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ABSTRACT

Spectrum-Based Fault Localization (SBFL) follows the basic intu-

itions that the faulty parts are more likely to be covered by failure-

revealing test cases and less likely to be covered by passed test cases.

However, due to the diversity of programs and faults, many other

characteristics (related to program structure, test suites, and type

of faulty components) will influence the practical application of

SBFL. For example, a statement can be covered by numerous failure-

revealing test cases, and also covered by numerous passed test cases.

To get more indicators about the faulty components towards a bet-

ter application of SBFL, we extend the scope of spectrum-based

knowledge from the basic intuitions to the Characteristics of Spectra
Distribution (CSDs for short). That is, we explore the relationships
between different types of statements and their spectra. Firstly, we

introduce the concepts of Failure-Independent, Failure-Related, and
Failure-Exclusionary to describe the relationships between differ-

ent types of statements and their executions. Then, we propose

two probabilistic models, with and without the noise of fault in-
terference, respectively, to identify various CSDs for each type of

statements. As the analysis results, we introduce a visualization

technique to generalize the identified CSDs and provide an overall

picture of spectra distribution and its dynamics. Finally, based on

our analysis and also the observation of the program spectra of

current benchmarks, we design a technique to filter the potential

non-faulty statements to improve the accuracy of SBFL.

CCS CONCEPTS

• Software and its engineering→ Software creation andmanage-

ment; Software verification and validation; Software defect analysis;
Software testing and debugging.
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software fault localization, spectrum-based fault localization, prob-

abilistic model, spectrum-based characteristics, visualization
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1 INTRODUCTION

Software fault localization [22] aims to find the faulty components

that cause the program failures detected during testing. To date,

various studies pointing to the automation of fault localization

process have been conducted [2, 13, 15]. One of the most famous

fault localization techniques is Spectrum-Based Fault Localization

(SBFL) [23, 26, 28]. Here, a program spectrum refers to a collection

of information that provides the characteristics of a specific pro-

gram component [23]. SBFL takes the program spectra information

derived during testing to find the suspicious faulty components

of the subject program. To date, studies on SBFL have been con-

ducted from various aspects, such as different component particles

[2, 20, 29], suspiciousness metrics [16, 21, 23, 26], and SBFL-orient

testing techniques [7, 25]. Note that we take a program statement

as the basic unit of component in this paper.

Generally, SBFL is based on two intuitions [28]:

(1) statements covered by more failure-revealing test cases are

more likely to be faulty, and

(2) statements covered by more passed test cases are less likely

to be faulty.

The above intuitions consider the passed and failure-revealing test

cases separately. Nevertheless, in practice, the fault propagation

process is complicated. Only considering these intuitions could be

insufficient. For example, even if a test case is failure-revealing,

it may cover many non-faulty components. Also, even if a faulty

statement has been executed, it may not cause failures (i.e., the

coincidental correctness phenomenon [14]). Furthermore, if the

program has multiple faults interacting with each other, the spec-

trum of a specific faulty statement may become more difficult to

be identified (i.e., the multi-fault problem [5]). Although various

SBFL-orient techniques have been proposed [1, 16], the challenge

of providing more knowledge of program spectra to evaluate the

practical application of SBFL always exists.

In fact, except for the basic intuitions, there are also various char-

acteristics related to the distribution of program spectra and can be

useful to improve SBFL. For example, statements in the main func-

tion are likely to be covered by both passed and failure-revealing

https://doi.org/10.1145/3383219.3383230
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test cases. Also, to meet the safety requirements, redundant mod-

ules are usually introduced [10]. Then for such modules, they are

rarely covered by both the passed and failure-revealing test cases.

However, exploring and generalizing such characteristics are

challenging. As SBFL involves various artifacts, including the test

suite, and different types of statements, the Characteristics of Spectra
Distribution (CSDs for short) could also be complicated and be

related to multiple and heterogeneous artifacts (e.g., the property

of statements and the test coverage information). Moreover, the

interactions among these artifacts are also complicated.

To pave the way from basic intuitions towards comprehensive

spectrum-related knowledge and get a better understanding and

evaluation of the practical application of SBFL, this paper proposes

an appraoch based on probabilistic modeling and data visualization

to conduct an overall analysis of CSDs beyond the basic intuitions

of SBFL. Specifically, we focus on which types of statements have

which shapes of spectra. Firstly, we identify the program statements

as three types: Failure-Related, Failure-Exclusionary, and Failure-
Independent, referring to the statements whose executions are rele-

vant, exclusionary and independent to themanifestation of program

failures, respectively. Then, we propose a probabilistic model to

formalize the behaviors among different types of statements and

program failures, and summarize them as specific CSDs.
Particularly, we further consider the influence of fault inter-

ference in our model, under the assumption that different faulty

elements are independent. Specifically, the influence of different

faults is described as the noise. As a result, we derive some com-

mon points about the influence of the noise on different types of

statements and describe them as the dynamics of CSDs. This work
is our primary step to explore formal descriptions for the instances

involving more than one faulty elements.

To generalize the analysis results, we propose an approach based

on visualization that presents program statements in the entire

spectra space. Through visualization, we integrate various identified

CSDs belonging to different types of statements in an intuitive way,

and then evaluate their influences on the performance of SBFL.

Finally, as an example to put our analysis into practice, we propose

a technique that identifies the potential non-faulty statements based

on the identified CSDs and eliminates them during SBFL.

The remainder of this paper is organized as follows. The back-

ground of SBFL is introduced in Section 2. The modeling of different

types of statements, and the exploration of CSDs are presented in

Section 3. The visualization of the derived results is presented in

Section 4. Based on visualization, we design a filtering technique

to improve SBFL in Section 5. An experimental study is conducted

in Section 6. Related works are discussed in Section 7. In Section 8,

we make conclusions and discuss the future works.

