Codensity Games for Bisimilarity

Yuichi Komorida (Sokendai & NII, Tokyo),

Shin-ya Katsumata (NII, Tokyo),

Nick Hu (Oxford),

Bartek Klin (Warsaw),

Ichiro Hasuo (NII, Tokyo)

LICS 2019 in Vancouver, 26 June 2019

Background

Each <u>bisimilarity-like notion</u> for <u>coalgebras</u> separately has

- Bisimilarity for LTS [Park 1981][Milner 1989]
- Bisimilarity for Markov chains [Larsen & Skou 1991][Fijalkow+ ICALP2017]
- Bisimulation metric for Markov chains [Desharnais+ 2004][Desharnais+ 2008]

We give a general template of this picture:

general "GFP=game" theorem

- We use
 - fibrational coinduction [Hermida & Jacobs 1998]
 - codensity lifting [Katsumata & Sato CALCO15] [Sprunger+ CMCS18]

Background

Each <u>bisimilarity-like notion</u> for <u>coalgebras</u> separately has efinition game greatest characterization fixed-point I'll explain these "GFP=game" theorem

Coalgebra

 \mathbb{C} : category $F: \mathbb{C} \to \mathbb{C}$

An F-coalgebra is a pair

 $(X \in \mathbb{C}, t: X \to FX)$

How states behave

We'll mainly consider $\mathbb{C}=\mathbf{Set}$.

- \mathcal{P} -coalgebras = Kripke frames
- \mathcal{D} -coalgebras = Markov chains
- LTS, (non-deterministic/deterministic/ weighted) automata, and many others

Bisimilarity-like notions

- Bisimilarity relation
 - Equivalence rel. representing
 - which states behave the same
- Bisimulation metric [Desharnais+,TCS318(3),2004]
 - Pseudometric refining bisimilarity,
 - used mainly for probabilistic systems

GFP definition: example

Let $t: X \rightarrow \mathcal{D}X$

Define $\Phi: 2^{X \times X} \rightarrow 2^{X \times X}$ (predicate transformer) by

$$(x, y) \in \Phi(R)$$

 \Leftrightarrow For any R-closed $Y \subseteq X$, \lt to distinguish states

use "observations"
$$Y \subseteq X$$

$$t(x)(Y) = t(y)(Y)$$

Bisimilarity relation is $v\Phi$.

Game characterization

2 players 😇 😈; 😇 wins any infinite play

- From $(x, y) \in X \times X$

- Is it true? If Y is $v\Phi$ -closed, then $(x, y) \notin v\Phi$.
- where $Y \subseteq X$ s.t. $t(x)(Y) \neq t(y)(Y)$
- From $Y \subseteq X$

GFP=game theorem: example

Theorem [Fijalkow+ ICALP2017]

GFP definition

$$(x,y) \in v\Phi$$

if and only if

bas a winning strategy

starting from $(x, y) \in X \times X$.

game characterization

We give a general template of this picture:

- We use
 - fibrational coinduction [Hermida & Jacobs 1998]
 - COCENSITY IFTING [Katsumata & Sato CALCO15] [Sprunger+ CMCS18]

Fibrations

I'll explain later

- Fibration: functor $p: \mathbb{E} \to \mathbb{C}$ satisfying cartesian lifting property.
- $R \in \mathbb{E}$ is above $X \in \mathbb{C} \Leftrightarrow pR = X$
- Fiber \mathbb{E}_X over $X \in \mathbb{C}$ object: $R \in \mathbb{E}$ above X arrow: f in \mathbb{E} s.t. $pf=1_X$

Cartesian lifting property

$$\begin{array}{c|c}
\mathbb{E} & R \\
\downarrow & \vdots \\
\mathbb{C} & X \longrightarrow Y \\
f^* \colon \mathbb{E}_Y \to \mathbb{E}_X
\end{array}$$

Fibrations: example

- Category ERel
 - object: set with binary rel.
 - arrow: relation-preserving map
- Forgetful func. U: **ERel** \rightarrow **Set** is a fibration.
- Fiber $\mathbf{ERel}_X = 2^{X \times X}$

Fibrations: example

Fibration: other examples

- Pred \rightarrow Set
- $\mathbf{Set}^{\rightarrow} \rightarrow \mathbf{Set}$
- PMet \rightarrow Set
- Top \rightarrow Set, Meas \rightarrow Set

Lifting

 \dot{F} is called a lifting of F along p if \cdots

Fibrational coinduction

 $p: \mathbb{E} \to \mathbb{C}$: fibration, $F: \mathbb{C} \to \mathbb{C}$, $\dot{F}: \mathbb{E} \to \mathbb{E}$ lifting of F along p, $t: X \to FX$ F-coalgebra

$$\Phi = t^* \circ F$$

predicate

transformer

We give a general template of this picture:

