Fibrational Theory of Behaviors and Observations

Bisimulation, Logic, and Games from Modalities

Yuichi Komorida (Sokendai & NII, Tokyo) 21 Jul 2022, Kyoto

About me

- Yuichi Komorida
- PhD student at Sokendai (AY 2018-2022)
- Formerly in KU as an undergraduate (AY 2013-2017)
- Planning the thesis ← today's topic!

- 1. About me
- 2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Codensity games / Expressivity of modal logic / Fiberedness of codensity lifting

1. About me

2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Codensity games / Expressivity of modal logic / Fiberedness of codensity lifting

Context of the theory

- Theory of (observable) behaviors: coalgebra
- <u>Fibrational</u> theory of (observable) behaviors: fibrational coinduction
- Fibrational theory of behaviors <u>and observations</u>:
 this thesis

- 1. About me
- 2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Codensity games / Expressivity of modal logic / Fiberedness of codensity lifting

Coalgebra [Rutten, 2000] etc.

 \mathbb{C} : category $B:\mathbb{C}\to\mathbb{C}$

A B-coalgebra is a pair

$$(X \in \mathbb{C}, x \colon X \to BX)$$

We'll mainly consider $\mathbb{C} = \mathbf{Set}$.

- \mathcal{P}\text{-coalgebras} = Kripke frames
- $\mathscr{D} \times 2^{AP}$ -coalgebras = Markov chains
- LTS, (non-deterministic/deterministic/weighted) automata, and many others

Coalgebra morphism

- . An arrow $f: X \to Y$ such that the diagram on the right commute
- It "preserves all observable behaviors"
- How to extract information in a way that it is preserved by any morphism? → fibrational coinduction

- 1. About me
- 2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Codensity games / Expressivity of modal logic / Fiberedness of codensity lifting

Fibration

- . Fibration: functor $p \colon \mathbb{E} \to \mathbb{C}$ satisfying cartesian lifting property.
- $R \in \mathbb{E}$ is above $X \in \mathbb{C} \iff pR = X$
- . Fiber \mathbb{E}_X over $X \in \mathbb{C}$ object: $R \in \mathbb{E}$ above X arrow: f in \mathbb{E} s.t. $pf = 1_X$

Cartesian lifting property

Cartesian lifting property

$$\begin{array}{c|c}
\mathbb{E} & f^*R & \longrightarrow R \\
\downarrow p & & & & \\
\mathbb{C} & X & \longrightarrow Y \\
f^* \colon \mathbb{E}_Y \to \mathbb{E}_X
\end{array}$$

Cartesian lifting property

"Observe unknown X using known R through f"

- . Category EqRel
 - object: set with equivalence rel.
 - arrow: relation-preserving map
- . Forgetful func. $U \colon \mathbf{EqRel} \to \mathbf{Set}$ is a fibration.
- Fiber \mathbf{EqRel}_X is the set of all eq.rel.

EqRel
$$f^*R\subseteq X\times X \longleftrightarrow R\subseteq Y\times Y$$

U
Set $X \xrightarrow{f} Y$
 $f^*R=\{(x,x')\in X\times X\mid (f(x),f(x'))\in Y\times Y\}$

- Category PMet₁
 - object: set with [0,1]-valued pseudometric
 - arrow: non-expansive map
- Forgetful func. U: $PMet_1 \rightarrow Set$ is a fibration.
- Fiber $(\mathbf{PMet}_1)_X$ is the set of all [0,1]-valued pseudometrics on X

$$f^*d(x,x') = d(f(x),f(x'))$$

CLat_n-fibration

- ··· is a fibration where
- . each fiber \mathbb{E}_X is a complete lattice
- . each reindexing $f^* \colon \mathbb{E}_Y \to \mathbb{E}_X$ preserves meets

Examples: EqRel \rightarrow Set, PMet₁ \rightarrow Set,

Pred \rightarrow Set, Meas \rightarrow Set, Top \rightarrow Set, \cdots

A CLat_n-fibration specifies a <u>form of information</u>

Remark on the "order"

- . Order in \mathbb{E}_X : $E \sqsubseteq E'$ means $E \to E'$
- . In EqRel, $(X,R) \sqsubseteq (X,R')$ means $R \subseteq R'$
- . In PMet₁, it is "reversed"
 - $(X, d) \sqsubseteq (X, e)$ means, for each x_1, x_2 , $d(x_1, x_2) \ge e(x_1, x_2)$
 - . Meet n means sup of the values

Functor lifting

Def. \overline{B} is called a lifting of B along p if \cdots

 \overline{B} specifies how to extract \mathbb{E} -information from B-behaviors.