2 BACKGROUND: SPECTRUM-BASED FAULT

LOCALIZATION

Given the subject program PG, with the set of statements S =

{s1, s2, . . . , sn }. Assume PG has a faulty statement sf , then the basic

task of fault localization is to find sf in S . Here let sf ← s denote
that statement s is faulty. Now concerning Spectrum-Based Fault

Localization (SBFL), given a test suite T = {t1, t2, . . . , tm }, we let
Ct

denote the set of statements covered by t and ot ∈ {pass, f ail}

denote the correctness of t . Thus, based on T , considering the

coverage of each s ∈ S , we can calculate the following quantities:

• aef (s): the number of failure-revealing test cases that cover
statement s , i.e., |{t ∈ T |s ∈ Ct ,ot = f ail}|
• aep (s): the number of passed test cases that cover statement

s , i.e., |{t ∈ T |s ∈ Ct ,ot = pass}|
• anf (s): the number of failure-revealing test cases that do not
cover statement s , i.e., |{t ∈ T |s < Ct ,ot = f ail}|
• anp (s): the number of passed test cases that do not cover
statement s , i.e., |{t ∈ T |s < Ct ,ot = pass}|

In addition, let F and P denote the total number of the failure-
revealing and passed test cases, respectively.

The basic idea of SBFL is to predict the likelihood of being faulty

for each s ∈ S . Specifically, the suspiciousness degree that sf ← s
can be calculated by a formula R composed of the above quantities.

In this sense, the basic intuition of SBFL can be interpreted as:

(1) the larger aef (s) value that statement s has, the more suspi-

cious it is, and

(2) the smaller aep (s) value that statement s has, the more sus-

picious it is.

Currently, various metrics have been proposed following the

above two intuitions. Also, different metrics are based on their own

heuristics to arrange the composition of aef (s) and aep (s). One
of the earliest metric, Tarantula [8], denoted by Rτ is designed as

follows:

Rτ (s) =
aef (s)/F

aef (s)/F + aep (s)/P
(1)

Subsequently, it has been observed that failure-revealing test

cases are more important to expose the faulty statements. Based

on this observation, Abreu et al., [1, 2] proposed the Ochiai metric,

denoted by RO , expressed as follows:

RO(s) =
aef (s)√

(aef (s) + anf (s))(aef (s) + aep (s))
(2)

Furthermore, Naish et al. [16] proposed a famous metric called

Op, denoted by RO , which put the term aef (s) at a dominant posi-

tion. The expression of RO is shown as follows:

RO (s) = aef (s) − aep (s)/(P + 1) (3)

Note that although various metrics as been proposed, such as

the families of DStars[21] and GPs [26], current studies [30] and

also our ongoing works has observed that some metrics, although

they may not be equivalent, have similar performance (e.g., RO and

DStars, and the family of continuous maximal metrics) [27]. Thus,

according to our knowledge, this paper will consider Rτ , RO , and
RO as representative. After the calculation based on the selected

metric, SBFL ranks the statements according to their suspiciousness

degrees in descending order and provides the rank list as output.

If it is accurate, the faulty statement sf will be ranked ahead and

then can be found earlier by the testers.



Exploring the Characteristics of Spectra Distribution and Their Impacts on Fault Localization EASE’20, April 15–17, Trondheim, Norway

3 PROBABILISTIC MODEL FOR STATEMENTS’

SPECTRA AND PROGRAM FAILURES

3.1 Three Types of Statements

In this section, we categorize the program statements into three

types according to how their spectra can be affected by program fail-

ures: the Failure-Independent statements, the Failure-Related State-

ments, and the Failure-Exclusionary Statements.

Definition 1. Failure-Independent Statement. If the exe-
cution of statement s is not correlated with the manifestation of pro-
gram failures, s will be considered as Failure-Independent, denoted
by sI ← s .

Example 3.1.

• If statement s is included in the main function of PG, then it
will be covered by all the test cases, whether these test cases
are failure-revealing or not.

Definition 2. Failure-Related Statements. If the execution
of s is correlated with the manifestation of program failures, then s
will be considered as Failure-Related, denoted by sR ← s .

Example 3.2.

(1) If statement s belongs to the function that triggers the execution
of the faulty statement sf , then the execution of s may cause a
higher failure rate.

(2) If statement s belongs to the module that proceeds a specific
type of system exception caused by sf , then the execution of s
will lead to a higher failure rate.

Definition 3. Failure-Exclusionary Statement. If the exe-
cution of statement s leads to a lower probability of failure, then s is
considered as Failure-Exclusionary, denoted by sE ← s .

Example 3.3.

• If modules A and B belong to different branches of program
PG, while module B contains the faulty statement sf , then
statements in A could have a relatively lower failure rate.

3.2 Probabilistic Model without Noises

To analyze the relationship between the execution of each statement

s ∈ S and the manifestation of program failures, we make the

following assumptions.

Assumption 1. The faulty statement sf ∈ S exists.

Assumption 2. PG is deterministic. That is, a failure-revealing
test case t will definitely cause failures whenever it is executed.

Assumption 3. The test suite T has already been given and we
know both its coverage and correctness information.

Assumption 4. The test cases in T are generated randomly fol-
lowing a common profile1.

Based on these assumptions, the relationship between the exe-

cution of a statement s and the manifestation of program failures

can be modeled as a discrete Markov Chain, illustrated in Fig. 1.

1
Here, we do not expect an entirely random testing. Instead, we assume that the

generation of test cases follows a common rule of randomness (e.g., pure random

testing or proportional sampling) and does not rely on fault-based knowledge.
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Figure 1: The basic model

for the relationship be-

tween the execution of

statement s and the man-

ifestation of program

failures.

s
0

s

Pass Fail

�
1

�
2

�
3

�
4 �

5

3

2

4

Noise
1

Figure 2: The model of

statement-failure relation-

ship involving the noise.

