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Hybrid system falsification of CPS
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[Fainekos & Pappas, Theor. Comput. Sci. 2009]

𝜑 ∶≡ □[$,&$](speed < 100)
Specification 𝜑



Hybrid system falsification of CPS
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Goal: to find an input signal 𝑢, s.t. ℳ 𝑢 ⊭ φ
Always for 𝑡 ∈ [0,30] Speed is below 100

S. Sato <sotasato@nii.ac.jp>

[Fainekos & Pappas, Theor. Comput. Sci. 2009]
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Robust semantics of STL [Donze & Maler, FORMATS’10]
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Specification: 𝜑 ≡ □[",$"](speed 𝑡 < 100)

Far from violation Almost violated Violated
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Optimization-based falsification

Input

Robustness
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Optimized by
Hill-climbing style algorithms
(HC, SA, GNM, CMA-ES, …)
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Synthesis is the dual of falsification

Try minimizing ℳ u ,¬φ and finish if ℳ u ,¬φ < 0

ℳ 𝑢 ⊭ ¬φ ⇔ ℳ 𝑢 ⊨ φ

Try maximizing ℳ u ,φ and finish if ℳ u ,φ > 0

Falsification problem

Synthesis problem

S. Sato <sotasato@nii.ac.jp> 6



Conjunctive synthesis
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System model ℳ

Automatic transmission system (Simulink)

𝜑:≡ 𝜑! ∧ ⋯∧ 𝜑"
and

Goal: to find an input signal 𝑢,  s.t. ℳ 𝑢 ⊨ 𝜑. ∧ ⋯∧ 𝜑/
(⟺ℳ 𝑢 ⊨ 𝜑/, … ,ℳ 𝑢 ⊨ 𝜑0)



Example of Conjunctive synthesis
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Conjunctive specification 𝜑AT:≡ 𝜑!"# ∧ 𝜑$"# ∧ 𝜑%"#

𝜑!$%: ≡ □ &,#& rpm ≤ 2400 , 𝜑"$%: ≡ □ &,#& speed ≤ 60 , 𝜑#$% : ≡ ♢ &,#& gear ≥ 3

Eventually reach gear ≥ 3



Example of Conjunctive synthesis

Conjunctive specification 𝜑AT:≡ 𝜑!"# ∧ 𝜑$"# ∧ 𝜑%"#
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𝜑!$%: ≡ □ &,#& rpm ≤ 2400 , 𝜑"$%: ≡ □ &,#& speed ≤ 60 , 𝜑#$% : ≡ ♢ &,#& gear ≥ 3
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Challenge: Scale problem
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👎 Contribution of small-scale conjunct is masked
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• Usual robust semantics of conjunction [Fainekos & Pappas, FATES & RV’06]

No improvement?

-300

ℳ 𝑢 ,𝜑$% = -300
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infimum



Conjunctive synthesis by constrained optim.
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Maximize ℳ 𝑢 ,𝜑.01 ⊓⋯⊓ ℳ 𝑢 ,𝜑201

Maximize ℳ 𝑢 ,𝜑.01

Subject to ℳ 𝑢 ,𝜑301 > 0, ℳ 𝑢 ,𝜑201 > 0

Choose one conjunct as the optimization target

No masking

S. Sato <sotasato@nii.ac.jp>



Multiple constraint ranking
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How to effectively search the solution of constrained optimization?
è MCR [de Paula Garcia et al., Computers and Structures 2017]

S. Sato <sotasato@nii.ac.jp>

• Balances multiple preferences of the solution of constrained optimization
• Objective function, violation degrees, the number of violated constraints

• Scale-invariant
• No hyper-parameter



Preferred solutions of constrained optim.
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𝜑!$%(objective) 𝜑"$% 𝜑#$%

𝑢! 1400 -10 -3
𝑢" 1400 59.9 0

Robustness for each conjuncts

Feasible is preferred

𝜑!$%(objective) 𝜑"$% 𝜑#$%

𝑢! 1400 59.9 -2
𝑢" 1400 59.9 -1

Small violation degree 
is preferred

𝜑!$%(objective) 𝜑"$% 𝜑#$%

𝑢! -1000 59.9 0
𝑢" -30 59.9 0

Large fitness is 
preferred



Formal definition of MCR

𝐹& 𝑢 ≔
RVNum& 𝑢 +=

'()

