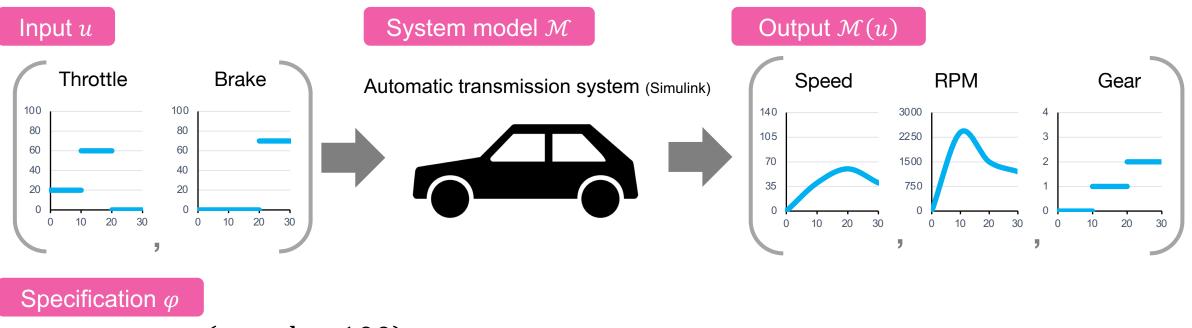


Constrained Optimization for Hybrid System Falsification and Application to Conjunctive Synthesis

