
GAMES FOR DISCRETE-TIME MARKOV CHAIN AND

THEIR APPLICATION TO VERIFICATION

離散時間マルコフ連鎖に対するゲームと、その形式検証への

応用

by

Shota Nakagawa

中川 翔太

A Senior Thesis

卒業論文

Submitted to

the Department of Information Science

the Faculty of Science, the University of Tokyo

on February 13, 2014

in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science

Thesis Supervisor: Ichiro Hasuo 蓮尾 一郎

Lecturer of Information Science



ABSTRACT

This paper formulates some notions and results about discrete-time Markov chains in
terms of game-theoretic probability. Discrete-time Markov chain is a one of the models
which are used to model systems’ probabilistic behavior in formal verification. The the-
ory of probability is needed for modeling of systems which have probabilistic behavior.
While, after Kolmogorov, probabilities are most of the time formulated in the language
of measure theory, a new formulation which uses the language of game theory has arisen;
namely game-theoretic probability was proposed by Shafer and Vovk (2001). We demon-
strate that some notions and results like fairness theorem are natural and simple in terms
of game-theoretic probability.

論文要旨

本論文では、ゲーム論的確率によって離散時間マルコフ連鎖についてのいくつかの概念

や証拠を定式化する。離散時間マルコフ連鎖は、検証のためにシステムの確率的挙動をモ

デル化するために使用されるモデルの一つである。確率論は確率的挙動を持つシステムの

モデル化のために必要とされる。Kolmogorov以後、ほとんどの場合において確率が測度論

の言葉で定式化される中、ゲーム論の言葉を用いた新しい定式化が起こった。ゲーム論的

確率は Shaferと Vovkによって提案された。Fairness theoremなどのいくつかの証拠や概

念は、ゲーム論的確率論を用いた定式化において、自然であり、簡潔であると考えられる。
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Chapter 1

Introduction

1.1 Discrete-Time Markov Chain

Many systems nowadays utilize probabilistic mechanisms for resolving nondeter-
minism. Examples include the leader election protocol [10] and the crowds pro-
tocol [15]. The notion of discrete-time Markov chain (DTMC) is a mathematical
model of such probabilistic systems. DTMCs are state transition systems—much
like automata or labeled transition systems—whose transitions are chosen in a
probabilistic manner.
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Because of the importance of probabilistic systems, DTMCs as their models have
been heavily studied. Specific research topics include: temporal logics for speci-
fication [8]; model checking [4]; and notions of (bi)simulation [4, 16].

Temporal logics are a family of modal logics that are used to formally ex-
press properties that a system is desired to satisfy (such properties are called
specifications). The logic PCTL [8] for specification of DTMCs is obtained as a
variation of CTL [5], a logic for labeled transition systems (in which choices are
made nondeterministically as opposed to probabilistically). Specifically, PCTL
is a branching-time temporal logic that replaces the path quantifiers ∃ and ∀ in
CTL with the probabilistic operators P≥p and P>p where p ∈ [0, 1]. Path formulas
in PCTL are LTL formulas, much like in CTL.

Model checking is the problem whose input are a system (commonly a state
transition system) and a specification (a temporal logic formula), and whose out-
put is whether the system satisfies the specification or not. For labeled transition
systems and CTL formulas there are many algorithms for model checking; see
e.g. [4, 6]. There also exist some algorithms for model checking DTMCs [1, 4,
8, 14] and PCTL formulas. For example, the probabilities of reachability from a
certain state to another can be a solution of a linear equation system [4]. Such
algorithms have been implemented in tools like PRISM [9] or MRMC [11].

A bisimulation is a relation between states of two transition systems that
expresses certain “equivalence”: if two states are related by a bisimulation they
behave in the same way. A simulation is a “one-sided” variation of a bimula-
tion: if two states are related, one can mimic the behavior of the other (but not
necessarily the other way round). These notions are useful in model checking
because they witness logical equivalence or implication. Such notions have been
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formulated for probabilistic systems (including DTMCs), e.g. in [4, 16]. There
are some algorithms for discovering/testing bisimulations or simulations in prob-
abilistic systems [3, 21].

1.2 Game-Theoretic Probability

Measure-theoretic probability is a widely-used formulation of probabilities. The
game-theoretic probability proposed Shafer and Vovk [18] is an alternative formu-
lation of probabilities.

In the game-theoretic probability [18], probabilistic phenomena are described
in terms of games between two players, called Skeptic and Reality. While it is
necessary in the measure-theoretic probability that probability distributions are
fixed explicitly, it is not necessary in the game-theoretic probability. Instead of
fixing probability distributions beforehand, the notion of probability is expressed
as Reality’s behavior that tries to prevent Skeptic from winning. Informally, the
more money Skeptic can make in an event, the less often this event happens.

In [18], two advantages of the game-theoretic probability are presented. First,
the game-theoretic probability sometimes describes the results of probabilities
more simply than the measure-theoretic probability, for example, the zero-one
law [17], the strong law of large numbers [13] and the law of the iterated logarithm
[12]. The main application area is finance in [18]. Second, it has potential ability
to model some open systems influenced from outside of the systems, for example,
quantum mechanics and Cox’s regression model [7].

1.3 Contributions

Our aim is to apply the game-theoretic probability to model checking for proba-
bilistic systems. In this thesis, we translate DTMCs to games. This translation is
natural because one transition of states in DTMCs can be regarded as one round
of games. We show two applications of those games.

Firstly, we prove the fairness theorem in terms of the game-theoretic proba-
bility. The fairness theorem is known as one of the critical theorems to model
checking. This theorem states that if a certain state in a DTMC is visited in-
finitely often, the states that can be reached from this state after some steps are
almost surely visited infinitely often. By the fairness theorem, we can prove that
qualitative properties — properties that require that the probabilities of certain
events are one — for events such as reachability and repeated reachability for
finite DTMCs can be verified by using graph analysis [4]. We prove this theorem
by following a simple strategy in the game.

Secondly, we describe a probabilistic simulation between two DTMCs based on
Segala’s [16]. It is the known theorem that this probabilistic simulation preserve
where restricted PCTL formulas hold. We prove this in terms of the game-
theoretic probability. In this game-theoretic proof, we construct a strategy in the
game for one DTMC from a strategy in the game for the other DTMC by using
weight functions. This expresses intuitive meaning of weight functions in those
games.
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Chapter 2

Discrete-Time Markov Chain

2.1 Discrete-Time Markov Chain

This section describes discrete-time Markov chains (DTMCs), a model of proba-
bilistic systems. We also define probabilities of events in DTMCs.

Definition 2.1.1 (DTMC). A discrete-time Markov chain (DTMC) is a tuple
(S, P, ιinit,AP , L) where

• S is a countable, nonempty set of states,

• P : S × S → [0, 1] is the transition probability such that for each state s:∑
s′∈S P (s, s′) = 1,

• ιinit : S → [0, 1] is the initial distribution, such that
∑

s∈S ιinit(s) = 1,

• AP is a set of atomic propositions, and

• L : S → 2AP is a labeling function.

DTMCs are transition systems such that their choices of next states are de-
cided at random following the transition probability P . A labeling function L
associates a state with the set of atomic propositions that hold at the state. We
sometimes use states as atomic propositions. That is, we assume that AP = S
and L(s) = {s} for each s ∈ S. In a DTMC, a state s′ can be a successor of s
when P (s, s′) > 0. For each state s in a DTMC, there exists at least on successor
of this state s because if the state s have no successors,

∑
s′∈S P (s, s′) = 0 ̸= 1.

Hence DTMCs’ behaviors are infinite sequences of states. We call such sequences
paths.

Definition 2.1.2 (path). A path in a DTMC is an infinite state sequence s0s1s2 . . . ∈
Sω such that P (si, si+1) > 0 for all i ∈ N. A path fragment in a DTMC is
a finite state sequence s0s1 . . . sn such that n ≥ 0 and P (si, si+1) > 0 for all
i ∈ {0, 1, . . . , n− 1}.

The set of all paths that start from a state s is denoted by

Path(s) = {s0s1 . . . is a path | s0 = s}

and the set of all paths that start from initial states of a DTMCD = (S, P, ιinit,AP , L)
is denoted by

Path(D) =
{
ξ ∈ Sω

∣∣∃s ∈ S. (ξ ∈ Path(s) ∧ ιinit(s) > 0)
}

.
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Definition 2.1.3. For each path fragment ξ̂ = s0s1 . . . sn in a DTMC D let

P (ξ̂) =

n−1∏
i=0

P (si, si+1) .

Definition 2.1.4 (prefix). Let ξ = s0s1s2 . . . be a path. Then the path fragment
s0s1 . . . sn is denoted by ξ[0, n]. A path fragment ξ̂ is called a prefix of ξ if there
exists n ∈ N such that ξ̂ = ξ[0, n].

Definition 2.1.5 (suffix). Let ξ = s0s1s2 . . . be a path. Then the path snsn+1 . . .
is denoted by ξ[n . . .]. A path ξ′ is called a suffix of ξ if there exists n ∈ N such
that ξ′ = ξ[n . . .].

Definition 2.1.6 (element). Let ξ = s0s1s2 . . . be a path. The state sn is called
an n-th element and is denoted by ξ[n].

The set of successors and predecessors for a state are defined by follows.

