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Goal of This Talk

We will review some elements of traced monoidal categories of
Joyal, Street and Verity, which are related to

e semantics of recursion (fixed-point operators) and
e Geometry of Interaction (the Int-construction),

using the graphical language for monoidal categories as a convenient
tool.

In this talk, whenever possible, we consider general balanced (braided)

monoidal categories, following the original development by JSV, rather
than just symmetric monoidal categories — for better connection to
math, especially low-dimensional topology; for prompting potential
applications in CS; for likely new to many of you; and for just fun.




Part |: Traced Monoidal Categories




Preliminaries: Monoidal Categories

A monoidal category (tensor category) C = (C,®, I, a,l,r) consists of

a category C, a functor ® : C x C — C, an object [ € C and natural
isomorphisms a4 5.0 : (ARB)®C - AR (BRC),la: I ® A= A and
ra: A® I = A such that the following two diagrams commute:

(A B) C)® D—(A® B)® (C® D)

a®Dl (A®T)® B—“>»A® (I ® B)

(A®(B®C)) ® D r@x\ /4@

{ A® B

Y

A® (B®C)®D)=+A® (B® (C® D))

(In practice, often we can safely forget a, [, r, and identify (A ® B) ® C' with
A ® (B ® (') etc — thanks to the coherence theorem.)




Preliminaries: Braidings, Symmetries and Twists

A braiding is a natural isomorphism c4 5 : A® B = B ® A such that both

c and ¢! satisfy the “bilinearity” diagrams (the case for ¢ *

is omitted):
(AR B)®C —— AR (BRC) —— (BR(O)® A

c®RC

(BRA)®C B®(A®C) B (C®A)

a B®c

A symmetry is a braiding such that ca p = cg,,lA.

A braided/symmetric monoidal category is a monoidal category equipped with

a braiding/symmetry.

A twist or a balance for a braided monoidal category is a natural isomorphism
0a: A= Asuchthat §; = id; and Oagps = cp.a0 (05 @ 04)0ca p hold.

A balanced monoidal category is a braided monoidal category with a twist.




Geometry of Monoidal Categories
(Geometry of tensor calculus, Joyal and Street / string diagrams, Penrose)

A morphism f: A1 ® A ®...® A, - B ® Bo®...® B, can be drawn as:
g

—
—&

Morphisms can be composed, either sequentially or in parallel:

&9 BR el

g
f “/

I/ ®g

Braids: ¢ — 7 ¢l = k"’ Twists: 6 = 2> §~ ' — 2




Geometry of Monoidal Categories (cont.)

The interpretation of these pictures is invariant under continuous
deformation (Joyal and Street). Hence graphical reasoning can be used
for establishing equalities on morphisms in monoidal categories.

Example: the bilinearity axiom for a braiding
_\ M
=~ ~
\>— p— A

Example: the axiom for twists 0405 = cg a0 (0 ®04)0ca B

—&:m

Note: Links in these pictures should be regarded as “ribbons™ or

“framed tangles” .




Geometry of Monoidal Categories (cont.)

Reference: There is a recent survey article by Peter Selinger on graphical

languages for monoidal categories (available from his web page).

Warning: There are a few (equally good) styles for drawing a picture for
a morphism like f : A® B — C ® D ® I in monoidal categories:

Joyal & Street  Freyd & Yetter Haghverdi Selinger, Hasegawa
CDE A B




Unfortunately, Peter and | do not agree when drawing braids and twists;

B~ A .  B—_*A | |
! . . —_——
Peter’s _/»a, is my , and his A Ais my A A.

B A—" B




Traced Monoidal Categories (Joyal, Street and Verity, 1996)

A traced monoidal category is a balanced monoidal category C equipped

with a family of functions, called trace operator

Tryp:C(A®X,B® X) — C(4, B)

| X
g 7oAl

subject to a few coherence axioms (slightly simpler than the original):

Tightening: Tr2, g, (k®idx)o fo(h®idx)) =koTry g(f)oh
Yanking: T’rﬁgX(cX,X) 00! =idx = T@((’X(C;SX) o fx
Superposing: Tr¢ 4 coplide @ f) =ide @ Try g(f)

Exchange: Trif,B(TrX@X,B@X(f)) —
TTX,B(TT§®Y,B®Y((idB ®cy,x)o fo(ida® C;g()))