\overline{B} -coinductive predicate

[Hermida & Jacobs 1998]

$$p \colon \mathbb{E} \to \mathbb{C} \colon \mathbf{CLat}_{\sqcap}$$
-fibration, $B \colon \mathbb{C} \to \mathbb{C}$,

$$\overline{B} \colon \mathbb{E} \to \mathbb{E}$$
: lifting of B along p ,

 $x: X \rightarrow BX B$ -coalgebra

Coalgebra morphisms preserve $\nu(x^* \circ \bar{B})$

 $x: X \to BX$, $y: Y \to BY$, a coalgebra morphism $f: X \to Y$

- . In the fiber \mathbb{E}_X , $\nu(x^* \circ \bar{B}) \sqsubseteq f^*\nu(y^* \circ \bar{B})$ holds.
- . If \bar{B} is fibered (explained later), $\nu(x^* \circ \bar{B}) = f^*\nu(y^* \circ \bar{B})$ holds.
- Examples
 - . In EqRel \rightarrow Set, f preserves (resp. reflects) the equivalence.
 - . In $\mathbf{PMet}_1 \to \mathbf{Set}$, f is non-expansive (resp. isometry).

- . Coinductive predicate $\nu(x^* \circ \bar{B})$ depends only on "observable behaviors"
 - How to give an appropriate lifting \bar{B} ?
 - What is "observation" here?
- → Use codensity lifting

- 1. About me
- 2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Codensity games / Expressivity of modal logic / Fiberedness of codensity lifting

Codensity lifting

Generalization:

Kantorovich distance

Kantorovich lifting [Baldan et al. FSTTCS14]

Codensity lifting [Katsumata & Sato CALCO15] [Sprunger+ CMCS18]

Kantorovich distance

- \mathscr{D} : Set \rightarrow Set: the discrete prob. dist. functor
- $(X,d) \in \mathbf{PMet}_1, p,q \in \mathscr{D}X$

$$d^{K}(p,q) = \sup_{f} \left| \sum_{x} f(x)p(x) - \sum_{x} f(x)q(x) \right|$$

. f ranges over nonexpansive maps $(X,d) \to ([0,1],d_{\mathbb{R}})$ (intuitively it is an "observation")

Kantorovich distance

- $e: \mathcal{D}[0,1] \rightarrow [0,1]$: expected value function
- $(X,d) \in \mathbf{PMet}_1, p,q \in \mathscr{D}X$

$$d^{K}(p,q) = \sup_{f} d_{\mathbb{R}} \left(e((\mathcal{D}f)(p)), e((\mathcal{D}f)(q)) \right)$$

. f ranges over nonexpansive maps $(X,d) \to ([0,1],d_{\mathbb{R}})$ (intuitively it is an "observation")

Kantorovich lifting

[Baldan et al. FSTTCS14]

- $B: \mathbf{Set} \to \mathbf{Set}$
- Use $\tau: B[0,1] \to [0,1]$
- $(X,d) \in \mathbf{PMet}_1, p,q \in FX$

$$d^{\uparrow B}(p,q) = \sup_{f} d_{\mathbb{R}} \left(\tau((Bf)(p)), \tau((Bf)(q)) \right)$$

• f ranges over nonexpansive maps $(X, d) \to ([0,1], d_{\mathbb{R}})$ (intuitively it is an "observation")

Kantorovich lifting

[Baldan et al. FSTTCS14]

- $B : \mathbf{Set} \to \mathbf{Set}$
- Use τ : B[0,1] → [0,1]
- $(X,d) \in \mathbf{PMet}_1$

$$d^{\uparrow B} = \prod_{f} (\tau \circ Bf)^* d_{\mathbb{R}}$$

• f ranges over nonexpansive maps $(X,d) \to ([0,1],d_{\mathbb{R}})$ (intuitively it is an "observation")

Codensity lifting

[Katsumata & Sato CALCO15] [Sprunger+

CMCS18]

- . B: \mathbb{C} → \mathbb{C} , p: \mathbb{E} → \mathbb{C} (CLat_□-fibration)
- . Use $\tau \colon B\Omega \to \Omega, \Omega \in \mathbb{E}_{\Omega}$
- $X \in \mathbb{C}, E \in \mathbb{E}_X$

$$B^{\mathbf{\Omega},\tau}E = \prod_{f} (\tau \circ B(pf))^* \mathbf{\Omega}$$

- . f ranges over arrows $E \to \Omega$ in $\mathbb E$ (intuitively it is an "observation")
- A functor $B^{\Omega,\tau}\colon \mathbb{E} \to \mathbb{E}$ is defined

Codensity lifting (multiple parameters)

[Katsumata & Sato CALCO15] [Sprunger+ CMCS18]