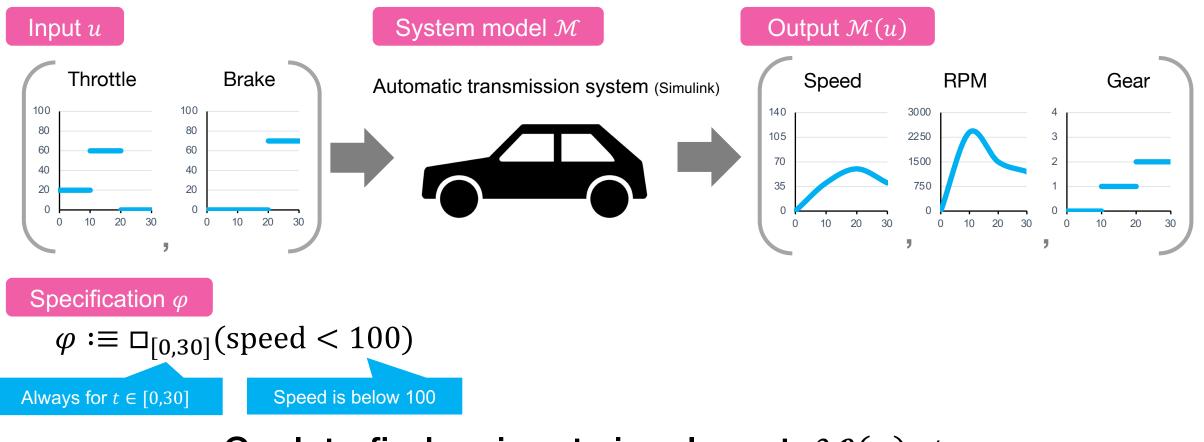

Sota Sato, Masaki Waga, Ichiro Hasuo

National Institute of Informatics, Tokyo, Japan

The Graduate University for Advances Studies (SOKENDAI), Hayama, Japan

Hybrid system falsification of CPS

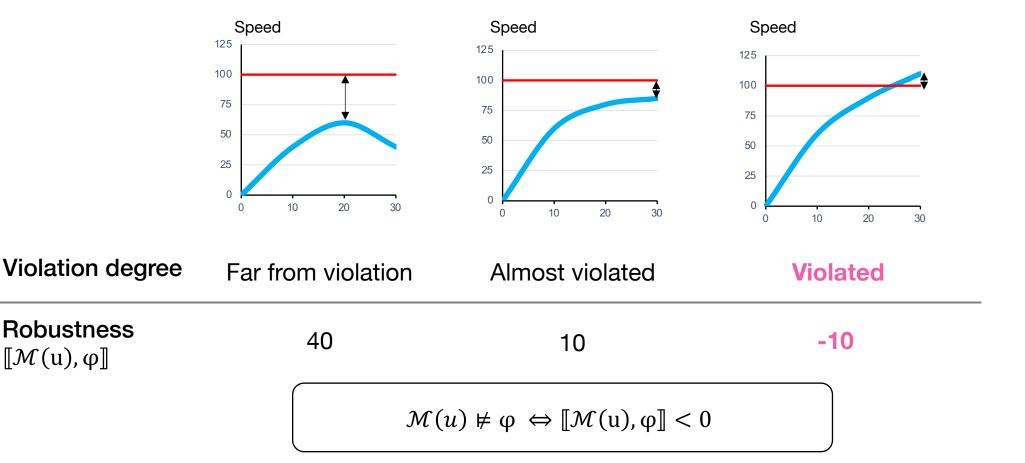
[Fainekos & Pappas, Theor. Comput. Sci. 2009]



$$\varphi :\equiv \Box_{[0,30]} (\text{speed} < 100)$$

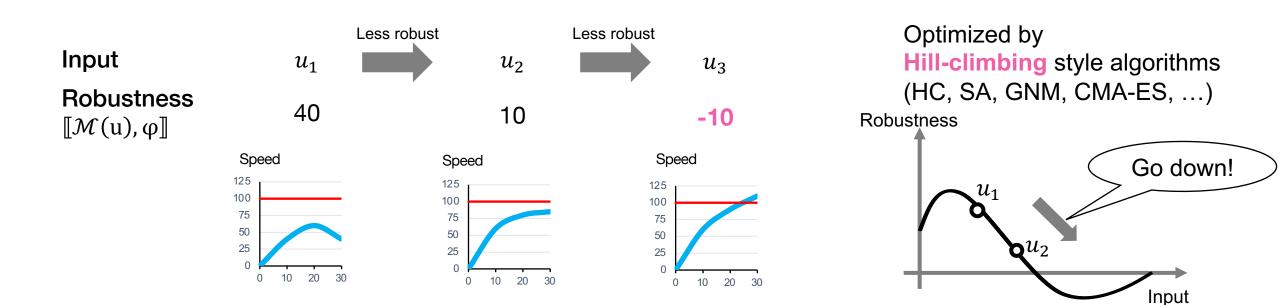
Goal: to find an input signal u, s.t. $\mathcal{M}(u) \neq \varphi$

Hybrid system falsification of CPS


[Fainekos & Pappas, Theor. Comput. Sci. 2009]

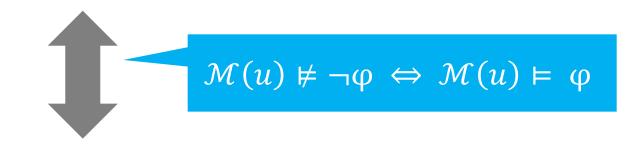
Goal: to find an input signal u, s.t. $\mathcal{M}(u) \not\models \varphi$

Robust semantics of STL [Donze & Maler, FORMATS'10]


Specification: $\varphi \equiv \Box_{[0,30]}(\text{speed}(t) < 100)$

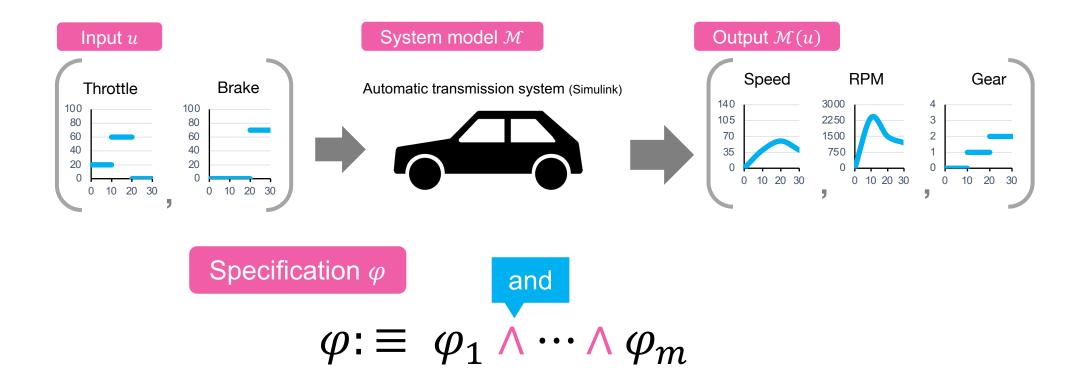
Optimization-based falsification

Falsification Problem is translated into:


Try minimizing $[\![\mathcal{M}(u),\phi]\!]$ and finish if $[\![\mathcal{M}(u),\phi]\!]<0$

Synthesis is the dual of falsification

Falsification problem


Try minimizing $[\mathcal{M}(u), \neg \phi]$ and finish if $[\mathcal{M}(u), \neg \phi] < 0$

Synthesis problem

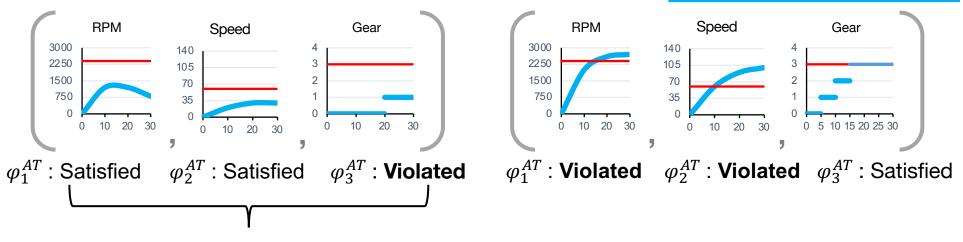
Try maximizing $\llbracket \mathcal{M}(u), \phi \rrbracket$ and finish if $\llbracket \mathcal{M}(u), \phi \rrbracket > 0$

Conjunctive synthesis

Goal: to find an input signal u, s.t. $\mathcal{M}(u) \models \varphi_1 \land \dots \land \varphi_m$ ($\Leftrightarrow \mathcal{M}(u) \models \varphi_1, \dots, \mathcal{M}(u) \models \varphi_m$)

Example of Conjunctive synthesis

Conjunctive specification $\varphi^{AT} := \varphi_1^{AT} \wedge \varphi_2^{AT} \wedge \varphi_3^{AT}$


 $\varphi_1^{AT} :\equiv \Box_{[0,30]}(\text{rpm} \le 2400), \quad \varphi_2^{AT} :\equiv \Box_{[0,30]}(\text{speed} \le 60), \quad \varphi_3^{AT} :\equiv \diamond_{[0,30]}(\text{gear} \ge 3)$

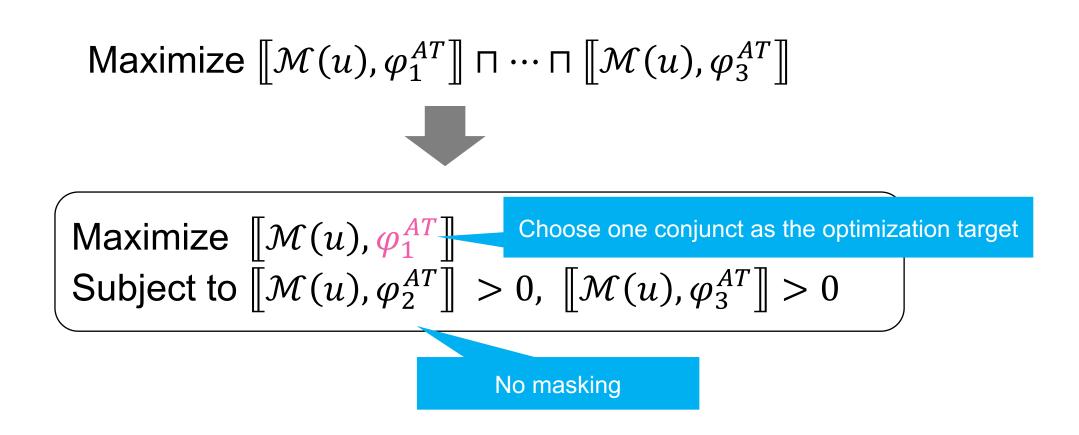
Eventually reach gear ≥ 3

Example of Conjunctive synthesis

Conjunctive specification $\varphi^{AT} := \varphi_1^{AT} \wedge \varphi_2^{AT} \wedge \varphi_3^{AT}$