- We use
 - fibrational coinduction [Hermida & Jacobs 1998]
 - Codensity lifting [Katsumata & Sato CALCO15] [Sprunger+ CMCS18]

$CLat_{\square}$ -fibration

- ··· is a fibration where
- each fiber \mathbb{E}_X is a complete lattice
- each pullback functor $f^*\colon \mathbb{E}_Y \to \mathbb{E}_X$ preserves meets

Examples: ERel \rightarrow Set, PMet₁ \rightarrow Set

Non-example: $Set^{\rightarrow} \rightarrow Set$

Codensity Lifting: parameter

- A \mathbf{CLat}_{\square} -fibration $p: \mathbb{E} \to \mathbb{C}$
- $F: \mathbb{C} \to \mathbb{C}$
- A family of pairs (called lifting parameter)

$$(\Omega_a, \tau_a \colon F\Omega_a \to \Omega_a)_{a \in \mathbb{A}}$$

as in the diagram below:

Codensity Lifting

Theorem [Sprunger+ CMCS18]

The following defines

a lifting $F^{\Omega,\tau}$ of F:

$$F^{\mathbf{\Omega},\tau}R = \prod_{a \in \mathbb{A}, f} (\tau_a \circ F(pf))^* \mathbf{\Omega}_a$$

 $a{\in}\mathbb{A}, f$ where f ranges over $\mathbb{E}(R, \mathbf{\Omega}_a).$

use "observation" *a, f* and gather information

Codensity lifting: example

Use ERel
$$o$$
 Set, \mathcal{D} : Set o Set, $(\mathrm{Eq}_2, \mathrm{thr}_r \colon \mathcal{D}2 \to 2)_{r \in [0,1]}$ where Eq_2 is the equality relation and $\mathrm{thr}_r(d) = \top \iff d(\{\top\}) \geq r$. Threshold modality

$$\Leftrightarrow \forall r \in [0,1], \forall f \colon (X,R) \to (2,\operatorname{Eq}_2) \text{ rel.-pres.},$$

$$\operatorname{thr}_r((\mathcal{D}f)(d)) = \operatorname{thr}_r((\mathcal{D}f)(d'))$$
 Predicate to the second seco

Predicate transformer in the prev. example appears!

We give a general template of this picture:

- We use
 - fibrational coinduction [Hermida & Jacobs 1998]
 - **Codensity lifting** [Katsumata & Sato CALCO15] [Sprunger+ CMCS18]

Codensity bisimilarity

Given \mathbf{CLat}_{\sqcap} -fibration $p: \mathbb{E} \to \mathbb{C}$,

$$F: \mathbb{C} \to \mathbb{C}, \quad (\Omega_a, \tau_a: F\Omega_a \to \Omega_a)_{a \in \mathbb{A}},$$

F-coalgebra $t:X \to FX$,

codensity lifting

we have a lifting $F^{\Omega,\tau}$: $\mathbb{E} \to \mathbb{E}$,

and a predicate transformer

$$t^* \circ F^{\mathbf{\Omega}, \tau} \colon \mathbb{E}_X \to \mathbb{E}_X.$$

fibrational coinduction

Codensity bisimilarity is $\nu(t^* \circ F^{\Omega,\tau}) \in \mathbb{E}_X$.

Codensity game

makes some conjecture on the codensity bisimilarity

From $R \in \mathbb{E}_X$

challenges by an "observation"

 \overline{w} chooses $a \in \mathbb{A}$ and $f:X \to \Omega_a$ s.t.

$$R \not\sqsubseteq (\tau_a \circ Ff \circ t)^* \mathbf{\Omega}_a.$$

- From $(a \in \mathbb{A}, f: X \to \Omega_a)$

shows the "observation" is not appropriate, by another conjecture

Main theorem:

general "GFP=game" theorem

Theorem

$$R \sqsubseteq \nu(t^* \circ F^{\Omega,\tau})$$

if and only if

bas a winning strategy

starting from $R \in \mathbb{E}_{X}$.

GFP definition

game characterization

Remark

- To recover the game for bisimilarity relation on Markov chains (in the previous slides), we have to use a trick, "trimming."
- We derived a new simple game for bisimulation metric for
 D-coalgebras.

We give a general template of this picture:

- We use
 - fibrational coinduction [Hermida & Jacobs 1998]
 - Codensity lifting [Katsumata & Sato CALCO15] [Sprunger+ CMCS18]

Future work

- Relation to modal logic
- Seek new useful bisimilarity-like notions
- Relation to another game for continuous lattices [Baldan+ POPL19]

We give a general template of this picture:

- We use
 - fibrational coinduction [Hermida & Jacobs 1998]
 - Codensity lifting [Katsumata & Sato CALCO15] [Sprunger+ CMCS18]