*
RCon&

' 𝑢 (if no feasible solution)

RObj& 𝑢 + RVNum& 𝑢 +=
'()

*
RCon&

' 𝑢 (otherwise)
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Feasibles are always prior to infeasibles 
For a population 𝑋 of candidate inputs, one prioritizes individuals 𝑢 ∈ 𝑋 by 

Smaller is better

• RObj compares the value of objective function
• RCon compares the violation degree of each constraints
• RVNum compares the number of violated constraints

S. Sato <sotasato@nii.ac.jp>



Example: Usual semantics
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𝜑!$%(objective) 𝜑"$% 𝜑#$%

𝑢! 1400 59.9 -3
𝑢" -9 2 0
𝑢# -180 2 -1



Example: Usual semantics
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𝜑!$%(objective) 𝜑"$% 𝜑#$% infimum
𝑢! 1400 59.9 -3 -3
𝑢" -9 2 0 -9
𝑢# -180 2 -1 -180

Individual

Robustness for each conjuncts

Usual (infimum) semantics 
says 𝑢/ is the most preferred 
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(Naive input)

(Almost-satisfying input)



Example: Calculating MCR
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RobjX /
robustness of 𝜑1𝐴𝑇

RConX2 /
violation deg. of 𝜑2𝐴𝑇

RConX3 /
violation deg. of 𝜑3𝐴𝑇

RVNumX /
# of violated constraints

FX

𝑢1 1st / 1400 1st / 0 3rd / -3 2nd / 1 7 (= 1 + 1 + 3 + 2)

𝑢2 2nd / -9 1st / 0 1st / 0 1st / 0 5 (= 2 + 1 + 1 + 1)

𝑢3 3rd / -180 1st / 0 2nd / -1 2nd / 1 8 (= 3 + 1 + 2 + 1)

Individual

Robustness for each conjuncts

MCR says 𝑢P is 
the most preferred

S. Sato <sotasato@nii.ac.jp>

𝜑!$%(objective) 𝜑"$% 𝜑#$%

𝑢! 1400 59.9 -3
𝑢" -9 2 0
𝑢# -180 2 -1

𝐹! 𝑢

≔
RVNum! 𝑢 +*

"#$

%
RCon!

" 𝑢 (if no feasible solution)

RObj! 𝑢 + RVNum! 𝑢 +*
"#$

%
RCon!

" 𝑢 (otherwise)



Example: Usual semantics vs. MCR
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MCR fits our 
intuition

S. Sato <sotasato@nii.ac.jp>

𝜑!$%(objective) 𝜑"$% 𝜑#$% infimum
𝑢! 1400 59.9 -3 -3
𝑢" -9 2 0 -9
𝑢# -180 2 -1 -180

𝜑!$%(objective) 𝜑"$% 𝜑#$% FX

𝑢! 1400 59.9 -3 7
𝑢" -9 2 0 5
𝑢# -180 2 -1 8

Usual 
semantics

MCR



MCR for falsification
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https://en.wikipedia.org/wiki/CMA-ES

• Optimization algorithm should be population-based
• We adopt CMA-ES [Hansen & Ostermeier, International Conference on Evolutionary Computation 1996]

• CMA-ES is commonly used in optimization-based falsification

S. Sato <sotasato@nii.ac.jp>

Input

FX

𝑢!

𝑢"



Experimental setting
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Model
• Automatic transmission [Hoxha et al., ARCH’15]
• Abstract fuel Control [Jin et al., HSCC’14]
• Wind Turbine [Schuler et al., ARCH’16]

Solver
• Breach (state-of-the-art falsification solver) [Donze, CAV’10]
• MCR (Breach + MCR calculator implemented in Python)

• Choose each conjunct as the optimization target and report best and worst results
Metrics

• Success rate (per 60 trials)
• Average elapsed time of successful trials

Particularly exhibits 
the scale problem 

S. Sato <sotasato@nii.ac.jp>



optimization algorithms, hence also for CMA-ES. MCR ad-
dress the scale problem in the constraints and/or the objective
function, using suitable rankings—instead of robustness values
of constraints themselves—in prioritizing candidate solutions.

