

%%JJ
JJ

JJ
JJ

J

VO(q) $$JJ
JJ

JJ
JJ

J

VO(q)zzttt
tt
tt
tt

3.2 Refinability and Preservation of Weak-Pullback

In the next step, the weak-pullback-preserving property for a valuation functor is
discussed. We follow [13] and review some properties of monoids.

Definition 3.8 ((m,n)-refinability). Let M be a commutative monoid with ad-
ditive structure (M, 0,+). For m,n ∈ N, a monoid M is (m,n)-refinable if for
two sequences r1, . . . , rm, c1, . . . , cn with an equality:∑

i

ri =
∑
j

cj

there is an m× n-matrix which has elements (mi,j) with:

{
ri =

∑
j mi,j

cj =
∑

imi,j

which is illustrated as

m1,1 · · · m1,n r1
...

. . .
...

...
mm,1 · · · mm,n r2
c1 · · · cn

The refinability for all m,n can be derived from a smaller case and positivity.
Positivity here means that m1+m2 = 0 implies m1 = m2 = 0 for all m1,m2 ∈M .

Proposition 3.9. A commutative monoid (M,+, 0) is (m,n)-refinable for all
m,n ∈ N if and only if M is (2, 2)-refinable and positive.

Proof. See [13, Prop. 5.10].

In general, a multiset functor does not preserve weak pullbacks, but a monoid
with refinability and positivity guarantees the preserving property.

Proposition 3.10. Let M = (M, 0,+) be a commutative monoid. A multiset
functor MM preserves weak pullbacks if and only if M is (2, 2)-refinable and
positive.

Proof. See [13, Theorem 5.13].
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In order to cover probabilistic or quantum systems, we slightly generalize the
previous definitions and results in [13] to valuation functors in Definition 3.2.
For a subset O of a commutative monoid M that satisfies the condition of Def-
inition 3.2, O is (m,n)-refinable if for two sequences r1, . . . , rm, c1, . . . , cn with∑

i ri =
∑

j cj ∈ O there is (mi,j) with ri =
∑

j mi,j and cj =
∑

imi,j .
The condition of Definition 3.2 implies M is positive, thus we get a characteri-

zation of a weak-pullback-preserving property for valuation functors as the below
proposition.

Proposition 3.11. Let a commutative monoid M = (M, 0,+) and O ∈M satisfy
the condition of Definition 3.2. A valuation functor VO preserves weak pullbacks
if and only if O is (2, 2)-refinable.

Proof. We can prove this in a way similar to [13, Theorem.5.13].

The distribution functor D is clearly an example because the real interval [0, 1]
is (2, 2)-refinable, therefore D preserves weak pullbacks. Additionally, the system
whose transition is weighted by natural number is specified by a multiset functor
with a commutative monoid (N,+, 0). The natural number N is (2, 2)-refinable
and so MN preserves weak pullbacks, hence we can also apply the characterization
of bisimulation for such systems as in Proposition 3.7.

3.3 Refinability of Quantum Operations

When it comes to quantum systems, the refinability of the set of quantum oper-
ations fails. We first show an equality of quantum operations from DM2 to DM1

that cannot be divided into a 2× 2-matrix.

Lemma 3.12. Four quantum operations {|0⟩}, {|1⟩}, {|+⟩}, {|−⟩} satisfy:

⟨0|_|0⟩+ ⟨1|_|1⟩ = ⟨+|_|+⟩+ ⟨−|_|−⟩,

Each side of equation represents an operation of taking a trace value of ρ ∈
DM(C2). There is no decomposition (Ei,j) where:

E1,1 E1,2 ⟨0|_|0⟩
E2,1 E2,2 ⟨1|_|1⟩

⟨+|_|+⟩ ⟨+|_|+⟩
(3.2)

Proof. We assume there are four operations (Ei,j) make the decomposition above.
Let E1,1 = {E(i) : i ∈ I} and E1,2 = {F (j) : j ∈ J} be the operator-sum represen-
tation of E1,1 and E1,2, respectively. The top row of the matrix implies:

⟨0|_|0⟩ =
∑
i∈I

E(i)(_)(E(i))† +
∑
j∈J

E(j)(_)(E(j))†.

