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Denotational semantics vs. Gol

In synthesis:

e denotational semantics is cut-as-composition;

e the geometry of interaction is cut-as-trace.

We know how to go from the Gol view to the denotational semantics view:
we use the Int construction.

The question we address here is: can we go the other way?

In other words, can we build a “cut-as-trace” interpretation of proofs
starting from a more traditional, “cut-as-composition” interpretation?

One possible motivation: fix the mismatch between Gol execution and
syntactical cut-elimination.



Previous work

We have illustrious predecessors: Abramsky and Jagadeesan followed a
similar path in their “New Foundations” paper (1993).

Some comparison:

e Motivations and rationale: very similar.
e Methodology: quite different.

e Results: there is arguably some overlap, but also some important
differences. . . 7 (To be honest, | don't know exactly.)



Some background ideas

e Denotational semantics:

— proofs are vectors;
— a proof of A+, B is a vector of A* ® B, i.e., a matrix;
— cut is composition, i.e., matrix product.

o Gol:

— proofs are operators;
— a proof of A+, B is a linear operator on A* ® B:;
— composition Is trace.

e The two should be related in a “nice” way, e.g., the denotational
semantics should appear as a sum of eigenvectors of the Gol operator
(an extension of Regnier's conjecture).



Back to reality
It's going to be tough to make it work:
e negation must be involutive;

e at the same time, the exponential modalities force considering infinite-
dimensional vector spaces;

e consequence: topological vector spaces are needed.

e That is far from trivial (Ehrhard 2005).

e Additional problem: the category is *x-autonomous, not compact closed:
what is the trace?



A low-profile setting
The category Rel of sets and relations.

e It hosts a model of linear logic: tensor is Cartesian product (not
a categorical product in Rel), the comonad is given by the free
commutative monoid construction (finite multisets), negation is identity.

e A set X can be seen as the basis of a “free” vector space over. ..
something which is not a field (or even a ring), but never mind. In fact,
(p(X),U, D) is a monoid (that’s close enough to a vector space. . . ).

e Given another set Y, it makes sense to define p(X)®@p(Y) = p(X xY),
and a monoid endomorphism can play the role of linear operators.

e Rel also hosts a model of differential interaction nets, which will turn
out to be useful. . .



The Lafont double cover of a net

A standard construction in topology (the orientable double cover of a
non-orientable surface), specialized to a standard construction on graphs,
the bipartite double cover of an undirected graph (G, defined as G x K.

Applied for the first time by Lafont (1995) to nets of interaction
combinators. We denote it by (-).

It is the essence of the Gol!

In the multiplicative case, it is easy; in the exponential case, one must
define the Lafont double cover of a box. Girard's proposal unfortunately
does not work perfectly.



Differential interaction nets and the Taylor expansion

Twenty vyears after Girard's first proposal, and sixteen vyears after
Abramsky and Jagadeesan work, we have “much newer foundations”:
differential interaction nets (Ehrhard-Regnier 2006).

Exponential boxes of linear logic proof nets can be expressed in differential

interaction nets by means of the Taylor-Ehrhard expansion, denoted by
7(-).

In fact, differential interaction nets are an extremely useful bridge between
syntax and denotational semantics.

(Technical note: in what follows, to avoid treading on dangerous soil, we
drop additive connectives, and we consider only atomic axioms.)



Entanglement

e Defining the Lafont double cover o™ of a differential interaction net « is
trivial. Then, given a proof net w of conclusions Aq,..., A,,, we have

[[T(w)i]]g(A1><---><An)><(A1><---><An),

where [[-| denotes interpretation in Rel. This is precisely a monoid
endomorphism (i.e., an “operator”) of p(A1) ® --- ® p(A,). Perfect!

e Actually, not so perfect. .. It is easy to see that this is too naive, it
won't model cut-elimination: “wrong’ nets emerge in the simulation.

e Intriguingly, the solution requires handling a phenomen of entanglement.
To deal with it, we formally do just as in quantum mechanics (the math
is morally the same).



Entangled experiments

e Experiments are an extremely useful tool for concretely computing the
interpretation of a proof net in “webbed” models (like Rel).

o Let o be a differential interaction net. Given a port p of a™, we can
always define its twin p.

e An experiment e of o™ is strongly entangled iff, for all ports p, q of a*,
e(p) = e(q) implies e(p) = e(q).

Lemma 1. An experiment is strongly entangled iff the above condition is
verified by all atomic ports of a*.

e |f an experiment satisfies the above condition only on the premises of
exponential cells, we call it weakly entangled, or simply entangled.



The Gol interpretation

e If o is a differential interaction net, we denote by (a®) (resp. (a™),) the

set of the results of all entangled (resp. strongly entangled) experiments

on Oé:l:.

e We denote by o, the “cut-free” version of a. We define the Gol
interpretation of a proof net 7 as

Golm = U (o) (and Golsm = U (af).).
a€eT () a€T ()

e Cut-elimination is modeled by the usual trace in Rel. In particular,
thanks to the definition of experiment, we have

Lemma 2. Tr(Gola) = (a®), and hence Tr(Gol ) = UQGT(W)QOFI).

10



Soundness

We have the following fundamental result:
Lemma 3. o — 3 implies (aT) = (3%).

Then, thanks to the soundness of the Taylor-Ehrhard expansion (i.e.,
m — n’ implies 7 (7) —* 7(n’)), and to Lemma 2 and Lemma 3, we
have

Theorem 4. [Soundness] 7 — 7’ implies Tr(Gol ) = Tr(Gol ).

Note that, just like in “New Foundations” Gol, there is no restriction on
the validity of soundness.

All of the above also hold when we replace entangled semantics with
strongly entangled semantics.
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Retrieving denotational semantics?

Remember that denotational semantics should appear as a sort of “sum of
eigenvectors”. This is the closest approximation we get in our framework:

Lemma 5. Let « be a cut-free differential interaction net. Then,
Golsa([a]) = [a].

(Probably [«] is the biggest set with such property, we don't know. . . ).

If a1, o are different summands of the Taylor-Ehrhard expansion of a
cut-free proof net m of conclusion A, then Gol;a; and Golgas should have
“disjoint domains”, i.e., there exist disjoint subsets A;, Ay of A such that
the only sets not in the “kernel” of Golsa; are included in A;.

Then, the union UaeT(ﬁ) Golsa is actually a “direct sum”, which should
be enough to guarantee the following

Conjecture 6. Let w be a proof net. Then, Golw([x]) = [x].
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To do. ..

Strong entanglement is. . . too strong. Fortunately, weak entanglement
is enough for soundness; we keep hoping that it is also enough to get
Conjecture 6.

Speaking of Conjecture 6, note that this fails in general: if o, are
arbitray differential interaction nets, [a + 3] = [af U [B] will not in
general be a fixpoint of Gol;a U Golg;3. This suggests that there
are perhaps two sums/unions of nets: one “uniform”, and one “non-
uniform”, maybe in analogy with pure states and mixed-states?

What about paths?  Clearly this is not “particle-style” Gol, but
maybe “wave-style”, or better, particles moving according to quantum

mechanical “trajectories”?

This is a bit ad hoc. Can one find a more abstract formulation?
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