- . B: \mathbb{C} → \mathbb{C} , p: \mathbb{E} → \mathbb{C} (CLat_{\square}-fibration)
- . Use $(\tau_{\lambda} \colon B\Omega_{\lambda} \to \Omega_{\lambda}, \Omega_{\lambda} \in \mathbb{E}_{\Omega_{\lambda}})_{\lambda \in \Lambda}$
- $X \in \mathbb{C}, E \in \mathbb{E}_X$

$$B^{\mathbf{\Omega},\tau}E = \prod_{\lambda,f} (\tau_{\lambda} \circ B(pf))^* \mathbf{\Omega}_{\lambda}$$

- . f ranges over arrows $E \to \Omega_{\lambda}$ in $\mathbb E$ (intuitively it is an "observation")
- A functor $B^{\Omega,\tau}\colon \mathbb{E} \to \mathbb{E}$ is defined

- 1. About me
- 2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Codensity games / Expressivity of modal logic / Fiberedness of codensity lifting

Codensity bisimilarity

- Combine codensity lifting and fibrational coinduction
- . For $x: X \to BX$, its codensity bisimilarity is $\nu(x^* \circ B^{\tau,\Omega})$
- Examples: bisimilarity, simulation preorder, behavioral distance, safety predicate, …

Contents of the thesis

 Explicit formulation of "observation" enables two other forms of definition of codensity bisimilarity:

- 1. About me
- 2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Presented in LICS2019

Codensity games / Expressivity of modal logic / Fiberedness of codensity lifting

Codensity game

- (possibly) infinite game by 2 players:
 - ©, who tries to show "they are bisimilar" (in the case of bisimilarity)
 - W, who tries to disprove it
- wins if the game lasts indefinitely

Codensity game

makes some conjecture on the codensity bisimilarity

From $R \in \mathbb{E}_X$

challenges by an "observation"

chooses $\lambda \in \Lambda$ and $f: X \to \Omega_{\lambda}$ s.t.

$$R \not\sqsubseteq x^*(\tau_{\lambda} \circ Bf)^*\Omega_{\lambda}.$$

- From $(\lambda \in \Lambda, f: X \to \Omega_{\lambda})$ $\begin{cases} \hline \varpi \text{ chooses } R' \in \mathbb{E}_{X} \text{ s.t. } R' \not\sqsubseteq f^*\Omega_{\lambda}. \\ \hline \end{cases}$

shows the "observation" is not appropriate, by another conjecture

General "GFP=game" theorem

- 1. About me
- 2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Presented in LICS2021

Codensity games / Expressivity of modal logic / Fiberedness of codensity lifting

4. Future research directions

Coalgebraic modal logic

- . Formulas: $\varphi := \sigma(\varphi_1, ..., \varphi_n) \mid \blacktriangledown_{\lambda} \varphi'$
- . Interpretation of a formula φ w.r.t. $x\colon X\to BX$ is $[\![\varphi]\!]_x\colon X\to \Omega$ in $\mathbb C$
- . σ is interpreted by $f_{\sigma} \colon \Omega^n \to \Omega$ in $\mathbb C$
- . A modality Ψ_{λ} is interpreted

by *B*-algebra $\tau_{\lambda} \colon B\Omega \to \Omega$

Recall logical distance…

$$(a,b) \mapsto |\llbracket \varphi \rrbracket_x(a) - \llbracket \varphi \rrbracket_x(b)| \qquad (r,s) \mapsto |r-s|$$

$$X \longrightarrow [0,1]$$

$$(a,b) \mapsto \sup_{\varphi} | \llbracket \varphi \rrbracket (a) - \llbracket \varphi \rrbracket (b) |$$

Fibrational logical equivalence

$$\mathsf{LE}(x) := \sqcap_{\varphi} \llbracket \varphi \rrbracket_{x}^{*} \Omega$$

Adequacy & expressivity

Let $x: X \to BX$ be any *B*-coalgebra.

```
\mathsf{Bisim}(x) := \nu(x^* \circ B^{\Omega,\tau}) \qquad \mathsf{LE}(x) = \sqcap_{\varphi} \, \llbracket \varphi \rrbracket_{x}^* \Omega
```

The modal logic is ···

- . adequate if $Bisim(x) \subseteq LE(x)$ holds.
- expressive if $Bisim(x) \supseteq LE(x)$ holds.

Two ways to observe the behavior

General adequacy

• Prop. If $\overline{B} = \overline{B}^{\Omega,\tau}$ holds, then the logic is adequate, that is, $\operatorname{Bisim}(x) \sqsubseteq \operatorname{LE}(x)$ holds for any $x \colon X \to BX$.

• (In the paper, the condition $\overline{B} = \overline{B}^{\Omega,\tau}$ is built in the definition itself; see Def.III.1 and Prop.III.13)

Two ways to observe the behavior

Approximating family of observations

. Def. $S \subseteq \mathbb{C}(X,\Omega)$ is an approximating family of observations if, for each $\lambda \in \Lambda$ and $h \colon \left(\sqcap_{k \in S} k^* \Omega \right) \to \Omega$, the following holds: $\sqcap_{l \in S, \mu \in \Lambda} (\tau_{\mu} \circ Bl)^* \Omega \sqsubseteq (\tau_{\lambda} \circ B(ph))^* \Omega \, .$

• In other words, if each "legitimate observation" h gives no additional information, then S is an approximating family.