Fig. 1 presents the simplified transition model from the program

entrance to the final output, in which statement s is treated as an

intermediate state
2
. When executing a test case t , the execution

trace will start from the program entry s0 and have a probability

to cover statement s . Finally, it produces an output with a certain

probability of failure. Specifically, for statement s and test case t ,
the probability of each transitions in Fig. 1 is presented below.

• φs
1
: the probability that t does not cover statement s and gets

passed, i.e., P(s < Ct ,ot = pass)
• φs

2
: the probability that t does not cover statement s and

reveals a failure, i.e., P(s < Ct ,ot = f ail)
• φs

3
: the probability that t covers statement s , i.e., P(s ∈ Ct )

• φs
4
: the probability that t gets passed, under the condition

that t covers statement s , i.e., P(ot = pass |s ∈ Ct )

• φs
5
: the probability that t reveals a failure, under the condition

that t covers statement s , i.e., P(ot = f ail |s ∈ Ct )

Here P(·) represents the meaning of probability. In addition, the

following relations should be satisfied:

φs
1
+ φs

2
+ φs

3
= 1, φs

4
+ φs

5
= 1

φs
1
+ φs

2
= P(s < Ct )

φs
1
+ φs

4
· φs

3
= P(ot = pass)

φs
2
+ φs

5
· φs

3
= P(ot = f ail) (4)

Now suppose test suite T is executed based on this model, then

we can calculate some expected spectrum values as follows:

E(P) = |T |(φs
1
+ φs

4
· φs

3
)

E(F ) = |T |(φs
2
+ φs

5
· φs

3
)

E(aef (s)) = |T |(φ
s
3
· φs

5
)

E(aep (s)) = |T |(φ
s
3
· φs

4
) (5)

In this way, this probabilistic model, can be regarded as a formal

description of the fault propagation process within the domain of

program spectra. Then, we make further exploration of each type

of statements identified in Section 3.1.

2
Although there could be other statements that influence the execution of s , from the

perspective of s , all these influences can be integrated into the transition from the

entrance s0 to s .
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(1) Failure-Independent Statement. Based on Definition 1, a
Failure-Independent Statement sI should have

φs
I

5
= φs

I

2
and φs

I

4
= φs

I

1
(6)

Then we have

E(P) = φs
I

1
(1 + φs

I

3
)

E(F ) = φs
I

2
(1 + φs

I

4
)

E(aef (s
I )) = |T |(φs

I

3
· φs

I

2
)

E(aep (s
I )) = |T |(φs

I

3
· φs

I

4
) (7)

Thus we can derive

aef (s
I )

aef (s
I ) + aep (sI )

≈
|T |(φs

I

3
· φs

I

5
)

|T |(φs
I

3
· φs

I

4
) + |T |(φs

I

3
· φs

I

5
)

=
φs
I

5

φs
I

4
+ φs

I

5

≈
F

F + P
(8)

(2) Failure-Related Statements. Based on Definition 2, if a
statement sR is Failure-Related, we should have

φs
R

5
> φs

R

2
and φs

R

4
< φs

R

1
(9)

and then we can derive that

aef (s
R )

aef (s
R ) + aep (sR )

>
F

F + P
(10)

(3) Failure-Exclusionary Statements. Based on Definition 3,
if a statement sE is Failure-Exclusionary, then we have

φs
E

5
< φs

E

2
and φs

E

4
> φs

E

1
(11)

and then we can derive that

aef (s
E )

aef (s
E ) + aep (sE )

<
F

F + P
(12)

In summery, let qe (s) =
aef (s)

aep (s)+aef (s)
denote the failure rate of

statement s and let q = F
F+P denote the overall failure rate, then

we have the following characteristic.

Characteristic 1. Based on the Assumption 1 to Assumption

4, the failure rate of the Failure-Independent, Failure-Related, and
Failure-Exclusionary statements are equal, higher, and lower than the
overall failure rate, respectively.

Now assume the program failures are caused by the only faulty

statement sf and not affected by other factors. Then, sf is the root

cause of the detected failures. In this case, all the failure-revealing

test cases will cover sf . Otherwise, if a test case does not cover sf ,
the program failures will not be detected. Then we can derive the

following characteristic.

Characteristic 2. Assume there is only one faulty statement
sf . Based on Assumptions 1 to 4, sf should be Failure-Related and

all the failure-revealing test cases should cover sf , i.e., we have

aef (s
f )

aef (s
f ) + aep (sf )

>
F

F + P
(13)

φs
f

2
= 0 (14)

3.3 Probabilistic Model With Noises

One of the basic assumptions behind the model in Section 3.2 is

that the subject program PG has only one faulty statement. That

is why we can derive Eq. (14). However, in many situations, the

subject program contains multiple faulty factors (e.g., incorrect

environmental settings or other faulty components). Different faults

interact with each other and influence the program spectra used in

SBFL. As a result, the accuracy of SBFL could be degraded. It has

been observed that, for some SBFL metrics, a slight degree of fault

interference can lead to a significant performance degradation.

In this work, we focus on improving the explainability of fault

interference. Then, we could get more guidances to solve to the

multi-fault problems better. Specifically, we conduct a further anal-

ysis based on our probabilistic model to explain the occurrence of

fault interference and then find some meaningful characteristics.

Here, we model the mechanism of fault interference as a module

of the noise, denoted by N , as shown in Fig. 2. In other words, we

use N to represent the complicated effects caused by system envi-

ronmental factors or the other faulty statements
3
. Here, we assume

that, during the execution of each test case t , the program has the

probability of being infected by N . Once the program is infected,

whether it fails or not will be entirely decided byN . Specifically, we

have P(ot = f ail |s ∈ Ct ,N ∈ Ct ) = P(ot = f ail |s < Ct ,N ∈ Ct ).

Modeling the fault interference as the noise under this assumption

makes our analysis explicit, and it is reasonable because of the

following reasons:

(1) The analysis of the noise can provide a fundamental and

quantitative evaluation of the robustness of SBFL.