Let us write f(u) = [[M(u),'1]] for the optimization
objective (the fitness function). MCR in CMA-ES consists of
replacing the use of the fitness function f , in the selection
step of CMA-ES, with the scoring function FX , relies on the
current population X . The value FX(u) is a natural number,
and those u with smaller FX(u) are deemed fitter.

The scoring function FX employs three kinds of functions
RObjX ,RVNumX ,RConjX ; all return a suitable “rank” of the
input. RObjX compares the value of the objective function f ,
namely the value of [[M(v),'1]]. RConjX (j = 2, . . . ,m) com-
pares the violation of 'j , namely 0 _ [[M(v),'j ]]. RVNumX

compares the number of violated constraints.

TABLE I
EXAMPLE; USUAL ROBUST SEMANTICS (TOP) AND MCR SCORING

(BOTTOM) FOR INDIVIDUALS

Individual '1 '2 '3 infimum
u1 1400 59.9 �2 �2
u2 �9 2 1 �9
u3 �180 2 �1 �180

Individual RObjX RCon
2
X RCon

3
X RVNumX FX

u1 1 1 3 2 7
u2 2 1 1 1 5
u3 3 1 2 2 8

Example 4. In the setting of Example 2, for certain individuals
in X = hu1, u2, u3i, their robustness values JM(ui),'jK with
respect to '1,'2,'3 are shown in the top part of Table I.

The usual robust semantics indicates the input u1 is the
best individual among X , of which the infimum is the largest.
However, once we inspect the input signals u1, u2, u3, it
becomes obvious that u1 is the farthest from desired—it is
in fact the signal in which brake is constantly the maximum
and throttle is constantly 0.

This mismatch between the robustness-based preference and
human intuition comes from the scale problem. The robustness
of '3 (namely gear) tends to mask that of others.

In contrast, the MCR scoring function gives different pref-
erence, as shown in the bottom part of Table I. Here we pick
the formula '1 ⌘ ⇤[0,30](rpm  2400) as the objective; the
others '2,'3 are deemed to be as constraints.

The scoring function FX indicates the best input is u2.
This matches human intuition: the input signal u2 is one
with moderate throttle and no braking. The signal u2 satisfies
'2,'3 and almost satisfies '1, violating the RPM limit 2400
only by 9.

IV. EXPERIMENTS

We implemented our conjunctive synthesis algorithm
(henceforth denoted by “MCR”) by combining Breach [7]
with MCR. In our implementation, we replaced the MATLAB
implementation of CMA-ES with pycma (a standard Python

TABLE II
EXPERIMENTAL RESULTS. FOR EACH PROBLEM INSTANCE, THE BEST
RESULT IS HIGHLIGHTED AND THE LARGEST SR IS SHOWN IN BLUE.

Model Spec. ' Breach MCR (best) MCR (worst)

SR time [s] SR time SR time

AT AT12500 58 34.3 60 33.9 60 38.9
AT12400 18 72.7 55 147.0 28 87.3
AT12300 0 — 37 326.4 0 —
AT2 51 245.1 54 307.9 43 233.1
AT380,4500 60 31.3 60 24.4 60 31.0
AT350,2700 60 108.8 59 127.7 56 157.0

AFC AFC 43 272.4 54 288.2 48 248.3

WT WT 60 175.7 60 174.0 59 180.1

implementation of CMA-ES by [5]) and combined with MCR
(also implemented in Python).

In our experiments, we used the benchmark models from [8]
and specifications. We set a timeout in 600 seconds; and
measured the success rate (out of 60 trials) and the average
elapsed time of the successful trials. See [9] for the details
of the models, the specifications, and other experiment setups.
Table II summarizes the experiments results.

When one translates optimization-based falsification into
constrained optimization, there is freedom in the choice of the
objective conjunct. In our experiments, we tried each conjunct
in a specification as the optimization target, and we report the
performance of the best and the worst choices.