We apply |1⟩⟨1| ∈ DM(C2) to each side of the equation:

0 =
∑
i∈I

|E(i)|1⟩|2 +
∑
j∈J

|E(j)|1⟩|2.

Thus, E(i)|1⟩ = 0 for all i ∈ I and F (j)|1⟩ = 0 for all j ∈ J . It must be that
E1,1 = {r|0⟩} and E1,2 = {(1−r)|0⟩} with r ∈ [0, 1] We follow the same analysis for
the left column of the matrix and obtain E1,1 = {r′|+⟩} and E2,1 = {(1− r′)|+⟩}
with r′ ∈ [0, 1]. It is obvious that any of E , E ′,F ,F ′ must not be 0. However,
{r|0⟩} = {r′|+⟩} with r ̸= 0, r′ ̸= 0 is contradiction, therefore the decomposition
of the table (3.2) is impossible.
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We obtain the main result easily from the above counter example.

Proposition 3.13. TrQO is not (2, 2)-refinable.

Proof. We take four elements r1, r2, c1, c2 ∈ TrQO as follow:

(r1)m,n(ρ) :=

{
⟨0|ρ|0⟩ if m = 2, n = 1

0 otherwise

(r2)m,n(ρ) :=

{
⟨1|ρ|1⟩ if m = 2, n = 1

0 otherwise

(c1)m,n(ρ) :=

{
⟨+|ρ|+⟩ if m = 2, n = 1

0 otherwise

(c2)m,n(ρ) :=

{
⟨−|ρ|−⟩ if m = 2, n = 1

0 otherwise

The decomposition of r1 + r2 = c1 + c2 leads to the same contradiction for the
(2, 1)-component of the operators.

This failure of refinability implies that Q-bisimulation cannot be characterized
by equivalence class by Proposition 3.7 and 3.11. Finally, we give an example of
two concrete quantum systems whose states are not Q-bisimilar but behaviorally
equivalent. This is indeed a consequence of discussions so far.

Proposition 3.14. Let two coalgebras c, d : X → QX be:

c : X → QX

c(x)(x′) :=


r1 if x = x0, x

′ = x1

r2 if x = x0, x
′ = x2

0 otherwise

d : X → QX

d(x)(x′) :=


c1 if x = x0, x

′ = x1

c2 if x = x0, x
′ = x2

0 otherwise

where X = {xo, x1, x2} and r1, r2, c1, c2 are specified previously in Proposition 3.13.
Those two are more intuitively described as automata:

c ?>=<89:;x0

?>=<89:;x1 ?>=<89:;x2

r1

}}||
||
||
|| r2

!!B
BB

BB
BB

B d ?>=<89:;x0

?>=<89:;x1 ?>=<89:;x2

c1

~~}}
}}
}}
}} c2

  A
AA

AA
AA

A

The two states x0 and x0 are behaviorally equivalent for c, d, but they are not
Q-bisimilar for c, d.

Proof. Behaviorally equivalence is showed as follows. We take an equivalence
relation R ∈ X ×X as:

R := {(xo, xo), (x1, x1), (x2, x2), (x1, x2), (x2, x1)}.

A quotient coalgebra e : X/R→ Q(X/R) is obtained as a cospan of two systems:

e : X/R→ Q(X/R)

e(z)(z′) :=

{
s if z = {xo}, z′ = {x1, x2}
0 otherwise

'& %$ ! "#{x0}

'& %$ ! "#{x1, x2}

s

��
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where s ∈ TrQO represents an operation that takes a trace value of density matrix
and s = r1 + r2 = c1 + c2:

(s)m,n(ρ) :=

{
tr(ρ) if m = 2, n = 1

0 otherwise

However, there is no bisimulation R ∈ X ×X with (x0, x0) ∈ R. We prove this
by contradiction. First, assume a bisimulation R for the coalgebras c and d and
satisfies (x0, x0) ∈ R. Then, There is a weight function w ∈ QR such that:

c(x0)(x
′) =

∑
(x′,y′)∈R

w(x′, y′) for all x′ ∈ X

d(x0)(y
′) =

∑
(x′,y′)∈R

w(x′, y′) for all y′ ∈ Y

This requirements to w ∈ Q(R) is represented as a table:

y1 y2 y3

x1 w(x1, y1) w(x1, y2) w(x1, y3) 0

x2 w(x2, y1) w(x2, y2) w(x2, y3) r1
x3 w(x3, y1) w(x3, y2) w(x3, y3) r2

0 c1 c2

However, this situation leads to the contradiction in the proof of Proposition 3.13.
Therefore, xo and xo cannot be bisimilar for c, d.
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Chapter 4

Modal Logic and Expressivity

In the previous chapters, we have discussed some types of equivalence—trace
equivalence, bisimilarity, behavioral equivalence—for transition systems. Espe-
cially in the case of non-deterministic systems, it is well known that bisimilarity
can be characterized by the logical approach, which means there is a modal logic
that is powerful enough to distinguish non-bisimilar states. This is first formu-
lated by Hennessy and Milner in [18], so such a property of a modal logic is called
the Hennessy-Milner property.

There are some categorical approaches to describing a connection between
coalgebras and modal logics. In [22], the expressivity of some general class of
logics is shown in a categorical setting for some types of transition systems such as
non-determinism, probabilistic, and monoid-weighted systems. We follow [22] and
find out a modal logic that is suitable to characterize the behavioral equivalence
of quantum systems.

4.1 Coalgebraic Modal Logic with Dual Adjunction

First, we explain the categorical setting for combining two notions, coalgebras
and a modal logic.

Definition 4.1 (coalgebraic modal logic, abstractly). Let C,A be a category and
T, P, L, F be a functor written in the diagram:

Cop A
P

**

F

jjT 55 Lff⊤

Moreover, we assume a some constructs:

• a natural transformation σ : LP ⇒ PT ;

• the functor L has an initial algebra with L(Form)
∼=−→ Form;

• the category C carries a factorization system (M,E) (see e.g. [19].)

A functor L : A → A together with a natural transformation σ : LP ⇒ PT is
called a coalgebraic modal logic for the functor T : C → C.

In this general setting, each component indeed has an concrete meaning as
follows. For an arbitrary coalgebra c : X → TX in the base category C, we
obtain a L-algebra by the contravariant functor P : Cop → A and the natural
transformation σ : LP ⇒ PT :

LPX
σX−→ PTX

P (c)−→ PX.
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Then, the initial L-algebra gives rise to a unique homomorphism J−K : Form →
PX by the initiality:

L(Form) LPX

Form PX

∼=
��

P (c) ◦σX

��

L(J−K) //

J−K //

This unique map can be recognized as an interpretation function which maps a
formula ϕ ∈ Form to its interpretation JϕKc ∈ PX. By the adjunction F ⊣ P ,
the transpose of J−K is obtained as a theory map thc : X → F (Form) mapping a
state x ∈ X to the set of formulas thc(x) ∈ F (Form) that x satisfies.

For now, expressivity of a coalgebraic modal logic is characterized as the fol-
lowing form.

Definition 4.2 (expressivity). Assume the situation in Definition 4.1. The rela-
tion ≡c ⊆ X ×X of a logically indistinguishable pair of states is characterized as
an equalizer:

≡c X ×X F (Form)//_____
thc ◦π //

thc ◦π′
//

The coalgebraic modal logic is expressive if each logically indistinguishable ele-
ments x ≡c x

′ are behaviorally equivalent for all coalgebra c : X → TX.

