
Constrained Optimization for Hybrid System Falsification and
Application to Conjunctive Synthesis

Sota Sato∗†, Masaki Waga∗‡, Ichiro Hasuo∗†
∗National Institute of Informatics, Tokyo, Japan (e-mail: {sotasato,hasuo}@nii.ac.jp)

†The Graduate University for Advanced Studies, Tokyo, Japan
‡Graduate School of Informatics, Kyoto University, Japan (e-mail: mwaga@fos.kuis.kyoto-u.ac.jp)

Index Terms—control system synthesis, cyber-physical system,
constrained optimization, evolutionary algorithm, temporal logic,
hybrid system falsification, search-based testing

I. MOTIVATION AND PROBLEM FORMULATION

Optimization-based falsification [1], is an established ap-
proach to the falsification problem. The goal of the falsification
problem is to find an input signal u such that the outputM(u)
violates the specification ϕ. Optimization-based falsification
translates the falsification problem into minimization of the
robustness, an (extended) real number JM(u), ϕK defined
in the robust semantics [2], in which negative values mean
the violation. This allows us to utilize existing optimization
algorithms to find a falsifying input.

One easily figures out that falsification of ¬ϕ (i.e., to find a
falsifying input for ¬ϕ) is equivalent to synthesis for ϕ (i.e., to
find an input that satisfies ϕ). We aim to exploit and extend the
techniques for optimization-based falsification with the aim of
solving the following conjunctive synthesis problem.

Problem 1 (Conjunctive Synthesis). Given: a model M that
takes an input signal u and yields an output signalM(u), and
a conjunctive specification ϕ ≡ ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕm given by
signal temporal logic (STL) formula.

Find: a satisfying input, that is, an input signal u such that
the corresponding output M(u) satisfies ϕ.

Example 2. Here is our leading example. The system model
M is given by a Simulink model for automatic transmission
system [3]. The modelM has two inputs (throttle, brake) and
three outputs (rpm, speed, gear). The specification is given by

ϕ :≡ ϕ1 ∧ ϕ2 ∧ ϕ3, where ϕ1 :≡ �[0,30](rpm ≤ 2400),

ϕ2 :≡ �[0,30](speed ≤ 60), ϕ3 :≡ ♦[0,30](gear ≥ 3);

it means the gear should reach the third without any of
RPM and speed getting too large, a requirement common in
the break-in procedure. This conjunctive synthesis asks for a
careful trade-off because it contains conflicting requirements;
gear gets larger typically when RPM and/or speed is larger.

Existing falsification solvers can struggle with some prob-
lem instances due to the scale problem, a general difficulty
in falsification that is identified and tackled in [4]. The
recent paper [4] proposed a solution concerning multi-armed
bandit problem (MAB); however, it is dedicated to satisfy-
ing the specifications of the form �I(ϕ1 ∨ · · · ∨ ϕm) and

♦I(ϕ1 ∧ · · · ∧ ϕm); therefore it does not apply to our current
problem of conjunctive synthesis (satisfying ϕ1 ∧ · · · ∧ ϕm).

To handle the scale problem, our proposed method for
solving conjunctive synthesis combines optimization-based
falsification and constrained optimization.

II. CONJUNCTIVE SYNTHESIS BY CONSTRAINED
OPTIMIZATION

In the light of optimization-based falsification, conjunctive
synthesis problem can be turned into the following optimiza-
tion problem:

maximize
u

JM(u), ϕ1K u · · · u JM(u), ϕmK. (1)

Note that the robust semantics interprets conjunction ∧ by the
infimum u of real numbers.

However, the issue here is that some specific component
can dominate the robustness of a Boolean combination and
masks away the other components and prevent hill-climbing
optimization algorithms from effectively making all the com-
ponents positive—this is the scale problem.

Our main idea is to regard conjuncts not as objectives but
as constraints.

Problem 3 (Conjunctive Synthesis by Constrained Optim.).

maximize
u

[[M(u), ϕ1]]

subject to [[M(u), ϕi]] > 0, i = 2, . . . ,m.
(2)

If the discovered maximum is positive, then the corresponding
value of the optimization variable u is a solution to conjunctive
synthesis (Problem 1).

The conflict between different conjuncts ϕ1, . . . , ϕm is
buried away in a single objective function in (1); it is made
explicit in (2) via the translation of Problem 1 to Problem 3.
This translation would lead to an efficient solution only if there
exists an algorithm that successfully exploits the structure that
is now made explicit. This is the topic of the next section.

III. OUR ALGORITHM: COMBINING MCR AND CMA-ES

For an optimization problem such as (1), we adopt CMA-
ES, an evolutionary optimization algorithm introduced by [5],
whose efficiency in the context of optimization-based falsifi-
cation is well-established [4].

The multiple constrained ranking algorithm (MCR) [6] is a
constraint handling technique (CHT) for general evolutionary
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optimization algorithms, hence also for CMA-ES. MCR ad-
dress the scale problem in the constraints and/or the objective
function, using suitable rankings—instead of robustness values
of constraints themselves—in prioritizing candidate solutions.