 $\varphi_1^{AT} :\equiv \Box_{[0,30]}(\text{rpm} \le 2400), \quad \varphi_2^{AT} :\equiv \Box_{[0,30]}(\text{speed} \le 60), \quad \varphi_3^{AT} :\equiv \diamond_{[0,30]}(\text{gear} \ge 3)$

Eventually reach gear ≥ 3


Satisfying all conjuncts are required

Challenge: Scale problem

- Usual robust semantics of conjunction [Fainekos & Pappas, FATES & RV'06]
 - $\llbracket \mathcal{M}(u), \varphi^{AT} \rrbracket = \llbracket \mathcal{M}(u), \varphi_1^{AT} \rrbracket \sqcap \cdots \sqcap \llbracket \mathcal{M}(u), \varphi_3^{AT} \rrbracket$ infimum RPM RPM Speed Gear Speed Gear 3000 3000 140 2250 2250 3 105 105 1500 70 2 1500 70 750 750 0 10 20 30 10 0 10 20 30 0 0 10 20 30 5 10 15 20 25 30 10 20 30 φ_1^{AT} : Violated φ_2^{AT} : Satisfied φ_3^{AT} : Satisfied φ_1^{AT} : Violated φ_2^{AT} : Satisfied φ_3^{AT} : Violated No improvement? $\llbracket \mathcal{M}(u), \varphi^{AT} \rrbracket = \textbf{-300}$ $\llbracket \mathcal{M}(u), \varphi^{AT} \rrbracket = -300$

Contribution of small-scale conjunct is masked

Conjunctive synthesis by constrained optim.

Multiple constraint ranking

How to effectively search the solution of constrained optimization?
 → MCR [de Paula Garcia et al., Computers and Structures 2017]

- Balances multiple preferences of the solution of constrained optimization
 - Objective function, violation degrees, the number of violated constraints
- Scale-invariant
- No hyper-parameter

Preferred solutions of constrained optim.

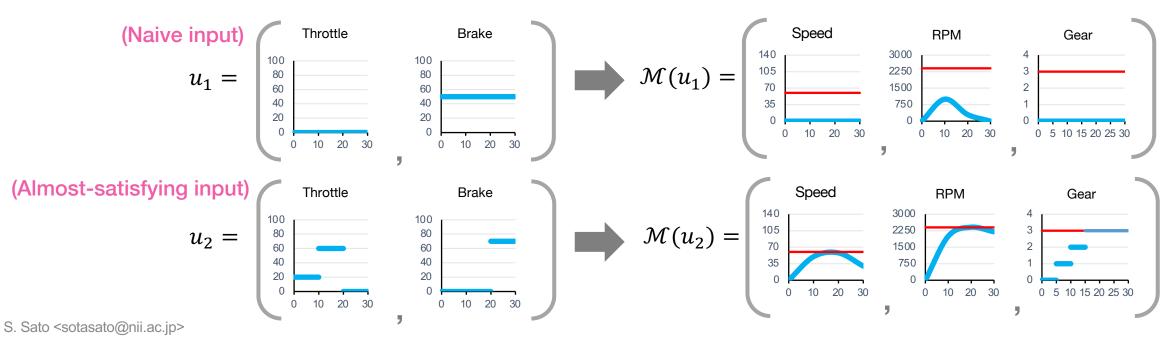
	Robustness for	r each conjunc	cts	
	$arphi_1^{AT}$ (objective)	$arphi_2^{AT}$	$arphi_3^{AT}$	
u_1	1400	-10	-3	
<u>u_2</u>	<u>1400</u>	<u>59.9</u>	<u>0</u>	Feasible is preferred
	$arphi_1^{AT}$ (objective)	$arphi_2^{AT}$	$arphi_3^{AT}$	
u_1	1400	59.9	-2	Small violation degree
<u>u_2</u>	<u>1400</u>	<u>59.9</u>	<u>-1</u>	is preferred
	$arphi_1^{AT}$ (objective)	$arphi_2^{AT}$	$arphi_3^{AT}$	
u_1	-1000	59.9	0	Large fitness is
<u>u_2</u>	<u>-30</u>	<u>59.9</u>	<u>0</u> <	preferred