The inverse implication of expressivity is not difficult to be shown. However,
in order to characterize expressivity property, another thing matters. There is a
bijective correspondence of two natural transformations:

LP
σ
=⇒ PT

TF =⇒
σ
FL

which is obtained through the adjunction F ⊣ P . For coalgebraic modal logic
σ, its transpose is written as σ. Then, we present the well known result of a
coalgebraic modal logic and its expressivity.

Proposition 4.3. In the situation of Definition 4.1, the coalgebraic modal logic is
expressive if the functor T preserves abstract monos and the transpose σ : TF ⇒
FL is componentwise abstract mono.

Proof. See [24].

The abstract setting for a valuation functor VO is shown in [22]. The modality
□o : PX → PVOX is given as:

□o(U) := {ϕ ∈ VO(X)
∣∣ ∑
x∈U

ϕ(x) ≥ o} (4.1)

where o ∈ O, U ∈ X. From this modality, one obtain a special case in Defini-
tion 4.1.

Proposition 4.4. Let M,O satisfy the conditions in Definition 3.2. The valua-
tion functor VO carries a coalgebraic modal logic: an endofunctor KO : MSL →
MSL and a natural transformation ⊠ : KOP → PVO with:

Setsop MSL

P
,,

F
llVO 44 KOii⊤

Each part of the diagram is specified as follows:
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• MSL is a category of meet semilattices and meet preserving functions;

• P : Setsop → MSL is a contravariant powerset functor;

• F : MSL → Setsop maps a meet semilattice A to the set F(A) ⊆ P(A) of
its filters.

Moreover, if M is cancellative, that is: for all x, y, z ∈M ,

x+ z ≤ y + z =⇒ x ≤ y, (4.2)

the transpose of ⊠ is componentwise mono, therefore the coalgebra modal logic
involved is expressive.

Proof. An endofunctor KO : MSL → MSL is constructed from the modality
in (4.1). For detail, see [22, Prop. 11, Theorem 13].

4.2 Expressive Modal Logic for Quantum Systems

To use this result in a quantum situation T = Qf , it is enough to show that a
monoid

∏
m,n Sm,n is cancellative.

Proposition 4.5.
∏

m,n Sm,n is cancellative.

Proof. The additive structure and the partial order on
∏

m,n Sm,n are defined in
Proposition 3.3. For s1, s2, s3 ∈

∏
m,n Sm,n, we assume s1 + s3 ≤ s2 + s3.

(s2)m,n(ρ)− (s1)m,n(ρ) = ((s2)m,n(ρ) + (s3)m,n(ρ))− ((s1)m,n(ρ) + (s3)m,n(ρ))

= (s2 + s3)m,n(ρ)− (s1 + s3)m,n(ρ)

Therefore s1 ≤ s2.

The abstract discussion so far induces a concrete expressive modal logic for
quantum systems. From now, we present a modal logic for the functor Qf and
we call this logic QML (quantum modal logic).

Definition 4.6 (syntax of QML). The syntax of QML is as follows:

ϕ ::= ⊤
∣∣ ϕ1 ∧ ϕ2 ∣∣ □Eϕ

where E ∈ TrQO.

Definition 4.7 (semantics of QML). Let c : X → QX be a Q coalgebra. For
any state x ∈ X, the satisfaction relation ⊨c is defined inductively as:

x ⊨c ⊤ always

x ⊨c ϕ1 ∧ ϕ2 ⇐⇒ x ⊨c ϕ1 and x ⊨c ϕ2

x ⊨c □Eϕ ⇐⇒
∑
x′⊨cϕ

c(x)(x′) ⊒ E

where E ∈ TrQO.