Definition 2.1.7. Let s be a state in a DTMC with a state space S and transition
probability P . Then we define

• Post(s) := {s′ ∈ S | P (s, s′) > 0},

• Pre(s) := {s′ ∈ S | P (s′, s) > 0},

• Post∗(s) := {s′ ∈ S | there is a path fragment s = s0s1 . . . sn = s′} and

• Pre∗(s) := {s′ ∈ S | s ∈ Post∗(s′)}.

In order to define probabilities of events in a DTMC D, we associate with
D a σ-algebra over Path(D). The σ-algebra associated with D is generated by
cylinder sets.

Definition 2.1.8 (cylinder set). A cylinder set of a path fragment is defined by

Cyl(ξ̂) = {ξ ∈ Path(D) | ξ̂ is a prefix of ξ} .

The cylinder sets are basis events of the σ-algebra associated with D.

Definition 2.1.9 (σ-algebra of a DTMC). A σ-algebra (Path(D),F) associated
with a DTMC D is the smallest σ-algebra that contains the cylinder set Cyl(ξ̂)
for each prefix ξ̂ of each path ξ ∈ Path(D).

Definition 2.1.10 (measurability). Let (Path(D),F) be a σ-algebra associated
with a DTMC D. A event E ⊆ Path(D) is measurable in D if E ∈ F .

Definition 2.1.11 (probability measure of a DTMC). A probability measure
PrM of a DTMC D is a function PrM : F → [0, 1] that satisfies the following
conditions.

• The probability of the whole event is 1. That is, PrM (Path(D)) = 1.

• If (En)n∈N is a family of events En ∈ F , then

(∀i, j ≥ 0. i ̸= j ⇒ Ei ∩ Ej = ∅) ⇒ PrM

∪
n≥0

En

 =
∑
n≥0

PrM (En) .
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• For each path fragment s0 . . . sn in D,

PrM (Cyl(s0 . . . sn)) = ιinit(s0)
∏

0≤i<n

P (si, si+1) .

It is an easy measure-theoretic fact that a probability measure of a DTMC is
well-defined. There exists a unique probability measure for each DTMC.

We now describe F in concrete terms (Proposition 2.1.16). The following
theorem is from [20].

Theorem 2.1.12. Let A be a set. Suppose that a function f : 2A → 2A satisfies
that a ⊆ b ⇒ f(a) ⊆ f(b) for each a, b ∈ 2A. Then

• there exists the smallest set Xf ∈ 2A in {X ∈ 2A | f(X) = X}, and

• a set P ∈ 2A satisfies that Xf ⊆ P if P satisfies that Y ⊆ P ⇒ f(Y ) ⊆ P
for each Y ∈ 2A.

Proof. Suppose that F =
∩
{X ∈ 2A | f(X) ⊆ X}. Then

∀X ∈ 2A. f(F ) ⊆ f(X) ⊆ X ,

since F ⊆ X. Hence f(F ) ⊆ F . Since f(f(F )) ⊆ f(F ), we have F ⊆ f(F ).
Hence f(F ) = F . If a set F ′ ∈ 2A satisfies that f(F ′) = F ′, we have F ′ ∈ {X ∈
2A | f(X) ⊆ X}. Since F ⊆ F ′, the set F is the smallest. That is, Xf = F .

Suppose that a set P ∈ 2A satisfies that Y ⊆ P ⇒ f(Y ) ⊆ P . Then f(P ) ⊆ P ,
since P ⊆ P . Hence Xf ⊆ P .

Definition 2.1.13. Let D be a DTMC. A set F ′ of events in D is defined by
the smallest among the sets X that satisfy the following conditions.

• {Cyl(ξ̂) | ξ̂ is a prefix of ξ ∈ Path(D)} ∪ {∅} ⊆ X and

• if (En)n∈N is a family of pairwise disjoint events En ⊆ Path(D), then

(∀n ∈ N. En ∈ X) ⇒

(∪
n∈N

En ∈ X ∧ Path(D) \
∪
n∈N

En ∈ X

)
.

Proposition 2.1.14. Let E1 and E2 be subsets of Path(D) such that E1 ∈ F ′

and E2 ∈ F ′. Then E1 ∩ E2 ∈ F ′.

Proof. For each path fragments ξ̂1, ξ̂2,

Cyl(ξ̂1) ∩ Cyl(ξ̂2) =


Cyl(ξ̂1) if Cyl(ξ̂1) ⊆ Cyl(ξ̂2)

Cyl(ξ̂2) if Cyl(ξ̂2) ⊆ Cyl(ξ̂1)

∅ otherwise.

Let (En)n∈N be a family of pairwise disjoint sets En ⊆ Path(D) and ξ̂ be a
path fragment in D. Suppose that En ∩ Cyl(ξ̂) ∈ F ′ for each n ∈ N. Then(∪

n∈N
En

)
∩ Cyl(ξ̂) =

∪
n∈N

(En ∩ Cyl(ξ̂)) ∈ F ′

and(
Ω \

∪
n∈N

En

)
∩ Cyl(ξ̂) = Ω \

(∪
n∈N

(En ∩ Cyl(ξ̂)) ∪ (Ω \ Cyl(ξ̂))

)
∈ F ′ .
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Hence for each E ∈ F ′ and for each Cyl(ξ̂) ∈ F ′, we have E ∩ Cyl(ξ̂) ∈ F ′.
Let (En)n∈N be a family of pairwise disjoint sets En ⊆ Path(D) and E ∈ F ′

be a set. Suppose that En ∩ Cyl(ξ̂) ∈ F ′ for each n ∈ N. Then(∪
n∈N

En

)
∩ E =

∪
n∈N

(En ∩ E) ∈ F ′

and (
Ω \

∪
n∈N

En

)
∩ E = Ω \

(∪
n∈N

(En ∩ E) ∪ (Ω \ E))

)
∈ F ′ .

Proposition 2.1.15. Let (En)n∈N be a family of subsets En ⊆ Path(D). Suppose
that En ∈ F ′ for each n ∈ N. Then we have

∪
n∈NEn ∈ F ′.

Proof. Suppose that

E′
n = En ∩

(
n−1∩
i=0

(Path(D) \ Ei)

)
.

Then (E′
n)n∈N is a family of pairwise disjoint events and for each n ∈ N and we

have E′
n ∈ F ′ by Proposition 2.1.14. Hence∪

n∈N
En =

∪
n∈N

E′
n ∈ F ′ .

Proposition 2.1.16.
F = F ′ .

Proof. Since F ′ is the smallest, F ′ ⊆ F . By Proposition 2.1.15, F ⊆ F ′.

In order to generate a probability space over the set of paths starting in a
certain state, we construct a DTMC with a unique initial state.

Definition 2.1.17. Let D = (S, P, ιinit,AP , L) be a DTMC and s ∈ S be a state
in D. Then the DTMC Ds is defined by Ds = (S, P, ιs,AP , L) where

ιs(t) :=

{
1 if s = t

0 otherwise.

The probability of Ds is denoted by PrMs . That is, PrMs is defined by

PrMs (Cyl(s0 . . . sn)) =
∏

0≤i<n

P (si, si+1)

where s0 = s. Since there is the only initial state s in Ds, it is not necessary to
define PrMs where s0 ̸= s.

Definition 2.1.18. Let s be a state in a DTMC with a state space S and E ⊆ Sω

be a set of paths. For each path fragment ξ̂ starting from the state s, we define
ξ̂ + E by

ξ̂ + E = {ξ̂σ | σ ∈ E} ∩ Path(s) .
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Proposition 2.1.19. Let s be a state in a DTMC D and E be a measurable event
in a DTMC D′ with the same state space and the same transition probability as
D. Then ξ̂ + E is a measurable event in Ds, for each path fragment ξ̂ starting
from the state s.

Proof. For each path fragment ξ̂′, an event ξ̂ + Cyl(ξ̂′) = Cyl(ξ̂ξ̂′) ∩ Path(s) is
measurable in Ds, and ξ̂+ ∅ = ∅ is measurable in Ds. Suppose that (En)n∈N is a
family of pairwise disjoint events that are measurable in a DTMC D′ and ξ̂+En

is measurable in Ds for each n ∈ N. Then ξ̂ +
∪

n∈NEn =
∪

n∈N(ξ̂ + En) and

ξ̂+

(
Path(D′) \

∪
n∈N

En

)
=

 ∪
s′∈initial(D′)

Cyl(ξ̂s′)

 \
∪
n∈N

(
ξ̂ + En

)∩Path(s)

are measurable in Ds where initial(D′) = {ξ[0] | ξ ∈ Path(D′)}.

2.2 Probabilistic Computation Tree Logic

We define probabilistic computation tree logic (PCTL). The logic PCTL is a
branching-time temporal logic with the probabilistic operator. The logic PCTL
can express a LTL formula as a PCTL path formula.

Definition 2.2.1 (syntax of PCTL). PCTL state formulas over the set AP are
defined by the following grammar:

Φ ::= false | true | a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | ¬Φ | P≥p(ϕ) | P>p(ϕ)

where a ∈ AP , p ∈ [0, 1] and ϕ is a PCTL path formula.
PCTL path formulas are defined by the following grammar:

ϕ ::= Φ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ⃝ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2

where Φ is a PCTL state formula.
The implication operator ⇒, the eventually operator ♢ and the always oper-

ator □ are defined by

Φ1 ⇒ Φ2 := ¬Φ1 ∨ Φ2, ♢Φ := true U Φ and □Φ := false R Φ .