Axioms for Trace (1/2)

Tightening (Naturality)
TT?A(/,B/((]‘? ®idx)o fo

Yanking

Try x(ex,x) o0y
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Axioms for Trace (2/2)

Superposing
TT%@A,C@B(idC ® f) =idc ® T"“if,B(f)

Exchange

TTX,B(TT}ai@X,B@X(f))

TTX,B(TT§®Y,B®Y (idp ® cy,x) o fo(i
<

<
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On the Choice of Axioms (for those familiar with the original axiomatization)

If you are familiar with the original axiomatization by Joyal, Street and
Verity, you should find no difficulty in seeing that the new Exchange
axiom is derivable from the original axioms.

Conversely, original axioms are derivable from our axioms; we shall
demonstrate a slightly non-trivial derivation of Sliding in the following

slides. Vanising for tensor

Trf’%y(f) — TT%,B(TT}Aj@X,B@X(f))

can be derived in the similar way, while Vanishing for unit

Trz{x,B(f) = f

is in fact redundant in the original axiomatization (cf. my MSCS paper).

So our axioms are equivalent to the original axioms.
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Exercise: Sliding (Dinaturality)

Proposition. The following equation is derivable.

Proof: By Yanking, LHS is equal to

D=

13

(cont. to the next slide)




Using Superposing and Tightening, we have

(cont. to the next slide)
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Thanks to the naturality of braidings, this is equal to the following.

1 [RNRNTTET]

>

(cont. to the next slide)
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By the naturality of twisting
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Examples of Traced Monoidal Categories (1)

Linear Algebra (the classical example)
The category Vectl;i{n of fin. dim. vector spaces and linear maps over a

field K. For alinearmap f: U @ W — V @ W, its trace
Tr{y(f): U — V is given by

(Try v (f))i; = Skfiok,jok

Quantum Invariants of Knots
The category of representations of a quasi-triangular Hopf algebra, which
gives rise to knot (ribbon, tangle) invariants like Jones polynomials.

(These examples are not just traced but also enjoy certain self-duality.
This issue will be addressed later.)
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Examples of Traced Monoidal Categories (2)
Binary Relations (or Non-deterministic functions)

The category Rel of sets and binary relations have two traced monoidal
structures, for each of x and +.

Multiplicative trace: For a binary relation R : A x X — B x X,
its trace 777 z(R) : A — B is given by

a Trif’B(R) b < (a,z) R (b,x) forsome z € X

Additive trace: For R: A+ X — B+ X,
we have TT’E’B(R) : A — B by

aTr’yg(R)b < aRzi Razs R ... Rz, Rb for some z1,...,2, € X
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Examples of Traced Monoidal Categories (3)

The category Cpo of pointed w-complete partially ordered sets and
continuous functions, with tensor given by the cartesian products.

Forf:<f1,f2>:A><X%B><Xwith
fl:AxX%Bande:AxX%X,
its trace 777 p(f) : A — B is given by

Try g(f)(a) fi(a,L);(Az. fa(a, ) (L))
fi(a, px. f2(a, x))

In fact, any category with finite products and a "well-behaved”
fixed-point operator is traced; examples include almost all categories of
domains used in domain theory. We shall look at this issue in the next
pert of this talk.
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Part |l: Geometry of Recursion




Geometry of Recursive Programs (Fixed-point Operators)
Some laws on recursive programs (via recursive let-bindings)

mutual recursion (dinaturality):

letrec x=g(f(x)) in x = letrec y=~f(g(y)) in g(y)

diagonal property:

letrec x={letrec y=h(x,y) in y} in x = letrec z = h(z,z) in z

simultaneous recursion (Beki¢ property):

letrec x=f(x,y), y=g(x,y) in x = letrec x=f(x,{letrec y=g(x,y) in y}) in x

(dinaturality + diagonal = Beki¢)

A Conway fixed-point operator is a fixed-point operator satisfying these
equations. In particular, the least fixed-point operators used in domain
theory are Conway operators.