S. Sato <sotasato@nii.ac.jp>

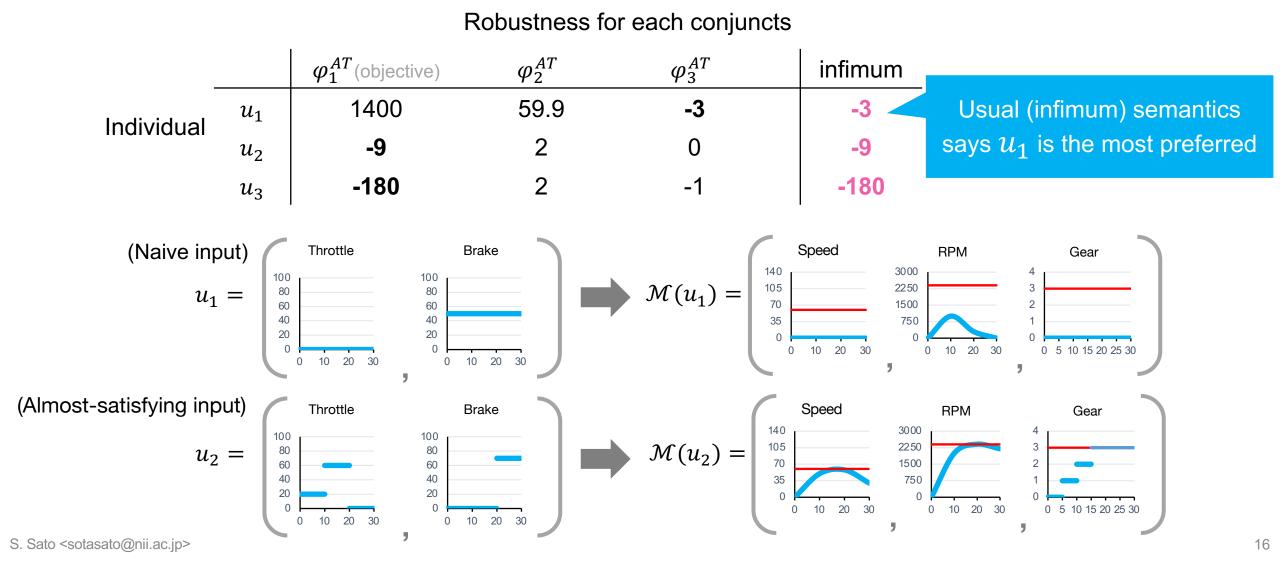
Formal definition of MCR

For a population X of candidate inputs, one prioritizes individuals $u \in X$ by

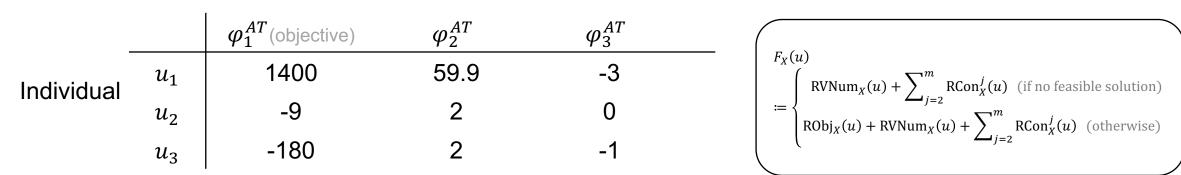
Feasibles are always prior to infeasibles


$$F_X(u) \coloneqq \begin{cases} \operatorname{RVNum}_X(u) + \sum_{j=2}^m \operatorname{RCon}_X^j(u) & \text{(if no feasible solution)} \\ \operatorname{RObj}_X(u) + \operatorname{RVNum}_X(u) + \sum_{j=2}^m \operatorname{RCon}_X^j(u) & \text{(otherwise)} \end{cases} \end{cases}$$
Smaller is better