(2) If the program has multiple faults, it is likely to exist a domi-

nant faulty statement that causes the main characteristics

of spectra distribution. Then, other faults are likely to be

correlated with only a few statements, and their effects can

be eliminated [5].

(3) Although there are situations that multiple faults determine

the program failures together, such situations can be approx-

imated to our model through the assignment of the values

of ε2, ε3, and ε4 in Fig. 2.

(4) Many other faulty statements have lower aef values (e.g.,

faults in some remote modules) and do not have much in-

fluence on the target faulty statement. As a results, their

behaviors are similar to the noise.

Consequently, the probabilistic model considering the noisemod-

ule is shown in Fig. 2. Compared with the basic model shown in

Fig. 1, concerning a test case t and statement s , additional notations
are listed below.

3
Although we may not have a “target” faulty statement in practice, the result of

SBFL will probably assign one faulty statement with higher priority. Then, this faulty

statement can be treated as “target” in fault localization.
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The "Noise" part:

the proportion of failure rates 

concerning the noise module

The "Signal" part: 

the original proportion between

local and overall failure rate

� �

� �

� � � �
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Figure 3: The characteristics of spectra distribution in the

probabilistic model with the noise module.

• εs
1
: the probability that t covers N and does not cover s , i.e.,
P(N ∈ Ct , s < Ct )

• εs
2
: the probability that t covers N and also covers s , i.e.,
P(N ∈ Ct , s ∈ Ct )

• εs
3
: the probability that t coversN and gets passed, i.e., P(N ∈

Ct ,ot = pass)
• εs

4
: the probability that t covers N and reveals a failure, i.e.,
P(N ∈ Ct ,ot = f ail)

Obviously, due to the introduction of εs
1
to εs

4
, the probabilities

from φs
1
to φs

5
will decrease. Specifically, similar to Eq. (5), the

quantities used by SBFL can be calculated as follows:

P ≈ |T |(φs
1
+ φs

4
· φs

3
+ εs

1
· εs

3
+ φs

3
· εs

2
· εs

3
)

F ≈ |T |(φs
2
+ φs

5
· φs

3
+ εs

1
· εs

3
+ φs

3
· εs

2
· εs

4
)

aef (s) ≈ |T |(φ
s
3
· φs

5
+ φs

3
· εs

2
· εs

4
)

aep (s) ≈ |T |(φ
s
3
· φs

4
+ φs

3
· εs

2
· εs

3
) (15)

Then, we can calculate the following ratios related to the failure

rate:

aef (s)

aep (s)
≈

φs
3
· φs

5
+ φs

3
· εs

2
· εs

4

φs
3
· φs

4
+ φs

3
· εs

2
· εs

3

(16)

F

P
≈

φs
2
+ φs

5
· φs

3
+ εs

1
· εs

4
+ φs

3
· εs

2
· εs

4

φs
1
+ φs

4
· φs

3
+ εs

1
· εs

3
+ φs

3
· εs

2
· εs

3

(17)

Finally, we can derive the equation shown in Fig.3.

The dashed boxes in Fig. 3 divide the equation into two parts.

The left part and the right part express the spectra characteristics

related to the signal and the noise, respectively. Specifically, the
left part enclosed by the red dashed box can be regarded as the

signal, denoted by S. It approximates to the proportion between the

original failure rate of s , denoted by aSef (s)/a
S
ep (s) and the original

overall failure rate, denoted by F S/PS , as identified in Section 3.2.

On the other hand, the right part enclosed by the blue dashed box

can be treated as the spectra of s only considering the noise module,

such that each term contains at least one properties from εs
1
to εs

4
.

Also, it just approximates to the proportion between the failure rate

of s , denoted by aNef (s)/a
N
ep (s) and the overall failure rate, denoted

by FN/PN , only considering the noise.
Now, suppose statement s is Failure-Independent, Failure-Related,

and Failure-Exclusionary, respectively. Then, without the noise, the
characteristic of its spectrum can be reflected by its failure rate

aSef (s)/a
S
ep (s).

4
However, after considering the noise, such propor-

tion becomes to

aSef (s)+a
N
ef (s)

aSep (s)+a
N
ep (s)

, which is closer to the failure rate of

the noise module, i.e, aNef (s)/a
N
ep (s). On the other hand, the overall

failure rate has also changed from the original signal part F S/PS

to (F S + FN)/(PS + PN), getting closer to the overall failure rate

of the noise module, i.e., FN/PN .
Moreover, from Fig. 3, we can also derive that

aNef (s)

aNep (s)
≈

φs
3
· εs

2
· εs

4

φs
3
· εs

2
· εs

3

=
εs
1
· εs

4
+ φs

3
· εs

2
· εs

4

εs
1
· εs

3
+ φs

3
· εs

2
· εs

3

≈
FN

PN
≈

εs
4

εs
3

(18)

In general, based on the model with the noise module, both the

local failure rate of statement s and the overall failure rate, are

getting closer to the failure rate of the noise module, i.e., εs
4
/εs

3
.

Specifically, we have the following conclusions:

Characteristic 3. After the introduction of the noise module,
the failure rate of statements, i.e., aef (s)/aep (s), changes towards the
failure rate of the noise module, i.e., εs

4
/εs

3
.

Characteristic 4. After the introduction of the noise, the over-
all failure rate, i.e., F/P , changes towards the overall failure rate of
the noise module, i.e., εs

4
/εs

3
.

Characteristic 5. The relationship between a statement s
and program failures (i.e., Failure-Independent, Failure-Related, and
Failure-Exclusionary) may change after adding the noise. The direc-
tion of this change depends on both the failure rate of the noisemodule
N , i.e., εs

4
/εs

3
, and the relationship between s and N . Specifically,

(1) Assume εs
4
/εs

3
≈ F/P , i.e., the failure rate of the noise module

is approximate to the failure rate of the signal parts. Then,
F/P is approximate to the original F S/PS . Also, the original
correlation between s and program failures can become weak.
Specifically, the failure rates are getting lower, higher, and
keeping the same for the Failure-Related, Failure-Exclusionary,
and Failure-Independent statements, respectively.