Definition 2.2.2 (semantics of PCTL over states and paths). LetD be a DTMC.
Let Φ be a PCTL state formula and ϕ be a PCTL path formula. Then we define
SatD(Φ) ⊆ S and SatDs (ϕ) ⊆ Path(s) for each state s ∈ S inductively by the
following. Here s ∈ SatD(Φ) and ξ ∈ SatDξ[0](ϕ) are denoted by s ⊨ Φ and ξ ⊨ ϕ,
respectively:

• SatD(false) := ∅ and SatD(true) := S,

• SatD(a) := {s ∈ S | a ∈ L(s)},

• SatD(Φ1 ∧ Φ2) := SatD(Φ1) ∩ SatD(Φ2),

• SatD(Φ1 ∨ Φ2) := SatD(Φ1) ∪ SatD(Φ2),

• SatD(¬Φ) := S \ SatD(Φ),

• SatD(P≥p(ϕ)) := {s ∈ S | Prs(SatDs (ϕ)) ≥ p},

• SatD(P>p(ϕ)) := {s ∈ S | Prs(SatDs (ϕ)) > p},

7



• SatDs (Φ) := Path(s) (if s ⊨ Φ),

• SatDs (Φ) := ∅ (otherwise),

• SatDs (ϕ1 ∧ ϕ2) := SatDs (ϕ1) ∩ SatDs (ϕ2),

• SatDs (ϕ1 ∨ ϕ2) := SatDs (ϕ1) ∪ SatDs (ϕ2),

• SatDs (¬ϕ) := Path(s) \ SatDs (ϕ),

• SatDs (⃝ϕ) := {ξ ∈ Path(s) | ξ[1 . . .] ⊨ ϕ},

• SatDs (ϕ1 U ϕ2) :=
{ξ ∈ Path(s) | ∃j ≥ 0. (ξ[j . . .] ⊨ ϕ2 ∧ ∀i ≥ 0. (i < j ⇒ ξ[i . . .] ⊨ ϕ1))} and

• SatDs (ϕ1 R ϕ2) := SatDs (¬(¬ϕ1 U ¬ϕ2)).

Proposition 2.2.3. Let ϕ be a PCTL path formula. For each state s in a DTMC
D, SatDs is measurable in Ds.

Proof. We proceed by induction on the structure of ϕ.
Case ϕ = ⃝ϕ′. By Definition 2.2.2,

SatDs (ϕ) =
∪

s′∈Post(s)

(s+ SatDs′ (ϕ
′)) .

For each s′ ∈ Post(s), the event SatDs′ (ϕ
′) is measurable in Ds′ by induction

hypothesis. Hence the event SatDs (ϕ) is measurable in Ds by Proposition 2.1.19.
Case ϕ = ϕ1 U ϕ2. For each state s in D, we define U s

n inductively by

U s
n :=

{
SatDs (ϕ2) if n = 0∪

s′∈Post(s)(s+ U s′
n−1) ∩ SatDs (ϕ1) otherwise.

Then U s
n is a measurable inDs for each n ∈ N by induction hypothesis and Propo-

sition 2.1.19. Hence SatDs (ϕ) is a measurable in Ds, since SatDs (ϕ) =
∪

n∈N U s
n.

The proofs of the other cases are obvious.

Proposition 2.2.4. Let ξ be a path and s be a state in a DTMC D. Let Φ1 and
Φ2 be PCTL path formulas. Let ϕ1 and ϕ2 be PCTL path formulas. Then the
following equivalence is satisfied:

• s ⊨ ¬¬Φ1 if and only if s ⊨ Φ1,

• s ⊨ Φ1 ∨ Φ2 if and only if s ⊨ ¬(¬Φ1 ∧ ¬Φ2),

• ξ ⊨ ¬¬ϕ1 if and only if ξ ⊨ ϕ1,

• ξ ⊨ ⃝ϕ1 if and only if ξ ⊨ ¬⃝¬ϕ1,

• ξ ⊨ ϕ1 ∨ ϕ2 if and only if ξ ⊨ ¬(¬ϕ1 ∧ ¬ϕ2),

• ξ ⊨ ϕ1 R ϕ2 if and only if ξ ⊨ ¬(¬ϕ1 U ¬ϕ2).

Proof. Suppose that ξ ⊨ ⃝ϕ. Then ξ[1 . . .] ⊨ ϕ. Since ξ[1 . . .] ⊭ ¬ϕ, we have
ξ ⊭ ⃝¬ϕ. Hence ξ ⊨ ¬⃝ ¬ϕ. Suppose that ξ ⊨ ¬⃝ ¬ϕ. Then ξ ⊭ ⃝¬ϕ. Since
ξ[1 . . .] ⊭ ¬ϕ, we have ξ[1 . . .] ⊨ ϕ. Hence ξ ⊨ ⃝ϕ.

The proofs of the others are obvious.
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Proposition 2.2.5. Let ξ be a path in a DTMC D. Let ϕ1 and ϕ2 be PCTL
path formulas. Then

ξ ⊨ ϕ1 U ϕ2 if and only if ξ ⊨ ϕ2 ∨ (ϕ1 ∧⃝(ϕ1 U ϕ2)) .

Proof. We define U s
n inductively by the same way in the proof of Proposi-

tion 2.2.3. For each state s,

SatDs (ϕ1 U ϕ2)) =
∪
n∈N

U s
n

= SatDs (ϕ2) ∪
∪
n∈N

 ∪
s′∈Post(s)

(s+ U s′
n ) ∩ SatDs (ϕ1)


= SatDs (ϕ2) ∪

SatDs (ϕ1) ∩

 ∪
s′∈Post(s)

(
s+

∪
n∈N

U s′
n

)
= SatDs (ϕ2) ∪

(
SatDs (ϕ1) ∩ SatDs (⃝(ϕ1 U ϕ2))

)
.

When we simulate a die by a fair coin, for example, we sometimes want to
know how many times on average we will flip the fair coin to decide a roll. For
that purpose, we extend DTMCs.

Definition 2.2.6 (DTMRC). Let D be a DTMC and rew be a function rew : S×
S → N. Then the tuple DR = (D, rew) is a DTMRC. The function rew is called
a reward function of DR.

The definition of a reward function in this thesis is different from that of a reward
function in [4]. However, the reward in [4] can be expressed as the reward in this
thesis.

Definition 2.2.7. For a path fragment ξ̂ = s0s1 . . . sn in a DTMC D let

rew(ξ̂) =
n−1∑
i=0

rew(si, si+1) .

We describe the expected reward until reaching a set of states. First we
describe the reward until reaching a set of state along a path.

Definition 2.2.8. Let (D, rew) is a DTMRC with a state space S and B ⊆ S a
set of state. For each path ξ in D let

rew(ξ,♢B) :=


n−1∑
i=0

rew(ξ[i], ξ[i+ 1])
if there exists n ∈ N such that ξ[i] /∈ B

for each i < n and ξ[n] ∈ B

∞ otherwise,

and

rewa(ξ,♢B) :=

{
a if rew(ξ,♢B) = ∞ or rew(ξ,♢B) ≥ a

rew(ξ,♢B) otherwise,

where a ∈ R.
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Then we define an expected reward until reaching a set B of states by the expected
value of λξ.rew(ξ,♢B).

Definition 2.2.9. For state s and B ⊆ S, an expected reward until reaching B
from s is defined by

ExpRew(s ⊨ ♢B) :=


∑
ξ̂

P (ξ̂)rew(ξ̂) if Prs{ξ ∈ Path(s) | ∃n ∈ N. ξ[n] ∈ B} = 1

∞ otherwise,

where ξ̂ ranges over all path fragments s0 . . . sn such that s0 = s, sn ∈ B and
si /∈ B for each i < n.

We add the operator about an expected reward and the operator about a
bounded reward and we describe the logic for DTMRCs, called PRCTL [4].

Definition 2.2.10 (syntax of PRCTL). PRCTL state formulas over the set AP
are defined by the following grammar:

Φ ::= false | true | a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | ¬Φ | P≥p(ϕ) | P>p(ϕ) | E≤r(Φ) | E<r(Φ)

where a ∈ AP , p ∈ [0, 1], r ∈ R and ϕ is a PRCTL path formula.
PRCTL path formulas are defined by the following grammar:

ϕ ::= Φ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ⃝ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2 | ϕ1 U≤r ϕ2

where r ∈ R and Φ is a PRCTL state formula.
The implication operator ⇒, the eventually operator ♢ and the always oper-

ator □ are defined by

Φ1 ⇒ Φ2 := ¬Φ1 ∨ Φ2, ♢Φ := true U Φ and □Φ := false R Φ .