(More generally, canonically derived fixed-point operators in models of
axiomatic domain theory are Conway; cf. Simpson and Plotkin, LICS2000)
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These laws allow graphical interpretations:

Dinaturality:

letrec x:g(f(x)) inx = letrec yff(g(y)) in g(y)

(. (aols

Diagonal property:

letrec x={letrec y=h(x,y) iny} inx = letrec z = h(z,z) in z
<

Cqpe
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Beki¢ property:

letrec x=f(x,y), y=g(x,y) in x = letrec x=f(x,{letrec y=g(x,y) in y}) in x

T=s)

N T

These are very similar to the pictures for traced monoidal categories
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Recursion via Traces (1) The Trace-Fixpoint Correspondence

Theorem. (Hyland / Hasegawa 1997) For a category with finite
products, to give a trace is to give a Conway fixed-point operator.

f:Ax X —> X
fT:TriiX(AXof):A%X

g: AxX —-BxX
Tfri&(,B(g) =mp,x (g0 (idax 7 x))T: A= B

)

->-:>_f:
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Recursion via Traces (2) Recursion from Cyclic Sharing

In a setting where only values can be duplicated or discarded (while
non-values are shared), the tensor is not cartesian. For such a situation,

still we have:

Theorem. (Hasegawa 1997) Given a monoidal adjunction between
a category with finite products and a traced symmetric monoidal

category, there exists a dinatural fixed-point operator on the traced

monoidal category.
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Monoidal { Functors, Natural Transformations, Adjunctions,. ..}

Here are some explanations on the technical terms in the previous slide.
Suppose that C and D below are all monoidal categories.

e A monoidal functor is a functor /' : C — D equipped with
a natural transformation my g : FA® F'B — F(A® B) and
a morphism m; : [ — F'I subject to a few coherence conditions.
It is called strong monoidal if m 4 g and m are all isomorphisms.

- - F F G G
Given monoidal functors (F,my 5, m7 ) and (G, m7 5, m7) from C

to D, a monoidal natural tansformation from (F,m% 5, m!") to
(G, mG 5, m%) is a natural transformation from F' to G which is

compatible with m®"'s and m%’s.

A monoidal adjunction is an adjunction whose functors are monoidal
and the unit and counit are monoidal natural transformations.
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Geometry of Monoidal { Functors, Natural Transformations }

Monoidal functors allow concise graphical presentations, called
functorial boxes (Cockett and Seely 1999; Mellies 2006).
Consider a monoidal functor (F,m g, my) : C — D. Given
f:A® B — Cin C, we may draw a picture with “box”

FB B
C FC(C
—

FA A f

which represents FA ® B =" F(A® B) " pe,
Similarly, given a : I — A, the picture

AFé

represents [ — F'] "¢ " A. The coherence conditions ensure that this
notation works well for general f: A1 ®...® A, — B.
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Monoidal natural transformations also allow nice presentations using this
box notation. For instance, one of the conditions for monoidal natural

transformations can be shown as follows:

FB B F B

P s L

FA

FA A f

where ¢ is a monoidal natural transformation from F' to G.
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Recursion from Cyclic Sharing =~ Linear Fixed-Points
Spelling out the claim of the last theorem:

Let C be a cat with finite products, D a traced symmetric monoidal cat,
with a monoidal left adjoint functor F' : C — D.

Given a morphism f: FA® X — X in D, there exists T : FA — X
such that the fixed-point equation

fi=fo(lpa® flyom" "o FA,

holds (where m’ : FA® FA = F(Ax A)and A: A — A x A).

In terms of linear logic: there is a linear fixed-point operator
Y (X — X) — X such that

Y(f) = FY{df)) (f: X —X)
(Note: not !(1.X — X) — X)

28



Geometry of Linear Fixed-Points

Explicitly, this T is given by

fl=eoTrFUX(mF " o F(AoUfomV o (n x id)) om?)

Using functorial boxes, it can be expressed as follows.
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Geometry of Recursive Programs in Traced Monoidal Categories

Geometry of recursive programs, built upon traced monoidal categories
and their geometric interpretation, captures not only the traditional
fixed-point semantics but also a more general form of recursion created

from cyclic sharing.

Indeed, geometry of recursive programs prompted various studies on
recursive computation with shared resources, and with non-trivial

side-effects (" monadic effects” in functional programming languages)
for the last decade, e.g. traced premonoidal categories of Benton and

Hyland.