Finally, we give some simple and fundamental examples in order to illustrate
the QML more concretely. These examples follow ones from some other settings,
such as non-determinism in [18], and probabilistic systems in [26].
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Example 4.8. First, the conjunction operator of QML is needed to separate two
systems below: ?>=<89:;x0

?>=<89:;x1 ?>=<89:;x3

?>=<89:;x2 ?>=<89:;x4

sl

}}{{
{{
{{
{{ sr

!!C
CC

CC
CC

C

t
��

t
��

?>=<89:;y0

?>=<89:;y1

?>=<89:;x2 ?>=<89:;x3

sl+sr
��

t

}}||
||
||
|| t

!!B
BB

BB
BB

B

For a formula ϕ = (□sl+sr□t⊤)∧ (□sl+sr□t⊤), the both states xo and yo satisfies
ϕ. However, if we take a formula ψ = □sl+sr(□t⊤ ∧□t⊤), the right state y0 sat-
isfies ψ but the left one xo does not satisfy it. Hence, we can see that conjunction
is necessary to specify the occasion a branch occurs.

Next, the syntax of QML does not contain a negation operator. This is because
the set of quantum operators is cancellative unlike boolean algebra ({0, 1},∨).
While the following non-determinism systems:?>=<89:;x0

?>=<89:;x1 ?>=<89:;x2

?>=<89:;x3

1

}}{{
{{
{{
{{ 1

!!C
CC

CC
CC

C

1
��

?>=<89:;y0

?>=<89:;y1

?>=<89:;x2

1

  B
BB

BB
BB

B

1
��

cannot be distinguished without negation (a negation formula □1¬□1⊤ distin-
guishes them), the cancellative multiset systems (which include quantum sys-
tems): ?>=<89:;x0

?>=<89:;x1 ?>=<89:;x2

?>=<89:;x3

s

}}{{
{{
{{
{{ s

!!C
CC

CC
CC

C

t
��

?>=<89:;y0

?>=<89:;y1

?>=<89:;x2

s+s

  B
BB

BB
BB

B

t
��

can be separated by some formulas, for example ϕ = □s+s□t⊤.
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Chapter 5

Conclusions and Future Work

We have analyzed the quantum monad Q (or its finitary variant Qf ) from a coal-
gebraic view. A novel notion of QLTS is obtained as an instance of coalgebra
X → QFX with a linear-polynomial functor F = 1 + Σ × id. As this type of
a quantum system, we modeled some well-known examples—the superdense pro-
tocol and the quantum teleportation protocol—and discovered a simulation with
a specification system of each protocol, respectively. This is a new technique to
verify quantum systems induced from categorical abstraction of branching types.
We will refine the simulation bases approach for practical use and explore some
examples for verification. For the BB84 protocol, we formalized the anonymity
property of a secret key and verified its anonymity with the assumption that an
eavesdropper cannot attack quantum data. We will improve this formalization of
anonymity property to apply much wider quantum protocols.

Moreover, we have investigated some feature of the systems which are specified
by coalgebras in the form X → QfX. Using the analogy to probabilistic systems,
we define a new characterization of bisimulation—LS-bisimulation— however this
notion is weaker than a standard coalgebraic bisimulation for quantum systems.
We have also found an expressive modal logic with quantum modality by means
of coalgebraic modal logic. These are minor contributions, however we expect
that they can be foundation for future work somewhat.a

The coalgebraic characterization of quantum systems will further benefit from
categorical generalization. Structural operational semantics (SOS) is utilized to
properly describe a specification of process calculi [2]. Various flavors of SOS are
well studied by using a bialgebra—an algebra represents a syntax, a coalgebra
describes a behavior—and a distributive law in the categorical framework [25].
This framework successfully obtained appropriate syntactic formats for LTS [32]
and probabilistic transition systems [5]. We also seek a suitable design for a
quantum process calculus.

Another direction of the thesis’s future work is to explore the quantum variant
of the Giry monad that is an endofunctor on the category of measurable spaces and
measurable functions [11]. While the coalgebras of the distribution monad repre-
sent discrete Markov chains, Giry monad (or some variants) coalgebras describe
systems called Markov processes [8]. This notion formalizes the probabilistic sys-
tems whose state space is continuous and which evolves their stages according to
a probabilistic law, which should suitably model real world systems in a physics
sense. Therefore, we hope to define a monad like the Giry monad which has
quantum taste.
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