Definition 2.2.11 (semantics of PRCTL over states and paths). Let DR be a
DTMRC. Let Φ be a PRCTL state formula and ϕ be a PRCTL path formula.
Then we define SatDR(Φ) ⊆ S and SatDR

s (ϕ) ⊆ Path(s) for each state s ∈ S
inductively by the following. Here s ∈ SatDR(Φ) and ξ ∈ SatDR

ξ[0](ϕ) are denoted
by s ⊨ Φ and ξ ⊨ ϕ, respectively:

• SatDR(false) := ∅ and SatDR(true) := S,

• SatDR(a) := {s ∈ S | a ∈ L(s)},

• SatDR(Φ1 ∧ Φ2) := SatDR(Φ1) ∩ SatDR(Φ2),

• SatDR(Φ1 ∨ Φ2) := SatDR(Φ1) ∪ SatDR(Φ2),

• SatDR(¬Φ) := S \ SatDR(Φ),

• SatDR(P≥p(ϕ)) := {s ∈ S | Pr s(SatDR
s (ϕ)) ≥ p},

• SatDR(P>p(ϕ)) := {s ∈ S | Pr s(SatDR
s (ϕ)) > p},

• SatDR(E≤r(Φ)) := {s ∈ S | ExpRew(s ⊨ ♢ SatDR(Φ)) ≤ r},

• SatDR(E<r(Φ)) := {s ∈ S | ExpRew(s ⊨ ♢ SatDR(Φ)) < r},

• SatDR
s (Φ) := Path(s) (if s ⊨ Φ),
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• SatDR
s (Φ) := ∅ (otherwise),

• SatDR
s (ϕ1 ∧ ϕ2) := SatDR

s (ϕ1) ∩ SatDR
s (ϕ2),

• SatDR
s (ϕ1 ∨ ϕ2) := SatDR

s (ϕ1) ∪ SatDR
s (ϕ2),

• SatDR
s (¬ϕ) := Path(s) \ SatDR

s (ϕ),

• SatDR
s (⃝ϕ) := {ξ ∈ Path(s) | ξ[1 . . .] ⊨ ϕ},

• SatDR
s (ϕ1 U ϕ2) :=

{ξ ∈ Path(s) | ∃j ≥ 0. (ξ[j . . .] ⊨ ϕ2 ∧ ∀i ≥ 0. (i < j ⇒ ξ[i . . .] ⊨ ϕ1))},

• SatDR
s (ϕ1 R ϕ2) := SatDR

s (¬(¬ϕ1 U ¬ϕ2)) and

• SatDR
s (ϕ1 U≤r ϕ2) :=

{ξ ∈ Path(s) | ∃j ≥ 0. (rew(ξ[0, j]) ≤ r ∧ ξ[j . . .] ⊨ ϕ2 ∧ ∀i ≥ 0. (i < j ⇒
ξ[i . . .] ⊨ ϕ1))}.

Proposition 2.2.12. Let ϕ be a PRCTL path formula. For each state s in a
DTMRC DR = (D, rew), SatDR

s is measurable in Ds.

Proof. We proceed by induction on the structure of ϕ.
Case ϕ = ϕ1 U≤r ϕ2. For each path fragment ξ̂ starting from the state s in

D, we define U
ξ̂
inductively by

U
ξ̂
:=


SatDR

s (ϕ2) if ξ̂ = s

(ξ̂′ + SatDR
s′ (ϕ2)) ∩ SatDR

s (ϕ1 U ϕ2) if ξ̂ = ξ̂′s′ ∧ rew(ξ̂) ≤ r

∅ otherwise.

Then U
ξ̂
is a measurable in Ds for each ξ̂ by induction hypothesis and Proposi-

tion 2.1.19. Hence SatDR
s (ϕ) is a measurable in Ds, since SatDs (ϕ) =

∪
ξ̂
U
ξ̂
where

ξ̂ ranges over all path fragments starting from the state s.
The proofs of the other cases are similar to those of Proposition 2.2.3.
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Chapter 3

Game-Theoretic Probability

3.1 Basic Definitions in Game-Theoretic Probability

We present basics of the game-theoretic probability following [18]. In this thesis
we will be using gambling protocols (of games) in the following format. The format
is more restricted than the general one commonly used in the game-theoretic
(see [18, Chapter 8]) but we will not need the generality.

Definition 3.1.1 (gambling protocol).
Parameter: St,Rt, λt

Players: Skeptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Skeptic announces sn ∈ St.
Reality announces rn ∈ Rt.
Kn := Kn−1 + λt(sn, rn).

Here

• the sample space Ω is the set of all infinite sequences r1r2 . . . of moves
Reality can make;

• the set Ω♢ := {ξ̂ | ξ̂ is a prefix of ξ ∈ Ω} is the set of situations;

• for each situation t ∈ Ω♢, St is the nonempty set of moves of Skeptic;

• for each situation t ∈ Ω♢, Rt := {r | tr ∈ Ω♢} is the nonempty set of moves
of Reality; and

• for each situation t ∈ Ω♢,

λt : St ×Rt −→ R

is a gain function.

Note that Rt is defined inductively: once Rt is defined for t of length up to n,
Rtr is defined for each r ∈ Rt.

Definition 3.1.2 (probability protocol). A gambling protocol is called a proba-
bility protocol if it satisfies the following conditions.

1. The set St of Skeptic’s moves in a situation t is a convex cone in some
linear space. That is, if s1 and s2 are in St and a1 and a2 are nonnegative
numbers, then a1s1 + a2s2 is in St.
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2. The gain function λt in the situation t has the following linearity property:
if s1 and s2 are in St and a1 and a2 are nonnegative numbers, then λt(a1s1+
a2s2, r) = a1λt(s1, r) + a2λt(s2, r) for every r ∈ Rt.

Definition 3.1.3 (coherent protocol). A gambling protocol is coherent if

∀t ∈ Ω♢. ∀s ∈ St. ∃r ∈ Rt. λt(s, r) ≤ 0 .

Definition 3.1.4 (symmetric protocol). A gambling protocol is symmetric if

∀t ∈ Ω♢. ∀s ∈ St. (−s ∈ St ∧ ∀r ∈ Rt. λt(−s, r) = −λt(s, r)) .

Definition 3.1.5 (strategy). A strategy is a strategy for Skeptic. That is, a
strategy P is a function P : Ω♢ → St.

Definition 3.1.6 (capital process). Let P be a strategy and ϵ ∈ Ω♢ be the empty
sequence. Then a function KP : Ω♢ → R is defined inductively by: KP(ϵ) = 0
and

KP(tr) = KP(t) + λt(P(t), r) .

we call KP a capital process.

Proposition 3.1.7. Let P1 and P2 be strategies. Let a1 and a2 be nonnegative
numbers. In a probability protocol,

Ka1P1+a2P2 = a1K
P1 + a2K

P2 .

Proof. For the empty sequence ϵ,

Ka1P1+a2P2(ϵ) = 0 = a1K
P1(ϵ) + a2K

P2(ϵ) .

Suppose that for a situation t

Ka1P1+a2P2(t) = a1K
P1(t) + a2K

P2(t) .

Then for each r ∈ Rt

Ka1P1+a2P2(tr) = Ka1P1+a2P2(t) + λt(a1P1(t) + a2P2(t), r)

= a1K
P1(t) + a2K

P2(t) + a1λt(P1(t), r) + a2λt(P2(t), r)

= a1K
P1(tr) + a2K

P2(tr) .

By the linearity of the gain function λt of a symmetric probability protocol, we
can prove similarly the following proposition.

Proposition 3.1.8. Let P be a strategy. In a symmetric probability protocol,

K−P = −KP .

Proof. For the empty sequence ϵ,

K−P(ϵ) = 0 = −KP(ϵ) .

Suppose that for a situation t

K−P(t) = −KP(t) .

Then for each r ∈ Rt

K−P(tr) = K−P(t) + λt(−P(t), r)

= −(KP(t) + λt(P(t), r))

= −KP(tr) .

13



Definition 3.1.9 (variable). A variable x is a function x : Ω → R ∪ {−∞,∞}.

Definition 3.1.10 (price). Let x be a variable. Then we define Ex and Ex by

Ex := inf{α | there is a strategy P such that ∀ξ ∈ Ω. lim inf
n→∞

KP(ξ[0, n])+α ≥ x(ξ)}

and
Ex := −E[−x] .

We call Ex and Ex the upper price of x and the lower price of x, respectively.
If Ex = Ex = α, we define Ex = α and call Ex the price of x.

In a probability protocol, the price satisfies the following propositions.

Proposition 3.1.11. In a probability protocol, the upper price of a variable x
satisfy that

E[ax] ≤ aEx

for each a > 0.

Proof. There exists a strategy P such that

∀ξ ∈ Ω. Ex+ lim inf
n→∞

KP ≥ x(ξ) .

Then the strategy aP satisfies that

∀ξ ∈ Ω. aEx+ lim inf
n→∞

KaP ≥ ax(ξ) .

Proposition 3.1.12. Let x1 and x2 be variables in a probability protocol. Suppose
that x1 ≤ x2. Then

Ex1 ≤ Ex2 .

Proof. There exists a strategy P such that

∀ξ ∈ Ω. Ex2 + lim inf
n→∞

KP ≥ x2(ξ) .

Since x1 ≤ x2, we have

∀ξ ∈ Ω. Ex1 + lim inf
n→∞

KP ≥ x1(ξ) .

Proposition 3.1.13. Let x1 and x2 be variables in a probability protocol. If
Ex1,Ex2 ∈ R and x1(ξ), x2(ξ) ∈ R for each path ξ, then

E[x1 + x2] ≤ Ex1 + Ex2 .

Proof. There exists strategies P1,P2 such that

∀ξ ∈ Ω. Ex1 + lim inf
n→∞

KP1 ≥ x1(ξ)

and
∀ξ ∈ Ω. Ex2 + lim inf

n→∞
KP2 ≥ x2(ξ) .

Then the strategy P1 + P2 satisfies that

∀ξ ∈ Ω. Ex1 + Ex2 + lim inf
n→∞

KP1+P2 ≥ (x1 + x2)(ξ) .
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In a coherent probability protocol, the price satisfies the following propositions.