The experiment results suggest that MCR successfully ad-
dresses the scale problem. The advantage of MCR is more
obvious in challenging problem instances such as AT12400,
AT12300 and AFC. AT2 and AT3 are less challenging ones
where the scale problem is less eminent; for these problem
instances, too, MCR’s performance is comparable or better
compared to plain Breach.

The hardest instance AT12300, in which the performance gap
between MCR (best) and MCR (worst) is largest, indicates
that a bad choice of the objective may have a negative effect
on the performance of MCR. However, the effect is not so
critical, observing that the performance of MCR (worst) is
comparable or better compared to Breach without MCR in
every benchmarks.

V. FUTURE WORK

One future work is to extend our idea of using the con-
strained optimization problem to a more general form of spec-
ifications than the conjunctive specifications in the synthesis
problem. Investigating a method to choose a good objective
conjunct is another future work.

REFERENCES

[1] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifica-
tions for continuous-time signals,” Theor. Comput. Sci., vol. 410, no. 42,
pp. 4262–4291, 2009.

[2] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Formal Modeling and Analysis of Timed Systems - 8th
Int. Conf., FORMATS 2010, 2010, pp. 92–106.

[3] B. Hoxha, H. Abbas, and G. Fainekos, “Benchmarks for temporal logic
requirements for automotive systems,” in ARCH14-15, ser. EPiC Series
in Computing, vol. 34. EasyChair, 2015, pp. 25–30.
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Experimental results

21

• Largerst success rates are show in blue
• Best combination of (SR, time) is highlighted

The choice of 
optimization target

S. Sato <sotasato@nii.ac.jp>

Our approach



optimization algorithms, hence also for CMA-ES. MCR ad-
dress the scale problem in the constraints and/or the objective
function, using suitable rankings—instead of robustness values
of constraints themselves—in prioritizing candidate solutions.

Let us write f(u) = [[M(u),'1]] for the optimization
objective (the fitness function). MCR in CMA-ES consists of
replacing the use of the fitness function f , in the selection
step of CMA-ES, with the scoring function FX , relies on the
current population X . The value FX(u) is a natural number,
and those u with smaller FX(u) are deemed fitter.

The scoring function FX employs three kinds of functions
RObjX ,RVNumX ,RConjX ; all return a suitable “rank” of the
input. RObjX compares the value of the objective function f ,
namely the value of [[M(v),'1]]. RConjX (j = 2, . . . ,m) com-
pares the violation of 'j , namely 0 _ [[M(v),'j ]]. RVNumX

compares the number of violated constraints.

TABLE I
EXAMPLE; USUAL ROBUST SEMANTICS (TOP) AND MCR SCORING

(BOTTOM) FOR INDIVIDUALS

Individual '1 '2 '3 infimum
u1 1400 59.9 �2 �2
u2 �9 2 1 �9
u3 �180 2 �1 �180

Individual RObjX RCon
2
X RCon

3
X RVNumX FX

u1 1 1 3 2 7
u2 2 1 1 1 5
u3 3 1 2 2 8

Example 4. In the setting of Example 2, for certain individuals
in X = hu1, u2, u3i, their robustness values JM(ui),'jK with
respect to '1,'2,'3 are shown in the top part of Table I.

The usual robust semantics indicates the input u1 is the
best individual among X , of which the infimum is the largest.
However, once we inspect the input signals u1, u2, u3, it
becomes obvious that u1 is the farthest from desired—it is
in fact the signal in which brake is constantly the maximum
and throttle is constantly 0.

This mismatch between the robustness-based preference and
human intuition comes from the scale problem. The robustness
of '3 (namely gear) tends to mask that of others.

In contrast, the MCR scoring function gives different pref-
erence, as shown in the bottom part of Table I. Here we pick
the formula '1 ⌘ ⇤[0,30](rpm  2400) as the objective; the
others '2,'3 are deemed to be as constraints.

The scoring function FX indicates the best input is u2.
This matches human intuition: the input signal u2 is one
with moderate throttle and no braking. The signal u2 satisfies
'2,'3 and almost satisfies '1, violating the RPM limit 2400
only by 9.