(The final story, however, is still yet to be told ...)
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Part Ill: The Int-construction




Modelling Bi-directional Communication

Want to model interactive (bi-directional) communication:

A

In models of one-way “directed” computation:

can be implemented as

can be implemented as

But how can we compose them?
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Geometry of Interaction (Gol) (Girard /Abramsky)

Solution: use a feedback, or tracel
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Tortile Monoidal Categories

A tortile monoidal category® is a balanced monoidal category with
an A* for each object A, unit / - A® A" and counit A* ® A — [

drawn as C and D respectively, such that

S_<_

A — A" extends to a contravariant equivalence which is an involution:
A** ~ A. The functor (—) ® A is left (and right) adjoint to (—) ® A*.

(Note: tortile symmetric monoidal categories = compact closed categories)

aother names: ribbon category, braided compact closed category, ...
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Examples of Tortile Monoidal Categories

- Vect™ with V* the dual space.

- Rel with X* = X.

- Representations of quantum groups.

Tortile Monoidal Categories in Knot Theory

The following result is important for applications in knot theory:

Theorem (M.-C. Shum). The tortile category freely generated by
a single object is equivalent to the category of framed tangles.

Therefore, tortile categories give rise to invariants for tangles,
for example the quantum invariants.

Cf. The free cartesian closed category is equivalent to (the term model of) the
typed A-calculus. Hence cartesian closed categories give rise to models of the

typed A-calculus. "Abstract is concrete” (Hyland)
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The Category of Tangles

Objects are finite lists of + and —.
Morphisms are tangles with suitable source and target.

X

) — (+)
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Traced Categories vs Tortile Categories

Any tortile category has a unique trace (called canonical trace),

hence is also a traced monoidal category.

unit @ @counit

>

It follows that a monoidal full subcategory of a tortile category is traced.

In fact, every traced monoidal category arises in this way:

given a traced monoidal category C, we can construct a tortile category
Int C to which C fully faithfully embeds, via the Int-construction of
Joyal, Street and Verity — an abstract version of Gol.
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(Digression) Uniqueness of Trace on Tortile Monoidal Categories
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The Int Construction (Joyal, Street and Verity)
Given a traced monoidal cat C, we construct a category Int C as follows.

(cf. definition of integers as N x N/ ~ where (z,2') ~ (y,v") iff z + ¢ =y + ')

Objects: pairs of objects of C
Arrows: Int C((AT, A7), (BT,B7)) =C(AT® B~,BT® A™)
The identity on (AT, A7) isid s @0, €C(AT @ A= AT @ A7),

The composition of

feIntC((AT, A7), (BY,B~ C(At® B~,BT ® A7) and

geIntC((B*,B),(CT,C~ C(BT®C~,CT ® B7) is given by
B-
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The Int Construction (cont.)

Monoidal structure: we define tensor and unit by
(AT, A7) (BT, B7)=(AT®@B",B-® A )and I = (I,1).
For fi: (A7, Ay) = (B, By) and fo: (A3, 4y) — (B, By),

X
A

>
J1 fa o

L

Braids and twists (not quite obvious for non-symmetric case):

D=

~
1®fa = \

(c_1 and 0~ are far more complicated; can you guess?)
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The Int Construction (cont.)

Duality: (AT, A7) = (A", A")
For [ : (AT, A7) — (B",B ") define f*: (BT,B)* — (AT, A7)" as

AP

The unit 7 — (AT, A7) (AT, A7) is given by id4+ @0, " .
The counit (AT, A7)* @ (AT, A7) = Tisids- @0 4+.

Theorem (Joyal, Street and Verity).

These data determine a tortile monoidal structure on Int C.
Moreover, the functor N : C — Int C sending A to (A, ) strongly
preserves the traced monoidal structure, and is full faithful.

Corollary. Traced monoidal categories are monoidal full subcategories of
tortile monoidal categories.
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Int Construction as a Universal Construction

In fact, Int-construction is universal, as shown by JSV: it gives a left
biadjoint to the forgetful 2-functor from the 2-category of tortile
categories to that of traced monoidal categories.

As a corollary, if C is a free traced monoidal category, Int C is equivalent
to a free tortile monoidal category, hence is equivalent to the category of

tangles. Thus traced monoidal categories are formally related to knot

theory.