Let us write f(u) = [[M(u), ϕ1]] for the optimization
objective (the fitness function). MCR in CMA-ES consists of
replacing the use of the fitness function f , in the selection
step of CMA-ES, with the scoring function FX , relies on the
current population X . The value FX(u) is a natural number,
and those u with smaller FX(u) are deemed fitter.

The scoring function FX employs three kinds of functions
RObjX ,RVNumX ,RConjX ; all return a suitable “rank” of the
input. RObjX compares the value of the objective function f ,
namely the value of [[M(v), ϕ1]]. RCon

j
X (j = 2, . . . ,m) com-

pares the violation of ϕj , namely 0 ∨ [[M(v), ϕj ]]. RVNumX

compares the number of violated constraints.

TABLE I
EXAMPLE; USUAL ROBUST SEMANTICS (TOP) AND MCR SCORING

(BOTTOM) FOR INDIVIDUALS

Individual ϕ1 ϕ2 ϕ3 infimum
u1 1400 59.9 −2 −2
u2 −9 2 1 −9
u3 −180 2 −1 −180

Individual RObjX RCon2X RCon3X RVNumX FX

u1 1 1 3 2 7
u2 2 1 1 1 5
u3 3 1 2 2 8

Example 4. In the setting of Example 2, for certain individuals
in X = 〈u1, u2, u3〉, their robustness values JM(ui), ϕjK with
respect to ϕ1, ϕ2, ϕ3 are shown in the top part of Table I.

The usual robust semantics indicates the input u1 is the
best individual among X , of which the infimum is the largest.
However, once we inspect the input signals u1, u2, u3, it
becomes obvious that u1 is the farthest from desired—it is
in fact the signal in which brake is constantly the maximum
and throttle is constantly 0.

This mismatch between the robustness-based preference and
human intuition comes from the scale problem. The robustness
of ϕ3 (namely gear) tends to mask that of others.

In contrast, the MCR scoring function gives different pref-
erence, as shown in the bottom part of Table I. Here we pick
the formula ϕ1 ≡ �[0,30](rpm ≤ 2400) as the objective; the
others ϕ2, ϕ3 are deemed to be as constraints.

The scoring function FX indicates the best input is u2.
This matches human intuition: the input signal u2 is one
with moderate throttle and no braking. The signal u2 satisfies
ϕ2, ϕ3 and almost satisfies ϕ1, violating the RPM limit 2400
only by 9.

IV. EXPERIMENTS

We implemented our conjunctive synthesis algorithm
(henceforth denoted by “MCR”) by combining Breach [7]
with MCR. In our implementation, we replaced the MATLAB
implementation of CMA-ES with pycma (a standard Python

TABLE II
EXPERIMENTAL RESULTS. FOR EACH PROBLEM INSTANCE, THE BEST
RESULT IS HIGHLIGHTED AND THE LARGEST SR IS SHOWN IN BLUE.

Model Spec. ϕ Breach MCR (best) MCR (worst)

SR time [s] SR time SR time

AT AT12500 58 34.3 60 33.9 60 38.9
AT12400 18 72.7 55 147.0 28 87.3
AT12300 0 — 37 326.4 0 —
AT2 51 245.1 54 307.9 43 233.1
AT380,4500 60 31.3 60 24.4 60 31.0
AT350,2700 60 108.8 59 127.7 56 157.0

AFC AFC 43 272.4 54 288.2 48 248.3

WT WT 60 175.7 60 174.0 59 180.1

implementation of CMA-ES by [5]) and combined with MCR
(also implemented in Python).

In our experiments, we used the benchmark models from [8]
and specifications. We set a timeout in 600 seconds; and
measured the success rate (out of 60 trials) and the average
elapsed time of the successful trials. See [9] for the details
of the models, the specifications, and other experiment setups.
Table II summarizes the experiments results.

When one translates optimization-based falsification into
constrained optimization, there is freedom in the choice of the
objective conjunct. In our experiments, we tried each conjunct
in a specification as the optimization target, and we report the
performance of the best and the worst choices.

The experiment results suggest that MCR successfully ad-
dresses the scale problem. The advantage of MCR is more
obvious in challenging problem instances such as AT12400,
AT12300 and AFC. AT2 and AT3 are less challenging ones
where the scale problem is less eminent; for these problem
instances, too, MCR’s performance is comparable or better
compared to plain Breach.

The hardest instance AT12300, in which the performance gap
between MCR (best) and MCR (worst) is largest, indicates
that a bad choice of the objective may have a negative effect
on the performance of MCR. However, the effect is not so
critical, observing that the performance of MCR (worst) is
comparable or better compared to Breach without MCR in
every benchmarks.

V. FUTURE WORK

One future work is to extend our idea of using the con-
strained optimization problem to a more general form of spec-
ifications than the conjunctive specifications in the synthesis
problem. Investigating a method to choose a good objective
conjunct is another future work.
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