IV. EXPERIMENTS

We implemented our conjunctive synthesis algorithm
(henceforth denoted by “MCR”) by combining Breach [7]
with MCR. In our implementation, we replaced the MATLAB
implementation of CMA-ES with pycma (a standard Python

TABLE II
EXPERIMENTAL RESULTS. FOR EACH PROBLEM INSTANCE, THE BEST
RESULT IS HIGHLIGHTED AND THE LARGEST SR IS SHOWN IN BLUE.

Model Spec. ' Breach MCR (best) MCR (worst)

SR time [s] SR time SR time

AT AT12500 58 34.3 60 33.9 60 38.9
AT12400 18 72.7 55 147.0 28 87.3
AT12300 0 — 37 326.4 0 —
AT2 51 245.1 54 307.9 43 233.1
AT380,4500 60 31.3 60 24.4 60 31.0
AT350,2700 60 108.8 59 127.7 56 157.0

AFC AFC 43 272.4 54 288.2 48 248.3

WT WT 60 175.7 60 174.0 59 180.1

implementation of CMA-ES by [5]) and combined with MCR
(also implemented in Python).

In our experiments, we used the benchmark models from [8]
and specifications. We set a timeout in 600 seconds; and
measured the success rate (out of 60 trials) and the average
elapsed time of the successful trials. See [9] for the details
of the models, the specifications, and other experiment setups.
Table II summarizes the experiments results.

When one translates optimization-based falsification into
constrained optimization, there is freedom in the choice of the
objective conjunct. In our experiments, we tried each conjunct
in a specification as the optimization target, and we report the
performance of the best and the worst choices.

The experiment results suggest that MCR successfully ad-
dresses the scale problem. The advantage of MCR is more
obvious in challenging problem instances such as AT12400,
AT12300 and AFC. AT2 and AT3 are less challenging ones
where the scale problem is less eminent; for these problem
instances, too, MCR’s performance is comparable or better
compared to plain Breach.

The hardest instance AT12300, in which the performance gap
between MCR (best) and MCR (worst) is largest, indicates
that a bad choice of the objective may have a negative effect
on the performance of MCR. However, the effect is not so
critical, observing that the performance of MCR (worst) is
comparable or better compared to Breach without MCR in
every benchmarks.

V. FUTURE WORK

One future work is to extend our idea of using the con-
strained optimization problem to a more general form of spec-
ifications than the conjunctive specifications in the synthesis
problem. Investigating a method to choose a good objective
conjunct is another future work.
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RQ1: Does MCR address the scale problem?

22

• Yes. Our approach resulted higher SR in most cases (blue)
• Specifically, the advantage is obvious where the scale problem is more 

eminent

Breach always failed but MCR 
succeeded 37 times (/60)
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optimization algorithms, hence also for CMA-ES. MCR ad-
dress the scale problem in the constraints and/or the objective
function, using suitable rankings—instead of robustness values
of constraints themselves—in prioritizing candidate solutions.

Let us write f(u) = [[M(u),'1]] for the optimization
objective (the fitness function). MCR in CMA-ES consists of
replacing the use of the fitness function f , in the selection
step of CMA-ES, with the scoring function FX , relies on the
current population X . The value FX(u) is a natural number,
and those u with smaller FX(u) are deemed fitter.

The scoring function FX employs three kinds of functions
RObjX ,RVNumX ,RConjX ; all return a suitable “rank” of the
input. RObjX compares the value of the objective function f ,
namely the value of [[M(v),'1]]. RConjX (j = 2, . . . ,m) com-
pares the violation of 'j , namely 0 _ [[M(v),'j ]]. RVNumX

compares the number of violated constraints.

TABLE I
EXAMPLE; USUAL ROBUST SEMANTICS (TOP) AND MCR SCORING

(BOTTOM) FOR INDIVIDUALS

Individual '1 '2 '3 infimum
u1 1400 59.9 �2 �2
u2 �9 2 1 �9
u3 �180 2 �1 �180

Individual RObjX RCon
2
X RCon

3
X RVNumX FX

u1 1 1 3 2 7
u2 2 1 1 1 5
u3 3 1 2 2 8

Example 4. In the setting of Example 2, for certain individuals
in X = hu1, u2, u3i, their robustness values JM(ui),'jK with
respect to '1,'2,'3 are shown in the top part of Table I.