(2) If εs
4
/εs

3
, FS /PS , the situation is complicated. Specifically,

the initial failure rate that larger or smaller than εs
4
/εs

3
will

become smaller or larger, respectively. However, the change of
the correlation between s and program failures, i.e., whether
it becomes more Failure-Related or Failure-Exclusionary also
depends on the change of F/P .

(3) Assume s has a low execution rate in the signal part, while
it has a high execution rate in the noise module. Then, the
influence of the noise on the original correlation between s and
program failures is obvious. On the contrary, the influence on
the faulty statement s with the spectrum aSef (s

f ) = F is likely
to be slighter than other statements with similar failure rates.

4 VISUALIZATION OF THE SPECTRA

DISTRIBUTION CHARACTERISTICS

In this section, we introduce a visualization approach to generalize

the results in Section 3 and provide an overall observation about

4
Here, we use aSef (s)/a

S
ep (s) instead of the actual failure rate aSef (s)/(a

S
ep (s) +

aSef (s)) for the convenience of calculation. This operation will be applied in the

following parts of the paper.
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Figure 4: The visualization

of the characteristics of

spectra distribution

aef

aep

F

P

The diagonal Line

y = (P/F) x

Baseline of 

Spectra Movement

y = (�4/�3)x

Movement 

Direction

sf

Figure 5: Visualization of

the dynamics of program

spectra when concerning

the noise.

spectra distribution and its dynamics after involving the noise. The
approach of visualization is based on the concept of Spectra Space
(SS) [27], which is a coordination system in which the x-axis in-

dicates the meaning of aef , and the y-axis indicates the meaning

of aep , as shown in Fig. 4. Then, the spectrum of each statement

s is presented as an image point in SS, denoted by ι(s), with the

coordination values of (aef (s),aep (s)). Note that, because at each
s , we have aef (s) < F and aep (s) < P , SS is actually a box enclosed

by the lines x = F , y = P , x = 0, and y = 0. Now, given an SBFL

instance, we can obtain the value of F and P , and then visualize

all the statements in SS according to their spectra. Then, we can

observe the characteristics of the spectra distribution of each SBFL

instance (illustrated as the distribution of image points in Fig. 4).

Through summarizing different SBFL instances, we can get an in-

tuitive image about the distribution patterns of program spectra,

which corresponds to the results found in Section 3.

Fig. 4 reflects the CSDs of each type of statements. Specifically,

the image points of Failure-Independent statements will be dis-

tributed around the diagonal line of SS, depicted as the blue area.

Meanwhile, the image points of the Failure-Related and Failure-
Exclusionary statements are distributed below and above the diago-

nal line of SS, respectively (shown as the red and green areas).

Furthermore, Fig. 5 illustrates the visualization of the change of

the CSDs after suffering the noise caused by multi-fault interfer-

ence, as discussed in Section 3.3. Here, the analytic expression of

the diagonal line, i.e., y = (P/F )x , denoted by ld , is treated as an

indicator. Specifically, suppose the fault inference, caused by other

faulty elements and modeled as the noise, exists. Then, the position
of all the artifacts in SS, including the image points of program

statements, the diagonal line, and the target faulty statement sf ,
will change. According to Characteristics 3 to 5, the baseline of

such movement is the line with analytic expression of y = (ε3/ε4)x

(i.e., the failure rate of the noise module N ), denoted by lb . All the
points of program statements including the faulty statement, and

the diagonal line ld will get closer to the baseline lb . Specifically,
we can have the following graphical CSD:

Characteristic 6.

(1) For statement s , if ι(s) is below both the lines of lb and ld , then
ι(s)may take a left-top move, and its correlation with program
failures may become weak.

(2) For statement s , if ι(s) is above both lb and ld , then ι(s) may
take a right-bottom move, and its correlation with program
failures tends to be enhanced.

aef

aep

F

P

F/3

y = 3Px/(2F) – P/2lf
：

Filtered Area

Reserved Area

Figure 6: The filtered area in SS

(3) For statement s , if ι(s) is between the lines of lb and ld , then
ι(s) tends to move towards the line of lb . Nonetheless, because
ld also tends to move toward lb , the variation of its correlation
with the program failures should further depend on the relative
degrees of these movements.

Compared with the Characteristics in Section 3.3, Characteristic

6 is more intuitive and it presents a general picture of the program

spectra’s movement under the noise. Specifically, the results can be

understood from two aspects:

(1) Under the noise introduced from fault interference, all the

image points tend to move towards the baseline lb , including

the faulty statement sf . Thus, the property of sf may get

more implicit (i.e., ι(sf ) may not be at the boundary line

x = F ). In this sense, fault interference indeed takes negative

effects.

(2) On the other hand, the movements of the statements’ image

points follow explicit rules. If the noise is not strong (i.e., εs
1

and εs
2
are not significant), the degree of movement will be

slight. Furthermore, the faulty statement sf has the largest

original aef (s
f ) value. Thus, the degree of movement of its

spectrum could be less than other statements with similar

failure rates. In this sense, SBFL is also reasonable under a

slight degree of fault interference.

5 EXAMPLE FOR USAGE: A FILTER FOR

ELIMINATING NON-FAULTY STATEMENTS

From the above analysis, we find a series of CSDs. In this section,

we explore the usage of these CSDs to improve SBFL. Specifically,

as a first step, we design a filter that eliminates the statements

whose spectra are not fault-prone based on the derived CSDs. The
following strategies are adopted:

(1) The Failure-Independent and Failure-Exclusionary statements

should be filtered. Intuitively, because the faulty statement

is the root cause of program failures, it should be Failure-
Related. However, Failure-Independent and Failure-Exclusionary
statements may also have large values of aef or small values

of aep , which may mislead the application of SBFL metrics.