- RObj compares the value of objective function
- RCon compares the violation degree of each constraints
- RVNum compares the number of violated constraints


Example: Usual semantics

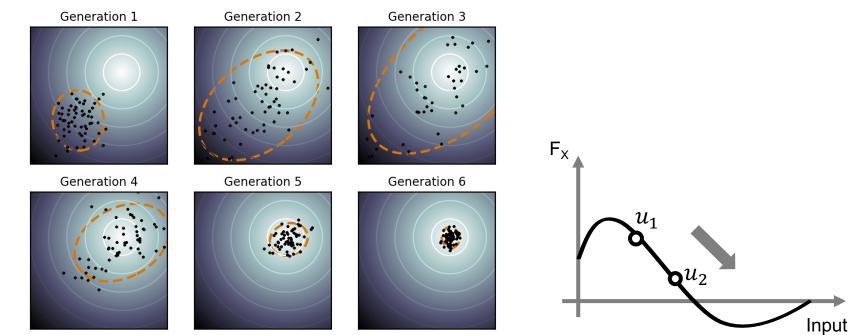
 φ_1^{AT} (objective) $arphi_2^{AT}$ φ_3^{AT} 1400 59.9 -3 u_1 Individual -9 2 0 u_2 2 -180 -1 u_3 (Naive input) Speed Throttle Brake 140 100 100 $\mathcal{M}(u_1) =$ 105 80 80 $u_1 =$ 70 60 60 40 40 35 20 20 0


Robustness for each conjuncts

Example: Usual semantics

Example: Calculating MCR

Robustness for each conjuncts


	Robj_X / robustness of φ_1^{AT}	RCon_X² / violation deg. of φ_2^{AT}	RCon_X³ / violation deg. of φ_3^{AT}	RVNum_X / # of violated constraints	F _x	
u_1	1st / 1400	1st / 0	3rd / -3	2nd / 1	7 (= 1 + 1 + 3 + 2)	
u_2	2nd / -9	1st / 0	1st / 0	1st / 0	5 (= 2 + 1 + 1 + 1)	
u_3	3rd / -180	1st / 0	2nd / -1	2nd / 1	8 (= 3 + 1 + 2 + 1)	MCR says u_2 is
						the most preferred

Example: Usual semantics vs. MCR

		$arphi_1^{AT}$ (objective)	$arphi_2^{AT}$	$arphi_3^{AT}$	infimum	
Usual	u_1	1400	59.9	-3	-3	
	u_2	-9	2	0	-9	
semantics	u_3	-180	2	-1	-180	
		$arphi_1^{AT}$ (objective)	$arphi_2^{AT}$	$arphi_3^{AT}$	F _x	
MCR	u_1	1400	59.9	-3	7	
	<i>u</i> ₂	-9	2	0	5	MCR fits our
	u_3	-180	2	-1	8	intuition

MCR for falsification

- Optimization algorithm should be population-based
- We adopt CMA-ES [Hansen & Ostermeier, International Conference on Evolutionary Computation 1996]
- CMA-ES is commonly used in optimization-based falsification

https://en.wikipedia.org/wiki/CMA-ES

Experimental setting

Model

- Automatic transmission [Hoxha et al., ARCH'15]
- Abstract fuel Control [Jin et al., HSCC'14] ٠
- Wind Turbine [Schuler et al., ARCH'16] •

Solver

- Breach (state-of-the-art falsification solver) [Donze, CAV'10] ٠
- MCR (Breach + MCR calculator implemented in Python) •
 - Choose each conjunct as the optimization target and report best and worst results