The usual robust semantics indicates the input u1 is the
best individual among X , of which the infimum is the largest.
However, once we inspect the input signals u1, u2, u3, it
becomes obvious that u1 is the farthest from desired—it is
in fact the signal in which brake is constantly the maximum
and throttle is constantly 0.

This mismatch between the robustness-based preference and
human intuition comes from the scale problem. The robustness
of '3 (namely gear) tends to mask that of others.

In contrast, the MCR scoring function gives different pref-
erence, as shown in the bottom part of Table I. Here we pick
the formula '1 ⌘ ⇤[0,30](rpm  2400) as the objective; the
others '2,'3 are deemed to be as constraints.

The scoring function FX indicates the best input is u2.
This matches human intuition: the input signal u2 is one
with moderate throttle and no braking. The signal u2 satisfies
'2,'3 and almost satisfies '1, violating the RPM limit 2400
only by 9.

IV. EXPERIMENTS

We implemented our conjunctive synthesis algorithm
(henceforth denoted by “MCR”) by combining Breach [7]
with MCR. In our implementation, we replaced the MATLAB
implementation of CMA-ES with pycma (a standard Python

TABLE II
EXPERIMENTAL RESULTS. FOR EACH PROBLEM INSTANCE, THE BEST
RESULT IS HIGHLIGHTED AND THE LARGEST SR IS SHOWN IN BLUE.

Model Spec. ' Breach MCR (best) MCR (worst)

SR time [s] SR time SR time

AT AT12500 58 34.3 60 33.9 60 38.9
AT12400 18 72.7 55 147.0 28 87.3
AT12300 0 — 37 326.4 0 —
AT2 51 245.1 54 307.9 43 233.1
AT380,4500 60 31.3 60 24.4 60 31.0
AT350,2700 60 108.8 59 127.7 56 157.0

AFC AFC 43 272.4 54 288.2 48 248.3

WT WT 60 175.7 60 174.0 59 180.1

implementation of CMA-ES by [5]) and combined with MCR
(also implemented in Python).

In our experiments, we used the benchmark models from [8]
and specifications. We set a timeout in 600 seconds; and
measured the success rate (out of 60 trials) and the average
elapsed time of the successful trials. See [9] for the details
of the models, the specifications, and other experiment setups.
Table II summarizes the experiments results.

When one translates optimization-based falsification into
constrained optimization, there is freedom in the choice of the
objective conjunct. In our experiments, we tried each conjunct
in a specification as the optimization target, and we report the
performance of the best and the worst choices.

The experiment results suggest that MCR successfully ad-
dresses the scale problem. The advantage of MCR is more
obvious in challenging problem instances such as AT12400,
AT12300 and AFC. AT2 and AT3 are less challenging ones
where the scale problem is less eminent; for these problem
instances, too, MCR’s performance is comparable or better
compared to plain Breach.

The hardest instance AT12300, in which the performance gap
between MCR (best) and MCR (worst) is largest, indicates
that a bad choice of the objective may have a negative effect
on the performance of MCR. However, the effect is not so
critical, observing that the performance of MCR (worst) is
comparable or better compared to Breach without MCR in
every benchmarks.

V. FUTURE WORK

One future work is to extend our idea of using the con-
strained optimization problem to a more general form of spec-
ifications than the conjunctive specifications in the synthesis
problem. Investigating a method to choose a good objective
conjunct is another future work.
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objective conjunct in MCR?
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• A bad choice had a negative effect on the performance of MCR
• The effect is not so critical

The performance of MCR (worst) is comparable or 
better compared to Breach in every benchmarks.
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Future work
• A method to choose the good objective conjunct 
• Extension to more general form of specifications

Conclusion
• A method solving conjunctive synthesis via constrained optimization
• MCR and CMA-ES for effective optimization
• Our approach addresses the scale problem
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