Proposition 3.1.14. In a coherent probability protocol, the price of a constant
variable a ∈ R exists and satisfies that

Ea = a .

Proof. By the definition of probability protocol, there exists the strategy 0P
that satisfies a + lim infn→∞K0P(ξ[0, n]) = a for each ξ ∈ Ω. Hence Ea ≤ a.
Similarly, we can prove that Ea ≥ a. By Proposition 3.1.15, Ea = Ea = a.

Proposition 3.1.15. In a coherent probability protocol, the upper price and the
lower price of a variable x satisfy that

Ex ≤ Ex .

Proof. If Ex < Ex, there exist α1, α2 ∈ R such that

Ex < α1 < α2 < Ex .

Since Ex < α1 and α2 < Ex, there exist strategies P1 and P2 such that

∀ξ ∈ Ω.KP1(ξ) ≥ x(ξ)− α1 and ∀ξ ∈ Ω.KP2(ξ) ≥ α2 − x(ξ) .

Hence the strategy P1 + P2 satisfies

∀ξ ∈ Ω.KP1+P2(ξ) ≥ α2 − α1 > 0 .

This contradicts coherence.

Proposition 3.1.16. Let x1 and x2 be variables in a coherent probability protocol.
Suppose that the price of x1 and the price of x2 exist. If Ex1,Ex2 ∈ R and
x1(ξ), x2(ξ) ∈ R for each path ξ, then

E[x1 + x2] = Ex1 + Ex2 .

Proof. By Proposition 3.1.13,

E[x1 + x2] ≤ Ex1 + Ex2

and

E[x1 + x2] = −E[(−x1) + (−x2)] ≥ −E[(−x1)]− E[(−x2)] = Ex1 + Ex2 .

By Proposition 3.1.15,

E[x1 + x2] = E[x1 + x2] = Ex1 + Ex2 .

Proposition 3.1.17. Let x be a variable in a coherent probability protocol. Sup-
pose that the price of x exists. Then for each a ∈ R

E[ax] = aEx .

Proof. Suppose that a > 0. Then E[ax] ≤ aEx and E[ax] = −E[a(−x)] ≥ aEx
by Proposition 3.1.11. By Proposition 3.1.15, E[ax] = E[ax] = aEx.

Suppose that a < 0. Then E[ax] ≤ −aE[−x] = aEx and E[ax] = −E[−ax] ≥
aEx by Proposition 3.1.11. By Proposition 3.1.15, E[ax] = E[ax] = aEx.

Suppose that a = 0. Then E[ax] = 0 by Proposition 3.1.14.
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Proposition 3.1.18. Let (xn)n∈N be variables in a coherent probability protocol.
Suppose that xn ≤ xn+1 for each n ∈ N and that the price of xn exists for each
n ∈ N. If Exn > −∞ and xn(ξ) ∈ R for each path ξ for each n ∈ N, then the
price of limn→∞ xn exists and

E[ lim
n→∞

xn] = lim
n→∞

Exn .

Proof. Suppose that there exists i ∈ N such that Exi = ∞. Since xi ≤
limn→∞ xn, we have Exi ≤ E[limn→∞ xn]. Hence E[limn→∞ xn] = ∞. Moreover,
Exn = ∞ for each n ≥ i, since xn ≥ xi for each n ≥ i. Hence E[limn→∞ xn] =
limn→∞ Exn.

Suppose that Exn ∈ R for each n ∈ N. Let (x′n)n∈N be variables such that
x′n = xn+1 − xn for each n ∈ N. Then

E[ lim
n→∞

xn] = E[x0 +
∑
n∈N

x′n] and Exn = Ex0 +
n−1∑
i=0

Ex′i .

Since xi ≤ limn→∞ xn for each i ∈ N,

Ex0 +
∑
n∈N

Ex′n = lim
n→∞

Exn ≤ E[ lim
n→∞

xn] .

By Proposition 3.1.13,

Ex0 +
∑
n∈N

Ex′n ≥ E[x0 +
∑
n∈N

x′n] .

Hence E[limn→∞ xn] = limn→∞ Exn. Since E[limn→∞ xn] = −E[(−x0)+
∑

n∈N(−x′n)],
we have

E[ lim
n→∞

xn] ≥ −E[−x0]−
∑
n∈N

E[−x′n] = lim
n→∞

Exn .

By Proposition 3.1.15,

E[ lim
n→∞

xn] = E[ lim
n→∞

xn] = lim
n→∞

Exn .

Definition 3.1.19 (event). An event E is a subset of Ω.

Definition 3.1.20 (indicator variable). Given an event E ⊆ Ω, we define the
indicator variable IE by

IE(ξ) :=

{
1 if ξ ∈ E

0 otherwise.

Definition 3.1.21 (probability). Given an event E ⊆ Ω, we define an upper
probability of E by

PrG(E) := EIE

and a lower probability of E by

PrG(E) := EIE .

If PrG(E) = PrG(E) = p, we define a probability of E by PrG(E) = p.
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Proposition 3.1.22. Let E be an event in a probability protocol. Then

0 ≤ PrG(E) and PrG(E) ≤ 1 .

Proof. By the definition of probability protocol, there exists the strategy 0P
that satisfies K0P(ξ[0, n]) = 0 for each n ∈ N and for each ξ ∈ Ω. Since

lim inf
n→∞

K0P + 0 ≥ −IE and lim inf
n→∞

K0P + 1 ≥ IE

for each ξ ∈ Ω. Hence E[−IE ] ≤ 0 and E[IE ] ≤ 1.

Proposition 3.1.23. Let E be an event in a symmetric probability protocol.
Suppose that the probability of E exists. Then the probability of Ω \E exists and

PrG(Ω \E) = 1− PrG(E) .

Proof. Since IΩ\E = 1− IE , we have

PrG(Ω \E) = E[1− IE ] = 1− PrG(E) .

Definition 3.1.24 (force). Let E be an event in a coherent probability protocol.
We say Skeptic can force E if there exists a strategy P such that

∃a ∈ R. ∀ξ ∈ Ω. lim inf
n→∞

KP(ξ[0, n]) > a ∧ ∀ξ ∈ Ω \ E. lim
n→∞

KP(ξ[0, n]) = ∞ .

Proposition 3.1.25. Let E be an event in a coherent probability protocol. Sup-
pose that Skeptic can force E. Then PrG(E) = 1.

Proof. Since Skeptic can force E, there exist a strategy P and a number a ∈ R
such that

∀ξ ∈ Ω. lim inf
n→∞

KP(ξ[0, n]) > a ∧ ξ ∈ Ω \ E. lim
n→∞

KP(ξ[0, n]) = ∞ .

For each positive number r > 0, the strategy rP/|a| satisfies that

∀ξ ∈ E. lim inf
n→∞

KrP/|a|(ξ[0, n]) + r > −r + r = 0 = IΩ\E(ξ)

and
∀ξ ∈ Ω \ E. lim inf

n→∞
KrP/|a|(ξ[0, n]) + r = ∞ > IΩ\E(ξ) .

Hence PrG(Ω \ E) ≤ 0. By Proposition 3.1.15 and 3.1.22, 0 ≤ PrG(Ω \ E) ≤
PrG(Ω \ E) ≤ 0. Hence PrG(Ω \ E) = 0. Then

PrG(E) = E[1− IΩ\E ] = 1 + E[−IΩ\E ] = 1− PrG(Ω \ E) = 1

and
PrG(E) = E[1− IΩ\E ] = 1− E[IΩ\E ] = 1− PrG(Ω \ E) = 1 .

The notion of replicating, and the result in Proposition 3.1.27 are presented
in [19] for finite games. We do the same for infinite games.
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Definition 3.1.26 (replicating strategy). Let x be a variable. We call a strategy
P a replicating strategy for x with the replicating initial capital α ∈ R if

∀ξ ∈ Ω. α+ lim inf
n→∞

KP(ξ[0, n]) = x(ξ) .

Proposition 3.1.27. In a coherent symmetric protocol, if P is a replicating
strategy for x with the replicating initial capital α, then

Ex = Ex = α .

Proof. By Definition 3.1.10 and 3.1.26, Ex ≤ α. By symmetry, −P is a repli-
cating strategy for −x with replicating initial capital −α. Hence E[−x] ≤ −α.
Since α ≥ Ex, we have Ex ≥ Ex. By Proposition 3.1.15, Ex ≥ Ex

By Definition 3.1.10, if there exists a replicating strategy for x with the repli-
cating initial capital α in a coherent symmetric gambling protocol, then the price
of x exists and Ex = α.

3.2 Game for DTMC

We define the game for a DTMC. This seems to be new.

Definition 3.2.1 (game for a DTMC). A protocol of the game for a DTMC
D = (S, P, ιinit,AP , L) is described as follows. Here P ′ : ({∗} ∪ S) × S → [0, 1]
satisfies that

P ′(s, s′) =

{
ιinit(s

′) if s = ∗
P (s, s′) otherwise.

Parameter: S, P ′, x0 = ∗
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Skeptic announces a bounded function fn : S → R.
Reality announces xn ∈ {s ∈ S | P ′(xn−1, s) > 0}.
Kn := Kn−1 + fn(xn)−

∑
s∈S fn(s)P

′(xn−1, s).