Thus, we can eliminate them during the execution of SBFL.

(2) The negative effects cause by fault interference can be, to

some extent, filtered. According to Characteristic 5, because

of the noise, the image point of the faulty statement sf , i.e.,

ι(sf ), is likely to take a left-top move. This may cause the

negative effect that aef (s
f ) < F . However, some SBFL met-

rics (e.g., Op) assign the term aef with a high weight. As
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a result, the statements whose image points are near the

right-top area of SS may have higher suspiciousness val-

ues than sf . Thus, it is reasonable to filter such statements

which are likely to be Failure-Independent. On the other hand,
as analyzed in Section 4, because the movement of ι(sf ) is

slighter than other ι(s)s, aef (s
f ) should not be very small,

even though the noise exists. Thus, it is reasonable to filter

statement s , if ι(s) is at the left part of SS.

Based on the above analysis, Fig. 6 illustrates the design of the

statement filter. Specifically, in SS, we introduce a filter line, denoted

by l f , with the analytical expression of y = 3P
2F x − P/2. Statements

whose image points are above this line will be filtered. Concerning
l f , it is near the diagonal line of SS. Thus, the eliminated statements

are more likely to be Failure-Independent or Failure-Exclusionary.
Also, l f is below the diagonal line. Thus, it also filtered the state-

ments with image points near the original point (0, 0) and the right-

top point (F , P). Generally, the SBFL technique integrated with

statement filter (SBFL-Filter for short) is presented in Algorithm 1.

Algorithm 1 SBFL with statement filter

Input: PG : the subject program with set of statements S ; T : the executed
test suite;

Output: L: the rank list of SBFL;

1: calculate the overall quantities F and P ;
2: for each s in S do

3: calculate aef (s) and aep (s);
4: calculate the suspiciousness value R(s) use conventional SBFL;
5: end for

6: present all the information in the Spectra Space;

7: draw the filter line l f ;
8: Initialize S f il ter ← ∅, Sr eserve ← ∅;
9: for each s in S do

10: if s is above l f then

11: Let S f il ter ← S f il ter ∪ {s }
12: else

13: Let Sr eserve ← Sr eserve ∪ {s }
14: end if

15: end for

16: for each s in S f il ter do R(s) ← R(s)−M ,M is large enough satisfying

R(s) > M , ∀s ∈ S ;
17: end for

18: Re-rank the statements according to their new suspiciousness values

and get L;

Note that, when filtering the negative effects caused by the noise,
some Failure-Related statements will also be included. Thus we

may have threats to eliminate the real faulty statement. Therefore,

how to trade off the potential benefits and the threats should be

considered. In our approach, the filter area (i.e., the green shadow

part in Fig. 6) is quite small at the top-right part of SS. This indicates

that the filtering strategy on this part is quite moderate. Also, the

shadow area contains only a small region of the left-bottom part

of SS (i.e., near the original point). Specifically, l f intersects with

the x-axis at the point of (F/3, 0), which means only the aef (s
f )

value smaller than F/3 will be eliminated. Unless the program

has more than three completely exclusive faulty statements with

similar failure rates, ι(sf ) cannot move to the right part of x =
F/3. Furthermore, we try to improve the stability of our filter by

reserving the top ten statements in the rank list of SBFL. That is,

for SBFL instances whose outputs are already accurate, our filter

does not take effects.

Table 1: Details of the benchmark programs and faults

Suite Programs Fault No. LOC Size of test suites

flex 53 10,459 567

Unix grep 17 10,068 809

gzip 17 5,680 217

sed 26 14,427 370

print_tokens 5 472 1,608

print_tokens2 9 399 2,650

replace 29 512 2,710

Siemens tcas 41 141 1,052

schedule 5 292 4,130

schedule2 9 301 4,115

tot_info 23 440 5,542

Space space 33 6,199 13,585

Chart 26 96k 2205

Closure 133 90k 7927

Defects4J Math 106 85k 3602

Lang 65 22k 2245

Time 27 28k 4130

6 EMPIRICAL STUDY

6.1 Research Questions

In this section, we conduct an empirical study to show the effec-

tiveness of the statement filter, and also examine the CSDs in real

SBFL instances. The following research questions are explored:

RQ1: Can the statement filter improve the accuracy of SBFL?

RQ2:Which factors (e.g., different subject programs and SBFL

metrics) can affect the performance of SBFL-Filter?
RQ3: Which CSDs cause the performance of SBFL-Filter de-

cline/increase? Are they in accord with our analysis?

6.2 Empirical Setup

In the empirical study, four UNIX utility programs (including flex,
grep, gzip, and sed), the Space program, and the Siemens suite (includ-
ing seven subprograms: print_tokens, print_tokens2, replace, tcas,
schedule, schedule2, and tot_info) are selected as benchmarks. These

programs are derived from the Software Infrastructure Repository

(SIR) [6]. In SIR, each program is attached to several benchmark

faults. This paper discusses the CSDs for both single-fault and fault-

interference situations. Thus, we generate and examine both the

single-fault and multi-fault versions. For single-fault instances, all

the benchmark faults are examined one by one. For multi-fault

instances, we combine different faulty statements such that they

can exist together in the same instance. Here, we check 2-fault and

3-fault situations, respectively [5, 24].

In addition, we also use Defects4J[9] , a dataset including five

java projects Chart, Closure, Lang, Math and Time. The projects are
with the scales from 28 KLOC to 96 KLOC and with real-life faults.

Here, we do not combine different faulty statements to form multi-

fault instances, such that the property of real-life faults remains.

Specifically, we use the data derived in [18]. The details of the

benchmarks are shown in Table 1.

