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Denotational semantics vs. GoI

In synthesis:

• denotational semantics is cut-as-composition;

• the geometry of interaction is cut-as-trace.

We know how to go from the GoI view to the denotational semantics view:
we use the Int construction.

The question we address here is: can we go the other way?

In other words, can we build a “cut-as-trace” interpretation of proofs
starting from a more traditional, “cut-as-composition” interpretation?

One possible motivation: fix the mismatch between GoI execution and
syntactical cut-elimination.
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Previous work

We have illustrious predecessors: Abramsky and Jagadeesan followed a
similar path in their “New Foundations” paper (1993).

Some comparison:

• Motivations and rationale: very similar.

• Methodology: quite different.

• Results: there is arguably some overlap, but also some important
differences. . . ? (To be honest, I don’t know exactly.)
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Some background ideas

• Denotational semantics:

– proofs are vectors;
– a proof of A⊥, B is a vector of A∗ ⊗B, i.e., a matrix;
– cut is composition, i.e., matrix product.

• GoI:

– proofs are operators;
– a proof of A⊥, B is a linear operator on A∗ ⊗B;
– composition is trace.

• The two should be related in a “nice” way, e.g., the denotational
semantics should appear as a sum of eigenvectors of the GoI operator
(an extension of Regnier’s conjecture).
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Back to reality

It’s going to be tough to make it work:

• negation must be involutive;

• at the same time, the exponential modalities force considering infinite-
dimensional vector spaces;

• consequence: topological vector spaces are needed.

• That is far from trivial (Ehrhard 2005).

• Additional problem: the category is ∗-autonomous, not compact closed:
what is the trace?
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A low-profile setting

The category Rel of sets and relations.

• It hosts a model of linear logic: tensor is Cartesian product (not
a categorical product in Rel), the comonad is given by the free
commutative monoid construction (finite multisets), negation is identity.

• A set X can be seen as the basis of a “free” vector space over. . .
something which is not a field (or even a ring), but never mind. In fact,
(℘(X),∪, ∅) is a monoid (that’s close enough to a vector space. . . ).

• Given another set Y , it makes sense to define ℘(X)⊗℘(Y ) ∼= ℘(X×Y ),
and a monoid endomorphism can play the role of linear operators.

• Rel also hosts a model of differential interaction nets, which will turn
out to be useful. . .
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The Lafont double cover of a net

• A standard construction in topology (the orientable double cover of a
non-orientable surface), specialized to a standard construction on graphs,
the bipartite double cover of an undirected graph G, defined as G×K2.

• Applied for the first time by Lafont (1995) to nets of interaction
combinators. We denote it by (·)±.

• It is the essence of the GoI!

• In the multiplicative case, it is easy; in the exponential case, one must
define the Lafont double cover of a box. Girard’s proposal unfortunately
does not work perfectly.
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Differential interaction nets and the Taylor expansion

• Twenty years after Girard’s first proposal, and sixteen years after
Abramsky and Jagadeesan work, we have “much newer foundations”:
differential interaction nets (Ehrhard-Regnier 2006).

• Exponential boxes of linear logic proof nets can be expressed in differential
interaction nets by means of the Taylor-Ehrhard expansion, denoted by
T (·).

• In fact, differential interaction nets are an extremely useful bridge between
syntax and denotational semantics.

• (Technical note: in what follows, to avoid treading on dangerous soil, we
drop additive connectives, and we consider only atomic axioms.)
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Entanglement

• Defining the Lafont double cover α± of a differential interaction net α is
trivial. Then, given a proof net π of conclusions A1, . . . , An, we have

JT (π)±K ⊆ (A1 × · · · ×An)× (A1 × · · · ×An),

where J·K denotes interpretation in Rel. This is precisely a monoid
endomorphism (i.e., an “operator”) of ℘(A1)⊗ · · · ⊗ ℘(An). Perfect!

• Actually, not so perfect. . . It is easy to see that this is too naive, it
won’t model cut-elimination: “wrong” nets emerge in the simulation.

• Intriguingly, the solution requires handling a phenomen of entanglement.
To deal with it, we formally do just as in quantum mechanics (the math
is morally the same).
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Entangled experiments

• Experiments are an extremely useful tool for concretely computing the
interpretation of a proof net in “webbed” models (like Rel).

• Let α be a differential interaction net. Given a port p of α±, we can
always define its twin p.

• An experiment e of α± is strongly entangled iff, for all ports p, q of α±,
e(p) = e(q) implies e(p) = e(q).

Lemma 1. An experiment is strongly entangled iff the above condition is
verified by all atomic ports of α±.

• If an experiment satisfies the above condition only on the premises of
exponential cells, we call it weakly entangled, or simply entangled.
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The GoI interpretation

• If α is a differential interaction net, we denote by Lα±M (resp. Lα±Ms) the
set of the results of all entangled (resp. strongly entangled) experiments
on α±.

• We denote by α• the “cut-free” version of α. We define the GoI
interpretation of a proof net π as

GoIπ =
⋃

α∈T (π)

Lα±• M (and GoIsπ =
⋃

α∈T (π)

Lα±• Ms).

• Cut-elimination is modeled by the usual trace in Rel. In particular,
thanks to the definition of experiment, we have

Lemma 2. Tr(GoIα) = Lα±M, and hence Tr(GoIπ) =
⋃
α∈T (π)Lα

±M.
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Soundness

• We have the following fundamental result:

Lemma 3. α→ β implies Lα±M = Lβ±M.

• Then, thanks to the soundness of the Taylor-Ehrhard expansion (i.e.,
π → π′ implies T (π) →∗ T (π′)), and to Lemma 2 and Lemma 3, we
have

Theorem 4. [Soundness] π → π′ implies Tr(GoIπ) = Tr(GoIπ′).

• Note that, just like in “New Foundations” GoI, there is no restriction on
the validity of soundness.

• All of the above also hold when we replace entangled semantics with
strongly entangled semantics.

11



Retrieving denotational semantics?

Remember that denotational semantics should appear as a sort of “sum of
eigenvectors”. This is the closest approximation we get in our framework:

Lemma 5. Let α be a cut-free differential interaction net. Then,

GoIsα(JαK) = JαK.

(Probably JαK is the biggest set with such property, we don’t know. . . ).

If α1, α2 are different summands of the Taylor-Ehrhard expansion of a
cut-free proof net π of conclusion A, then GoIsα1 and GoIsα2 should have
“disjoint domains”, i.e., there exist disjoint subsets A1, A2 of A such that
the only sets not in the “kernel” of GoIsαi are included in Ai.

Then, the union
⋃
α∈T (π) GoIsα is actually a “direct sum”, which should

be enough to guarantee the following

Conjecture 6. Let π be a proof net. Then, GoIsπ(JπK) = JπK.
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To do. . .
• Strong entanglement is. . . too strong. Fortunately, weak entanglement

is enough for soundness; we keep hoping that it is also enough to get
Conjecture 6.

• Speaking of Conjecture 6, note that this fails in general: if α, β are
arbitray differential interaction nets, Jα + βK = JαK ∪ JβK will not in
general be a fixpoint of GoIsα ∪ GoIsβ. This suggests that there
are perhaps two sums/unions of nets: one “uniform”, and one “non-
uniform”, maybe in analogy with pure states and mixed-states?

• What about paths? Clearly this is not “particle-style” GoI, but
maybe “wave-style”, or better, particles moving according to quantum
mechanical “trajectories”?

• This is a bit ad hoc. Can one find a more abstract formulation?
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