The protocol of the game for a DTMC is a coherent symmetric probabilistic
protocol. In this game, Skeptic bets some money on each state and Reality
decides the next state. Then Skeptic gets the money bet on this next state and
loses the money that equal to the total expected value of bet money. If we
translate Skeptic’s move fn to f ′

n(s) = fn(s)P
′(s′, s) where s′ is the predecessor

state, the meaning of this game may be more natural. In this case Kn = Kn−1+
f ′
n(xn)/P

′(xn−1, s)−
∑

s∈S f ′
n(s). Hence Skeptic gets the money that is the money

bet on the next state multiplied the odds following the transition probability, loses
the total bet money.

In the game for a DTMC D, the set Path(D) is the sample space Ω and a
prefix ξ̂ of a path ξ ∈ Path(D) is a situation. To check sanity of our definition of
games, we show that the probabilities of measurable events in terms of this game
are equal to their counterparts in terms of the measure-theoretic probability.

Proposition 3.2.2. Let D = (S, P, ιinit,AP , L) be a DTMC with a state space S
and (Path(D),F) be the σ-algebra associated with D. In the game for D, there
exists the probability of E and PrG(E) = PrM (E) for each event E ∈ F .
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Proof. Let Cyl(t) be the cylinder set of a path fragment t inD and ξ̂ = s0 . . . sn ∈
Ω♢ be a path fragment in D. We define a strategy P by

P(ξ̂′)(s′) =


PrM (Cyl(t))

P ′(ξ̂′s′)
if ξ̂′s′ is a prefix of t

0 otherwise

where P ′(ξ̂) = ιinit(ξ̂[0])P (ξ̂). It is to see that the strategy P is a replicat-
ing strategy for ICyl(t) with the replicating initial capital PrM (Cyl(t)). Hence

PrG(Cyl(t)) = PrM (Cyl(t)).
A strategy P such that P(t)(s) = 0 for each situation t and state s is a

replicating strategy for I∅ with the replicating initial capital 0.
Suppose that (En)n∈N is a family of pairwise disjoint events En and that there

exists the probability of En such that PrG(En) = PrG(En) for each n ∈ N. Since
I∪

n∈N En
=
∑

n∈N IEn , there exist the probability of
∪

n∈NEn and the probability
of Ω \

∪
n∈NEn and

PrG(
∪
n∈N

En) =
∑
n∈N

PrG(En) =
∑
n∈N

PrM (En) = PrM (
∪
n∈N

En)

and

PrG(Ω \
∪
n∈N

En) = 1− PrG(
∪
n∈N

En) = 1− PrM (
∪
n∈N

En) = PrG(Ω \
∪
n∈N

En)

by Proposition 3.1.18 and 3.1.23.

By Proposition 3.2.2, PrG(E) = PrM (E) for each measurable event E in a
DTMC. Therefore the probability of a measurable event E in a DTMC is denoted
by Pr(E) = PrG(E) = PrM (E). The probability Prs(E) is defined similarly.

Proposition 3.2.3. Let (D, rew) be a DTMRC. In the game for D, for each
a ∈ R and for each set B of states, there exists the price of λξ.rewa(ξ,♢B) and

E[λξ.rewa(ξ,♢B)] = aPr{ξ ∈ Path(D) | rew(ξ,♢B) ≥ a}+
∑
ξ̂

ιinit(ξ̂[0])P (ξ̂)rew(ξ̂)

where ξ̂ ranges over all path fragments s0 . . . sn such that rew(s0 . . . sn) < a, s0
is an initial state of D, sn ∈ B and si /∈ B for each i < n.

Proof. Let E = {ξ ∈ Path(D) | rew(ξ,♢B) ≥ a} be an event. The event E is
measurable in D. By the definition of rewa,

rewa = aIE +
∑
ξ̂

rew(ξ̂)I
Cyl(ξ̂)

where ξ̂ ranges over all path fragments s0 . . . sn such that rew(s0 . . . sn) < a, s0
is the initial state of D, sn ∈ B and si /∈ B for each i < n. By Proposition 3.1.18
and 3.2.2, there exists the price of λξ.rewa(ξ,♢B) and

E[λξ.rewa(ξ,♢B)] = aPr(E) +
∑
ξ̂

ιinit(ξ̂[0])P (ξ̂)rew(ξ̂)

where ξ̂ ranges over all path fragments s0 . . . sn such that rew(s0 . . . sn) < a, s0
is the initial state of D, sn ∈ B and si /∈ B for each i < n.
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Definition 3.2.4. Let D be a DTMC and let s be a state in D. The price of a
variable x in a game for Ds is denoted by Es[x].

Proposition 3.2.5. Let (D, rew) be a DTMRC with a state space S and s be a
state in D. Then for each B ⊆ S,

ExpRew(s ⊨ ♢B) = Es[λξ.rew(ξ,♢B)] = lim
a→∞

Es[λξ.rew
a(ξ,♢B)] .

Proof. By Proposition 3.2.3, for each a ∈ R

E[λξ.rewa(ξ,♢B)] = aPr s{ξ ∈ Path(s) | rew(ξ,♢B) ≥ a}+
∑
ξ̂

P (ξ̂)rew(ξ̂)

where ξ̂ ranges over all path fragments s0 . . . sn such that rew(s0 . . . sn) < a, s0 =
s, sn ∈ B and si /∈ B for each i < n. Since rew(ξ,♢B) = lima→∞ rewa(ξ,♢B) for
each path ξ ∈ Path(s),

Es[λξ.rew(ξ,♢B)] = lim
a→∞

Es[λξ.rew
a(ξ,♢B)]

=


∑
ξ̂

P (ξ̂)rew(ξ̂) if Pr s{ξ ∈ Path(s) | rew(ξ,♢B) = ∞} = 0

∞ otherwise

where ξ̂ ranges over all path fragments s0 . . . sn such that s0 = s, sn ∈ B and
si /∈ B for each i < n. Hence

ExpRew(s ⊨ ♢B) = Es[λξ.rew(ξ,♢B)] = lim
a→∞

Es[λξ.rew
a(ξ,♢B)] .
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Chapter 4

Results on DTMCs in Game-Theoretic

Probability

A state of a DTMC changes step by step. Therefore one transition of states in
DTMCs is regarded as one round of games. It seems to be natural that DTMCs
are expressed as games. In this chapter, we show the application of this idea by
using the game for a DTMC defined in the previous chapter.

4.1 Fairness Theorem

In this section we prove the fairness theorem for DTMCs [4]. The fairness theorem
means that an event E happens almost surely if E is such that if a certain state
is visited infinitely often, then the each successor of the state is visited infinitely
often. Since we want to check whether or not a certain state is visited, we use
states as atomic propositions in this section. That is, we assume that AP = S
and L(s) = {s} for each s ∈ S. Then the PCTL path formula □♢t denotes the
property that the state t is visited infinitely often. For a set B of states, the state
formula B denotes

∨
t∈B t. In order to prove the fairness theorem, we prove the

following key lemma.

Lemma 4.1.1. Let D be a DTMC and s, u be states be in D. For any T ⊆
Pre(u), Skeptic can force the following event:

{ξ ∈ Path(s) | ξ ⊨ □♢T ⇒ □♢(T ∧⃝u)} .

Proof. Take Skeptic’s strategy such that

fn(v) =

{
0 if xn−1 ∈ T ∧ v = u

Kn−1 otherwise.

At the n-th step of the game, situations are classified into two groups.

(I) xn−1 /∈ T . In this case, Kn = Kn−1.
(II) xn−1 ∈ T . In this case:

(i) If Reality announces xn ̸= u, Kn = (1 + P (xn−1, u))Kn−1.
(ii) If Reality announces xn = u,

Kn = Kn − (1− P (xn−1, u)))Kn−1 = P (xn−1, u)Kn−1.

Hence K0 > 0 ⇒ ∀n.Kn > 0. Suppose that a path ξ′ ∈ Path(s) satisfies

ξ′ ⊨ □♢T ∧ ¬□♢(T ∧⃝u) .
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The situations classified as (II) happen infinitely often. Hence, along ξ′, capital
is multiplied by P (xn−1, u) > 0 finitely often and capital is multiplied by (1 +
P (xn−1, v)) > 1 infinitely often. Hence Skeptic can force the following event:

{ξ ∈ Path(s) | ξ ⊨ ¬(□♢T ∧ ¬□♢(T ∧⃝u))} .

That is, Skeptic can force the following event:

{ξ ∈ Path(s) | ξ ⊨ □♢T ⇒ □♢(T ∧⃝u)} .

Lemma 4.1.2. Let D be a DTMC and s, t be states in D. For each state
u ∈ Post∗(t):

Pr(s ⊨ □♢t ⇒ □♢u) = 1 .

Proof. Since u ∈ Post∗(t), there exists a path fragment s0s1 . . . sm+1 ∈ Path∗(t)
such that s0 = t∧ sm+1 = u. Then let Ei := {ξ ∈ Path(s) | ξ ⊨ □♢si ⇒ □♢si+1}
and E := {ξ ∈ Path(s) | ξ ⊨ □♢t ⇒ □♢u}. By Lemma 4.1.1, for each i ∈
{0, 1, . . . ,m}, Skeptic can force Ei. That is, there exists a strategy Pi such that

∃a ∈ R. ∀ξ ∈ Ω. lim inf
n→∞

KPi(ξ[0, n]) > a ∧ ∀ξ ∈ Ω \ Ei. lim
n→∞

KPi(ξ[0, n]) = ∞

for each i ∈ {0, 1, . . . ,m}. Since (Ω \E) ⊆
∪

0≤i≤m(Ω \Ei), Skeptic (who follows
the strategy

∑
0≤i≤m Pi) can force E. By Proposition 3.1.25,

Pr(s ⊨ □♢t ⇒ □♢u) = 1 .