In the empirical study, we run conventional SBFL and SBFL-
Filter, respectively, and compare their performances. There are

many criteria to evaluate the performance of SBFL according to

different requirements of practical applications. Because our work

mainly focuses on theoretical analysis, we intend to evaluate the
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accuracy of SBFL in a typical way. Therefore, we adopt a tradition

criterion Expense, defined as the percentage of statements that rank

above the faulty statement sf . Note that we use average ranking
as the tie-break strategy. During the execution, we also record the

aef (s) and aep (s) values for each statement s such that the spectra

distribution of each SBFL instance can be observed. When dealing

with multi-fault versions, we set the faulty statement that ranks

above the other faulty statements as the target faulty statement,

i.e., sf , and treat the other faulty statements as the noise.

6.3 Result and analysis

To answer RQ1, we conduct an overall comparison and present the

results in Table 2. The first column records the benchmark programs,

while the first row records the adopted SBFLmetrics. At eachmetric,

the columns “better” and “worse” indicate the number of faulty

versions in which SBFL-Filter takes positive and negative effects

(i.e., increases and decreases the SBFL accuracy), respectively.

Table 2: Comparison of conventional SBFL and SBFL-Filter.

Op Ochiai Tarantula

Better Worse Better Worse Better Worse

flex 32 0 39 14 741 77

grep 8 0 26 13 269 23

gzip 9 3 3 4 154 15

sed 38 0 2 0 114 0

Siemens 52 0 89 30 637 98

Space 15 0 33 18 322 78

Chart 1 0 1 0 3 0

Closure 7 1 1 0 11 2

Lang 0 0 1 0 4 0

Math 1 0 0 0 6 0

Times 0 0 0 0 1 0

Total 163 4 195 79 2262 293

From Table 2, the filter designed based on the identified CSDs
can indeed improve SBFL. Concerning all the programs and metrics,

SBFL-Filter performs better than conventional SBFL on 2620 SBFL

instances, including both single-fault andmulti-fault instances, over

eight times than the number of instances that SBFL-Filter performs

worse. Note that we do not consider the instances with Expense
values larger than 0.3 (i.e., the outputs are entirely inaccurate).

Because if SBFL itself is not suitable for these instances, it does

not make much sense whether we adopt the filter or not (In fact,

SBFL-Filter can get improvement at most of these instances).

Furthermore, we try to answer RQ2. Specifically, we further

examine the performance of SBFL-Filter on different subject pro-

grams and SBFL metrics. Considering different subject programs,

SBFL-Filter has different performances. It has the most stable per-

formance on sed, in which we have 154 better SBFL instances and 0

worse instances. The filter also performs well at Siemens programs

with 778 better SBFL instances. However, we also have 128 worse

SBFL instances. We infer that the impacts of different subject pro-

grams are mainly due to the variety of program structures and fault

types, which leads to the diversity of spectra distribution. Some

programs are organized with the structure in which the execution

of a component may not depend on the status of other components

(e.g., the faulty statement). As a result, the SBFL instances based on

these programs may contain a large number of Failure-Independent

statements that may mislead some SBFL metrics (e.g., RO ). In these

situations, our filter can effectively eliminate these statements. In

addition, for Defects4J programs, we only examine the real-life

faulty versions (i.e., considering the fixing patches one by one).

Thus, the produced SBFL instances are likely to possess the prop-

erty of single-fault scenarios (i.e., ae f (s
f ) = F ), even if the number

of faulty statements is more than one, as shown in Fig. 8. Thus,

the improvement of SBFL-Filter is not significant. However, it is
also visible and stable, including 37 improved instances and only 3

degraded instances.

Moreover, the properties of faulty statements may also influence

the performance of SBFL-Filter. Suppose the program has multiple

faulty statements, that cause the movement of sf . Then, our filter

can eliminate some statements located in the right part of ι(sf )
produced due to this movement. However, suppose both the degree

of fault interference and the degree of coincidental correctness are

high
5
. Then, ι(sf ) itself could move to the area that is eliminated

by the filter. In such situations, the filter may take adverse effects.

Nevertheless, as discussed in Section 5, the design of the filter is

quite conservative and it does not take negative effects in most

instances. On the other hand, it is still valuable to further explore

more comprehensive knowledge of spectra distribution and then

refine the SBFL-Filter.
Considering SBFL metrics, Fig. 7 presents the representative

instances in which SBFL-Filter performs well on the metrics of Op,
Ochiai, and Tarantula, respectively. Firstly, the SBFL-Filter has the
most stable performance on metric Op, with 163 better instances

and only 4 worse instances. One of the main reasons is the extreme

strategy of Op, which puts aef (s) in the dominant position. Because

of this, it has maximal performance for single-fault situations but

has lower robustness to fault interference [24]. Thus, the application

of SBFL-filter could be useful (as shown in Fig. 7(a)).

Also, SBFL-filter performs well at Tarantula on 2262 better in-

stances and 293 worse instances. Tarantula mainly considers the

failure rate of each statement, i.e., aef (s)/aef (s). Thus, it does not
good at identifying the statements that are Failure-Related but not

frequently covered by test suite T . The image points of such state-

ments are likely to be close to the original point of SS, i.e., (0, 0),

and will be eliminated by the filter (as shown in Fig. 7(c)).

Finally, for metric Ochiai, its expression is equivalent to the for-

mula of aef (s)
2/(aef (s) + aep (s)), which considers both the state-

ment’s failure rate aef (s)/(aef (s)+aep (s)) and the failure frequency
aef (s). Compared with the other two metrics, it is more robust.

However, the image points located between the diagonal line and

the right-bottom area are also misleading, and these statements can

be partially eliminated by our filter (as shown in Fig. 7(b)).

Table 3: Comparison of different SBFL metrics after apply-

ing statement filter.