Metrics

- Success rate (per 60 trials)
- Average elapsed time of successful trials •

Particularly e the scale pr					
	Spec. ID	φ_1	φ_2	φ_3	$arphi_4$
	$\begin{array}{c} \mathrm{AT1}_p\\ \mathrm{AT2}\\ \mathrm{AT3}_{p1,p2} \end{array}$	$ \begin{array}{l} \square_{[0,30]}(rpm \leq p) \\ \diamondsuit_{[0,29]}(speed \geq 100) \\ \diamondsuit_{[0,10]}(speed \geq p_1) \end{array} $	$\Box_{[0,30]}(\text{speed} \le 60)$ $\diamond_{[29,30]}(\text{speed} \le 65)$ $\Box_{[0,30]}(\text{rpm} \le p_2)$	$\diamond_{[0,30]}(gear\geq3)$	
	AFC	$\square_{[31,50]}(mode=0)$	$\Diamond_{[11,20]}(mode=1)$	$\Box_{[0,30]}(\text{throttle} > 40 \Rightarrow \text{engine} < 1000)$	$\Diamond_{[0,50]} \Box_{[0,25]} (engine > 1000)$
	WT	$\diamond_{[0,90]} \Box_{[0,5]} (\theta < 12 \land 15.5 \le v \le 15.95)$	$\diamond_{[0,90]}(M_{g,d} \ge 47000)$	$\diamond_{[0,90]}(\Omega<9)$	
ato contacato					

Experimental results

				Our approach opti						
Model	Spec. φ	E	Breach	MC	R (best)	MCR	(worst)			
		SR	time [s]	SR	time	SR	time			
AT	$AT1_{2500}$	58	34.3	60	33.9	60	38.9			
	$AT1_{2400}$	18	72.7	55	147.0	28	87.3			
	AT1 ₂₃₀₀	0		37	326.4	0				
	AT2	51	245.1	54	307.9	43	233.1			
	$AT3_{80,4500}$	60	31.3	60	24.4	60	31.0			
	AT350,2700	60	108.8	59	127.7	56	157.0			
AFC	AFC	43	272.4	54	288.2	48	248.3			
WT	WT	60	175.7	60	174.0	59	180.1			

- Largerst success rates are show in blue
- Best combination of (SR, time) is highlighted

The choice of

ition target

RQ1: Does MCR address the scale problem?

Model	Spec. φ	Breach		MCR (best)		MCR	(worst)	
		SR	time [s]	-	SR	time	SR	time
AT	AT1 ₂₅₀₀ AT1 ₂₄₀₀	58 18	34.3 72.7		60 55	33.9 147.0	60 28	Breach always failed but MCR succeeded 37 times (/60)
	AT1 ₂₃₀₀	0			37	326.4	U	
	AT2	51	245.1		54	307.9	43	233.1
	$AT3_{80,4500}$	60	31.3		60	24.4	60	31.0
	$AT3_{50,2700}$	60	108.8		59	127.7	56	157.0
AFC	AFC	43	272.4		54	288.2	48	248.3
WT	WT	60	175.7		60	174.0	59	180.1

- Yes. Our approach resulted higher SR in most cases (blue)
- Specifically, the advantage is obvious where the scale problem is more eminent

RQ2: How important is the choice of the objective conjunct in MCR?

						Tł	ne per	formance	of MCR (worst) is comparable or	
Model Spec. φ	Spec. φ	Breach		MCF	MCR (best)		better compared to Breach in every benchmarks.			
	1 /	SR	time [s]	SR	time		SR			
AT	AT1 ₂₅₀₀	58	34.3	60	33.9		60	38.9		
	$AT1_{2400}$	18	72.7	55	147.0		28	87.3		
	AT1 ₂₃₀₀	0		37	326.4		0			
	AT2	51	245.1	54	307.9		43	233.1		
	$AT3_{80,4500}$	60	31.3	60	24.4		60	31.0		
	AT3 _{50,2700}	60	108.8	59	127.7		56	157.0		
AFC	AFC	43	272.4	54	288.2		48	248.3		
WT	WT	60	175.7	60	174.0		59	180.1		

- A bad choice had a negative effect on the performance of MCR
- The effect is not so critical

Future work and Conclusion

Future work

- A method to choose the good objective conjunct
- Extension to more general form of specifications

Conclusion

- A method solving conjunctive synthesis via constrained optimization
- MCR and CMA-ES for effective optimization
- Our approach addresses the scale problem