Theorem 4.1.3 (fairness theorem). For DTMC D and s, t be states in D:

Pr(s ⊨ □♢t) = Pr(s ⊨
∧

u∈Post∗(t)

□♢u) .

Proof. Let

E1 := {ξ ∈ Path(s) | ξ ⊨ □♢t},
E2 := {ξ ∈ Path(s) | ξ ⊨

∧
u∈Post∗(t)

□♢u}, and

E3 := {ξ ∈ Path(s) | ξ ⊨ □♢t ∧ ¬(
∧

u∈Post∗(t)

□♢u)}.

Then E1 = E2 ∪ E3. By Lemma 4.1.2, Prs(E3) = 0. Since Pr s(E1) = Prs(E2 ∪
E3) = Prs(E2),

Pr(s ⊨ □♢t) = Pr(s ⊨
∧

u∈Post∗(t)

□♢u) .

4.2 Probabilistic Simulation

Here we define a strong probabilistic simulation between two DTMCs based on
Segala’s [16]. We also prove in terms of the game-theoretic probability that this
simulation preserves which states a restricted PCTL holds in.
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Definition 4.2.1. Let X be a set. A function µ : X → [0, 1] is called a distribu-
tion on X if ∑

x∈X
µ(x) = 1 .

Definition 4.2.2 (weight function). Let R ⊆ X × Y be a relation between two
sets X,Y , and let µ and µ′ be distributions on X and Y , respectively. A function
δ : X × Y → [0, 1] is a weight function for µ and µ′ with respect to R if:

• for each x ∈ X,
∑

y∈Y δ(x, y) = µ(x),

• for each y ∈ Y .
∑

x∈X δ(x, y) = µ′(y), and

• for each (x, y) ∈ X × Y , if δ(x, y) > 0 then xRy.

Definition 4.2.3. Let R ⊆ X×Y be a relation between two sets X,Y , and let µ
and µ′ be distributions on X and Y , respectively. Then µ and µ′ are in relation
⊑R, written µ ⊑R µ′, if there exists a weight function for µ and µ′ with respect
to R.

Definition 4.2.4 (strong probabilistic simulation). LetD1 = (S1, P1, ι
1
init,AP , L1)

and D2 = (S2, P2, ι
2
init,AP , L2) be DTMCs. A strong probabilistic simulation be-

tween D1 and D2 is a relation R ⊆ S1 × S2 such that

1. for each (s, s′) ∈ S1 × S2, if sRs′ then L1(s) ⊇ L2(s
′), and

2. for each (s, s′) ∈ S1 × S2, if sRs′ then λt.P1(s, t) ⊑R λt.P2(s
′, t).

Definition 4.2.5. LetR be a strong probabilistic simulation between two DTMCs
D1, D2. Let s1 and s2 be states in D1 and D2, respectively. Assume that s1Rs2,
E1 ⊆ Path(s1) and E2 ⊆ Path(s2), we define

• s1 ↑R := {s′ ∈ S2 | s1Rs′},

• s2 ↓R := {s ∈ S1 | sRs2},

• E1 ↑s2R := {ξ2 ∈ Path(s2) | ∃ξ1 ∈ E1. ∀n ∈ N. ξ1[n]Rξ2[n]} and

• E2 ↓s1R := {ξ1 ∈ Path(s1) | ∃ξ2 ∈ E2. ∀n ∈ N. ξ1[n]Rξ2[n]}.

For B ⊆ S1 and C ⊆ S2, we define

B ↑R =
∪
s∈B

s ↑R and C ↓R =
∪
s′∈C

s′ ↓R .

The game-theoretic proof of Lemma 4.2.6 is a main contribution in this sec-
tion.

Lemma 4.2.6. Let R be a strong probabilistic simulation between two DTMCs
D1, D2. Let s1 and s2 be states in D1 and D2, respectively. If s1Rs2, events
E ⊆ Path(s1) and E ↑s2R ⊆ Path(s2) satisfy that

Prs1(E) ≤ Pr s2(E ↑s2R ) .

Proof. Let P2 be a strategy in game for Ds2
2 and ξ1 ∈ Path(s1) be a path. We

shall construct a path ξ2 ∈ Path(s2), and Skeptic’s strategy P1 in the game for
Ds1

1 , in the following mutually inductive way. Assume that the path fragment
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ξ2[0, n] has been already defined and that fP2
n is the function that Skeptic (who

follows P2) announces in the situation ξ2[0, n]. We define

P1(ξ
1[0, n])(s) :=


∑

s′∈s↑R δ(s, s′)fP2
n (s′)

P1(ξ1[n], s)
if P1(ξ

1[n], s) > 0

0 otherwise,

where δ is a weight function for λt.P1(ξ
1[n], t) and λt.P2(ξ

2[n], t) with respect to
R (that exists due to Definition 4.2.4). Such P1(ξ

1[0, n]) is bounded. Then fP1
n

denotes the function fP1
n = P1(ξ

1[0, n]). Then we define the element ξ2[n+1] by:

ξ2[n+ 1] := s′ such that s′ ∈ (ξ1[n+ 1]) ↑R and fP1
n (ξ1[n+ 1]) ≥ fP2

n (s′) .

Such s′ exists: indeed, if fP1
n (ξ1[n + 1]) < fP2

n (s′) for each s′ ∈ (ξ1[n + 1]) ↑R,
fP1
n (ξ1[n+ 1]) < fP1

n (ξ1[n+ 1]). Then fP1
n (ξ1[n+ 1]) < fP2

n (ξ2[n+ 1]) and∑
s∈S1

P1(ξ
1[n], ξ1[n+ 1])fP1

n (s) =
∑
s′∈S2

P2(ξ
2[n], ξ2[n+ 1])fP2

n (s′) .

Since ∀n ∈ N.KP1(ξ1[0, n]) ≥ KP2(ξ2[0, n]),

lim inf
n→∞

KP1(ξ1[0, n]) ≥ lim inf
n→∞

KP2
n (ξ2[0, n]) .

Moreover if ξ1 ∈ E, then ξ2 ∈ E ↑s2R .

The definition of fP1
n in this proof is regarded as the simulation following

the ratio of the values of the weight function. It is also regarded as the division
of the total bet money by translating fP1

n and fP2
n to fP1

n (s)/P1(ξ
1[n], s) and

fP2
n (s)/P2(ξ

2[n], s), respectively.

Lemma 4.2.7. Let R be a strong probabilistic simulation between two DTMCs
D1, D2. Let s1 and s2 be states in D1 and D2, respectively. If s1Rs2, events
E ⊆ Path(s2) and E ↓s1R ⊆ Path(s1) satisfy that

Prs1(E ↓s1R ) ≥ Pr s2(E) .

Proof. Condition 1 of Definition 4.2.4 is not used in proof of Lemma 4.2.6.
The relation R−1 does not satisfy Condition 1 of Definition 4.2.4 in general but
satisfies Condition 2 of Definition 4.2.4. Hence

Prs2(E) ≤ Pr s1(E ↑s2
R−1)

by Lemma 4.2.6. Since E ↑s1
R−1 = E ↓s1R ,

Pr s1(E ↓s1R ) ≥ Pr s2(E) .

Theorem 4.2.8. Let R be a strong probabilistic simulation between two DTMCs
D1, D2. Let s1 and s2 be states in D1 and D2, respectively. Assume that a PTCL
state formula Φ and a PTCL path formula ϕ do not contain any occurrence of ¬.
If s1Rs2 then

s2 ∈ SatD2(Φ) ⇒ s1 ∈ SatD1(Φ) and (SatD2
s2 (ϕ)) ↓s1R ⊆ SatD1

s1 (ϕ) .
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Proof. We proceed by induction on the structure of Φ and ϕ.
Case Φ = P≥p(ϕ). If s2 ∈ SatD2(Φ),

Prs2((Sat
D2
s2 (ϕ)) = Prs2((Sat

D2
s2 (ϕ)) ≥ p .

By Lemma 4.2.7

Pr s1((Sat
D2
s2 (ϕ)) ↓s1R ) ≥ Prs2((Sat

D2
s2 (ϕ)) ≥ p .

Since (SatD2
s2 (ϕ)) ↓s1R ⊆ SatD1

s1 (ϕ) by induction hypothesis,

Prs1(Sat
D1
s1 (ϕ)) = Prs1(Sat

D1
s1 (ϕ)) ≥ Prs1((Sat

D2
s2 (ϕ)) ↓s1R ) ≥ p .

Hence s1 ∈ SatD1(Φ).
Case Φ = P>p(ϕ). Similar to the previous case.
The proofs of the other cases are obvious.

Definition 4.2.9 (reward probabilistic simulation). LetD1 = (S1, P1, ι
1
init,AP , L1)

and D2 = (S2, P2, ι
2
init,AP , L2) be DTMCs. Let rew1 and rew2 be reward func-

tions on D1 and D2, respectively. A strong probabilistic simulation R between
D1 and D2 is called a reward probabilistic simulation between two DTMRCs
(D1, rew1) and (D2, rew2) if it satisfies the following condition.