Metric Op Ochiai Tarantula All

Better No. 39 50 2004 11

Worse No. 3 4 217 0

5
Here, coincidental correctness refers to the phenomenon that test cases cover s f but

do not reveal failures. It is a critical issue to be considered in SBFL [14].
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(a) Op (b) Ochiai (c) Tarantula

Figure 7: The spectra distribution of the instances with our

strategy has good performance at each SBFL metric.

Figure 8: A representative

instance of spectra distri-

bution inDefect4J (Closure,
faultID 76)

Figure 9: The areas in SS

that could be misidentified

by RO , RO , Rτ

(a) flex, v1, three-fault in-

stance

(b) Siemens, replace

Figure 10: The spectra distribution of the instances at with

our strategy has good performance on all the SBFL metrics.

To summarize the performance of SBFL-Filter on different SBFL

metrics and also to answer RQ3, we present the number of faulty

versions in which the filter can derive better/worse results at only

one SBFL metric (See the columns of Op, Ochiai, and Tarantula of
Table 3). In addition, Fig. 9 illustrates the areas in which each metric

can produce errors (i.e., ranking the statements belonging to these

areas ahead of the target faulty statement sf )6. We can observe that,

all the metrics have their own “blind” area and each of them can

be partially eliminated by our filter. Also, there are situations that

SBFL-Filter can perform well on all SBFL metrics (shown in the All

column of Table 3). Fig. 10, illustrates the spectra distribution of the

SBFL instances in which SBFL-Filter can improve the accuracy of

fault localization at all the metrics. We can observe that the spectra

distribution of these SBFL instances possess the characteristics that

mislead each SBFL metrics, respectively.

Generally speaking, the SBFL-Filter is an effective technique

to refine the localization results. It indeed takes into account the

6
The figure is based on our analyses in answering RQ2 and also based on the analysis

of the performance of each SBFL metric in the Spectra Space

derived Characteristics of Spectra Distribution beyond the basic intu-
itions of SBFL. Furthermore, the SBFL-Filter processes the spectra
information can be combined with other techniques (such as the

test case prioritization techniques [25]).

7 RELATEDWORKS

Spectrum-Based Fault Localization (SBFL) is one of the most typical

fault localization techniques [22]. The core of SBFL is the metrics

that calculate the fault proneness for each program component.

Jone et al. [8] developed the typical metric, named Tarantula. Since
then, various metrics have been proposed [1, 2]. Naish et al. [16]

innovatively made a general theoretical comparison among various

metrics and grouped them into several equivalent categories. Xie et

al. [23] further proved the performance among each equivalent cat-

egories and proposed the concept of maximal metrics. Furthermore,

Yoo et al. [26] proposed a generative approach to find new metrics.

To the best of our knowledge, studies on exploring the laws of the

overall program spectra distribution have not been well conducted.

In addition, studies on optimizing the SBFL process have also

been conducted from various aspects, such as the quality of test

information [4, 7, 25, 28] and coincidental correctness [14]. Parnin

et al. [17] discussed the challenge of how to make SBFL results

support the debugging process. Pearson et al. [18] made an overall

experimental study of different fault localization techniques using

various benchmarks. Perez et al. [19] analyzed the diagnosability

of fault localization.

Recently, Deep Learning (DL) is a hot topic and tends to be con-

cerned in software engineering [3, 12]. Li et al. [11] adapted deep

learning approaches to fault localization such that more features

from different dimensions can be adopted. Nevertheless, we think

that it is still useful to explore the knowledge of spectra distribution

as well as other theories related to SBFL. Firstly, we can derive a

more comprehensive understanding of fault localization. Moreover,

The mining of spectra characteristics involving heterogeneous arti-

facts can help us identify more essential features. This will improve

the explainability of DL-based approaches and facilitate the con-

struction of more reasonable deep networks for fault localization.

8 CONCLUSION AND FUTUREWORK

To pursue the basic intuitions of SBFL, this paper conducts a further

exploration of the Characteristics of Spectra Distribution (CSDs).
We mainly focus on how the relationship between the coverage

of program statements and the manifestation of failures can be

reflected in program spectra. In particular, our analysis is not limited

to single-fault scenarios. The effect of fault interference, model as

the noise module, is also discussed. As a result, we extend the base

of SBFL-related conclusions and present them as a series of CSDs.
Specifically, the contributions of this paper are listed below:

(1) We proposed the concepts of Failure-Independent, Failure-
Related, and Failure-Exclusionary to describe the relation-

ships between program failures and the coverage of each

statement within the scope of program spectra.

(2) We build a probabilistic model to derive the formal descrip-

tion of the characteristics of program spectra under the
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concepts of Failure-Independent, Failure-Related, and Failure-
Exclusionary. This is our first trial to explore quantitative

conclusions beyond the basic intuitions of SBFL.

(3) We extend the probabilisticmodel by introducing the noisemod-

ule based on the assumption of noise-style fault interference.

Then, we quantitatively analyze the spectrum movement

of each type of statement and the change of Spectra Space.

This is our first trial to make a quantitative analysis for the

complicated internal interactions in multi-fault instances.

(4) We summarize the derived CSDs using a visualization ap-

proach, which presents our analysis results in a general way.

(5) Several interesting results are found. For example, 1) dif-

ferent types of statements are distributed in different areas

of the Spectra Space. 2) The noise will weaken the original

characteristics of each type of statements. 3) The statements

tend to move towards the diagonal lines of the Spectra Space

after suffering the noise.
(6) To demonstrate the usefulness of our analysis, we design

a statement filter to eliminate the Failure-Independent and
Failure-Exclusionary statements. Our strategy is based on

visualization and utilizes both the single-fault and noise-

involved CSDs.

In the future, we will extend our approach by establishing more

complicated probabilistic models and exploring more spectra dis-

tribution characteristics. Then we will use the derived spectra dis-

tribution rules to improve SBFL. Furthermore, the approach that

intuitively summarizes the identified CSDs will be evaluated by

practical use cases.
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