(The choice of 2-cells of the 2-category of traced monoidal categories in JSV
paper was wrong, and their proof was not complete. This error is pointed out
and corrected in a recent paper by Hasegawa and Katsumata — it took me 13

years to spot it!)

44






Trying to realize Int-construction
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(Part IV: On Closedness)




Closed Structure, or Higher Types

Recall that a monoidal category C is closed if
— ® A : C — C has a right adjoint A — —:

C(X®AY)~C(X,A—-Y)
In particular, tortile categories are closed, with A — B = B ® A*.

In the context of linear logic, being symmetric monoidal closed means
that we can interpret the intuitionistic multiplicative fragment

(tensor ®, unit 1, and linear implication —) in C.

Here is a very simple observation on closedness — it took me 10 years to

notice, however.

Theorem.

Let C be a traced monoidal category, and N : C — IntC be
the canonical inclusion from C into Int C (i.e. N (A) = (A, I)).
Then C is closed if and only if A/ has a right adjoint.
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Closed Structure, or Higher Types (cont.)
Proof Outline: If A/ has a right adjoint I/, let A — B be U(B, A).

Conversely, if C is closed, we define (AT, A7) = A" — AT,
For f: (AT, A7) - (BT,B7), letU(f): (A~ — AT) = (B~ — B™T)
send k: A~ = At to Tryy_ 5 (fo(k®B7)ocg-a-): B~ — BT,

M)

Sl L

B~ =Bt

(QED)

There are a number of implications of this result on traced models of LL
and (linear) fixed-points. In particular, any CCC with a Conway operator
arises from a traced model of IMELL, as discussed in my MSCS paper.
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Examples of Traced Monoidal Closed Categories

e Tortile monoidal categories (compact closed categories)
{tortile cats} C {traced closed cats} C {traced cats}

e Traced cartesian closed categories (e.g. Cpo)

e (Negative) Conway Games: the category )~ of negative Conway
games (Mellies, 2004) is a symmetric monoidal full subcategory of

the compact closed category ) of Conway games (Joyal 1977).

The inclusion from )~ to ) has a right adjoint, and )/~ is a
traced symmetric monoidal closed category.

Y~ is one of very few interesting traced symmetric monoidal closed categories

which are nether cartesian closed nor compact closed.
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Application: Program Transformations

Katsumata and Nishimura (2006) introduced a program transformation
technique called (semantic) higher-order removal.

Roughly, their technique transforms a higher-order functional

g: (A== A") = (B~ = B")

(created in the process of dealing with bi-directional information flow)
to a first-order function f : A" x B~ = B" x A~ such that U(f) = g,
where U/ is right adjoint to .

They give a syntactic condition which ensures that g is in the image of

U4 in their semantic models, and presented a procedure for identifying f
such that U (f) = g.
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Application: Attribute Grammars

Katsumata (2008) has shown that a substantial part of the theory of
attribute grammars (Knuth 1968) can be carried out very cleanly in
terms of traced monoidal categories and Int-construction. Roughly, it
works as the pictures below (for the term f(x,g(v))):

term tree  attribute grammar Interpretation via trace

i
/

.

) ( )

Y —

In Katsumata's work, the adjuntion N -/ provides the equivalence
between attribute grammars and synthesized attribute grammars.
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Some Thoughts

Traditionally, research on Gol has focused on bi-directional information flow
upon exchanges of rather primitive atomic data, or tokens — witnessed by

Gol-based token machines (or context semantics) a la Gonthier-Abadi-Levy.
In this reading, Gol decomposes higher-order computation into local

Interactions of atomic data.

However, our observation on traced monoidal closed categories suggests that a
serious look at exchanges of higher-order data does add a new dimension to
the world of Gol. Our rather simple theorem provides surprisingly many new
models of linear logic and fixed-point computation.

The work by Katsumata reminds us that such higher-order information flow
are ubiquitous, and suggests that our theorem is just an abstract account for

many known (and yet to be known) situations.

So, why not Geometry of Higher-Order Interaction?
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Conclusion



Geometry of Recursive Computation, Geometry of Interaction

We looked at some elements of traced monoidal categories,
and observed that they are intimately related to recursive computation

and interactive computation.

| think that traced monoidal closed categories will provide some further
insights and applications, and | expect that Geometry of Higher-Order
Interaction can be developped along this line.
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End of Slides — Thank You.
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