• For each (s, s′) ∈ S1 × S2, if sRs′ then there exists a weight function δ for
λt.P1(s, t) and λt.P2(s

′, t) with respect to R such that

∀t ∈ S1. rew1(s, t) ≤
∑

t′∈S2
δ(t, t′)rew2(s

′, t′)

P1(s, t)
.

Lemma 4.2.10. Let R be a reward probabilistic simulation between two DTMRCs
(D1, rew1), (D2, rew2). Let s1 and s2 be states in D1 and D2, respectively. If
s1Rs2, a set C ⊆ S1 of states in D1 satisfies that

ExpRew(s1 ⊨ ♢C) ≤ ExpRew(s2 ⊨ ♢(C ↑R)) .

Proof. This proof is similar to the proof of Lemma 4.2.6. By Proposition 3.2.5,
for each a ∈ R, there exists a strategy Pa

2 for Skeptic in the game for Ds2
2 such

that for each path ξ2 ∈ Path(s2) in Ds2
2 ,

Es2 [λξ.rew
a
2(ξ,♢(C ↑R))] ≥ rewa(ξ2,♢(C ↑R))− lim inf

n→∞
KPa

2 (ξ2[0, n]) .

Let ξ1 ∈ Path(s1) be a path in Ds1
1 . We shall construct a path ξ2 ∈ Path(s2), and

Skeptic’s strategy Pa
1 in the game for Ds1

1 , in the following mutually inductive
way. Assume that the path fragment ξ2[0, n] has been already defined and that

f
Pa
2

n is the function that Skeptic who follows Pa
2 announces in the situation of

ξ2[0, n]. We define

Pa
1 (ξ

1[0, n])(s) :=


∑

s′∈s↑R δ(s, s′)f
Pa
2

n (s′)

P1(ξ1[n], s)
if P1(ξ

1[n], s) > 0

0 otherwise,

where δ is a weight function for λt.P1(ξ
1[n], t) and λt.P2(ξ

2[n], t) with respect
to R such that satisfies the condition of Definition 4.2.9 (that exists due to the
definition of reward probabilistic simulation). Such Pa

1 (ξ
1[0, n]) is bounded. Then
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f
Pa
1

n denotes the function f
Pa
1

n = Pa
1 (ξ

1[0, n]). Then we define the element ξ2[n+
1] := s′ such that

s′ ∈ (ξ1[n+ 1]) ↑R and rew1(ξ
1[n], ξ1[n+1])−f

Pa
1

n (ξ1[n+1]) ≤ rew2(ξ
2[n], s′)−f

Pa
2

n (s′)

if ξ1[i] /∈ C and for each i < n and rew2(ξ
2[0, n],♢(C ↓R)) < a, and

s′ ∈ (ξ1[n+ 1]) ↑R and f
Pa
1

n (ξ1[n+ 1]) ≥ f
Pa
2

n (s′)

otherwise. Such s exists by Definition 4.2.9 and the definition of f
Pa
2

n . Then we
defined rew1(a, ξ

1[0, n]) inductively by

rew1(a, ξ
1[0, n]) :=

0 if n = 0

rew1(a, ξ
1[0, n− 1]) + rew1(ξ

1[n− 1], ξ1[n]) if n > 0, ∀i < n. ξ1[i] /∈ C and

rew2(ξ
2[0, n],♢(C ↓R)) < a

rew1(a, ξ
1[0, n− 1]) otherwise.

Let rew1(a, ξ
1) = limn→∞ rew1(a, ξ

1[0, n]). Since∑
s∈S1

P1(ξ
1[n], ξ1[n+ 1])f

Pa
1

n (s) =
∑
s′∈S2

P2(ξ
2[n], ξ2[n+ 1])f

Pa
2

n (s′) ,

we can prove that for each ξ1 ∈ Path(s1)

rew1(a, ξ
1)− lim inf

n→∞
KPa

1 (ξ1[0, n]) ≤ rewa
2(ξ

2,♢(C ↓R))− lim inf
n→∞

KPa
2 (ξ2[0, n])

≤ Es2 [λξ.rew
a
2(ξ,♢(C ↓R))] .

Hence
Es1 [λξ.rew1(a, ξ)] ≤ Es2 [λξ.rew

a
2(ξ,♢(C ↓R))] .

Then
lim
a→∞

Es1 [λξ.rew1(a, ξ)] = ExpRew(s1 ⊨ ♢C)

and
lim
a→∞

Es2 [λξ.rew
a
2(ξ,♢(C ↓R))] = ExpRew(s2 ⊨ ♢(C ↓R)) .

Hence
ExpRew(s1 ⊨ ♢C) ≤ ExpRew(s2 ⊨ ♢(C ↓R)) .

Lemma 4.2.11. Let R be a reward probabilistic simulation between two DTMRCs
(D1, rew1), (D2, rew2). Let s1 and s2 be states in D1 and D2, respectively. If
s1Rs2, a set C ⊆ S2 of states in D2 satisfies that

ExpRew(s1 ⊨ ♢(C ↓R)) ≤ ExpRew(s2 ⊨ ♢C) .

Proof. By Lemma 4.2.10,

ExpRew(s1 ⊨ ♢(C ↓R)) ≤ ExpRew(s2 ⊨ ♢((C ↓R) ↑R)) .

Since C ⊆ (C ↓R) ↑R,

ExpRew(s2 ⊨ ♢((C ↓R) ↑R)) ≤ ExpRew(s2 ⊨ ♢C) .
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Theorem 4.2.12. Let R be a reward probabilistic simulation between two DTM-
RCs DR1,DR2. Let s1 and s2 be states in DR1 and DR2, respectively. Assume
that a PRCTL state formula Φ and a PRCTL path formula ϕ do not contain any
occurrence of ¬ and U≤r. If s1Rs2 then

s2 ∈ SatDR2(Φ) ⇒ s1 ∈ SatDR1(Φ) and (SatDR2
s2 (ϕ)) ↓s1R ⊆ SatDR1

s1 (ϕ) .

Proof. We proceed by induction on the structure of Φ and ϕ. Since R is a
strong probabilistic simulation, the proofs of the cace Φ = E≤r(Φ

′) and the cace
Φ = E<r(Φ

′) suffice for the proof of this theorem.
Case Φ = E≤r(Φ

′). If s2 ∈ SatD2(Φ),

ExpRew(s2 ⊨ ♢(SatDR2(Φ′)) ≤ r .

By Lemma 4.2.11

ExpRew(s1 ⊨ ♢(SatDR2(Φ′) ↓R)) ≤ ExpRew(s2 ⊨ ♢(SatDR2(Φ′)) ≤ r .

Since SatDR2(Φ′) ↓R ⊆ SatDR1(Φ′) by induction hypothesis,

ExpRew(s1 ⊨ ♢(SatDR1(Φ′)) ≤ ExpRew(s1 ⊨ ♢(SatDR2(Φ′) ↓R)) ≤ r .

Hence s1 ∈ SatD1(Φ).
Case Φ = E<r(Φ

′). Similar to the previous case.

Theorem 4.2.13. Let R be a probabilistic simulation between two DTMRCs
D1, D2. Let s1 and s2 be states in D1 and D2, respectively. Suppose that DR1 =
(D1, rew1) and DR2 = (D2, rew2) are DTMRCs and that sRs′ ∧ tRt′rew1 ⇒
(s, t) ≤ rew2(s

′, t′) for each s, t ∈ S1 and for each s′, t′ ∈ S2. Assume that
a PRCTL state formula Φ and a PRCTL path formula ϕ do not contain any
occurrence of ¬. If s1Rs2 then

s2 ∈ SatDR2(Φ) ⇒ s1 ∈ SatDR1(Φ) and (SatDR2
s2 (ϕ)) ↓s1R ⊆ SatDR1

s1 (ϕ) .

Proof. We proceed by induction on the structure of Φ and ϕ. Since R is a reward
probabilistic simulation, the proof of the cace ϕ = ϕ1U≤r ϕ2 suffices for the proof
of this theorem and it is obvious.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We have translated DTMCs in terms of the game-theoretic probability. In this
game, Skeptic bets some money for each state, gets the bet money multiplied by
the odds and loses the total bet money. Since the state of a DTMC changes step
by step, the translation of DTMCs to the game seems to be natural.

In this thesis, we have proved Lemma 4.1.1 in terms of the game for DTMCs
in order to prove the fairness theorem. In the proof of Lemma 4.1.1, we have
only used the simple strategy that Skeptic does not bet on the state that is not
visited infinitely often.

We have also described the probabilistic simulation based on Segala’s. In
terms of the game for DTMCs, weight functions have intuitive meaning. That is,
the ratio of the values of a weight function is regarded as the ratio of division of
bet money. Following this idea, we have defined a reward probabilistic simulation.

5.2 Future Work

In this thesis, DTMCs are translated to the games. Hence we can perhaps
translate other variations of Markov chains to games. For example, translation
of Markov decision processes (MDPs) [4] — transition systems that have both
non-deterministic and probabilistic choices — or continuous-time Markov chains
(CTMCs) [2] — whose time is expressed by real numbers — to games is included
in future work.

In this thesis, we have only focused on probabilities or expected values. We
can focus on other values in probabilistic systems, for example, variance. Future
work also includes the application of the game-theoretic probability to making
models to check properties about variance.

The game-theoretic probability may be used to model open systems or quan-
tum systems. We believe that the game-theoretic probability can be applied to
verification of open systems or quantum systems.
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