Main theorems

Let $x: X \to BX$ be a coalgebra. Assume $\overline{B} = \overline{B}^{\Omega,\tau}$.

- . Thm. If the set $\{ \llbracket \varphi \rrbracket \mid \varphi \text{ is a formula} \}$ is an approximating family, then the logic is expressive. (Knaster—Tarski form, Thm. IV.5)
- Thm. If, for each n, the set $\{ \llbracket \varphi \rrbracket \mid \varphi \text{ is a formula of modal depth } \leq n \}$ is an approximating family, then the logic is expressive. (Kleene form, Thm.IV.7)

("Expressive" means $Bisim(x) \supseteq LE(x)$, as mentioned)

General adequacy

• Prop. If $\overline{B} = \overline{B}^{\Omega,\tau}$ holds, then the logic is adequate, that is, $\operatorname{Bisim}(x) \sqsubseteq \operatorname{LE}(x)$ holds for any $x \colon X \to BX$.

• (In the paper, the condition $\overline{B} = \overline{B}^{\Omega,\tau}$ is built in the definition itself; see Def.III.1 and Prop.III.13)

- 1. About me
- 2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Codensity games / Expressivity of modal logic /

Fiberedness of codensity lifting

4. Future research directions

Presented in CMCS2020

Fiberedness

- Fibered lifting: functor lifting that interact well with reindexing
- $B: \mathbb{C} \to \mathbb{C}, p: \mathbb{E} \to \mathbb{C}$ (CLat_{\pi}-fibration)
- Lifting $\bar{B} \colon \mathbb{E} \to \mathbb{E}$ is fibered if
 - for any $f: X \to Y$ in $\mathbb C$ and $E \in \mathbb E_Y$,
 - $.\bar{B}(f^*E) = (Bf)^*\bar{B}E$ holds.

- Kantorovich lifting is always fibered [Baldan et al. FSTTCS14]
 - In that case fiberedness ⇔ preservation of isometries
- Codensity lifting ···· ???

Property of [0,1]

[Baldan et al. FSTTCS14]

- $f: X \to Y \text{ and } (Y, d) \in \mathbf{PMet}_1$
- For any g, there exists h:

C-injective object

- $p: \mathbb{E} \to \mathbb{C}$ (CLat_□-fibration)
- Def. $\Omega \in \mathbb{E}_{\Omega}$ is <u>c-injective</u> if, for any $f: X \to Y$, $E \in \mathbb{E}_{Y}$, and $g: f^*E \to \Omega$, the following h exists:

Fiberedness theorem

- Thm. If $\Omega \in \mathbb{E}$ is c-injective, then the codensity lifting $B^{\Omega,\tau} \colon \mathbb{E} \to \mathbb{E}$ is a fibered lifting of B.
- . Cor. In this case, any coalgebra morphism $f: X \to Y$ from $x: X \to BX$ to $y: Y \to BY$ "reflects" the coinductive predicate: $\nu(x^* \circ B^{\Omega,\tau}) = f^*\nu(y^* \circ B^{\Omega,\tau})$ holds.

Examples of fibered codensity liftings

fibration	Ω	c-injective?	examples
Pre→Set	(2,≦)	Yes	upper, lower, convex preorders
ERel→Set	(2,=)	No	(for bisimilarity)
EqRel→Set	(2,=)	Yes	(for bisimilarity)
PMet₁→Set	([0,1],d _R)	Yes	Hausdorff and Kantorovich distances
U*(PMet ₁)→ Meas	([0,1],d _R)	No	Kantorovich distance
Top→Set	Sierpinski space	Yes	(for bisimulation topology)

- 1. About me
- 2. Technical context

Coalgebra / Fibrational coinduction / Codensity lifting

3. Main results

Codensity games / Expressivity of modal logic / Fiberedness of codensity lifting

4. Future research directions

Relations between codensity liftings

- How to relate different codensity bisimilarities? Any general theory?
 - Ex. Behavioral metric $= 0 \iff$ bisimilar
- A few preliminary results are in the (just accepted) journal version of [LICS2019]
- A satisfying form of result is: codensity lifting is a functor from some category to the functor category.

Elaborating examples in new fibrations

- . "Behavioral topology" in $\mathbf{Top} \to \mathbf{Set}$: computability result using domain theory?
- Behavioral uniformity" in Unif → Set:
 - Stable under a "small" change of system?
 - · "Asymptotic" behaviors can be read off?

Algorithm from fibrational game?

- Solve codensity games to calculate codensity bisimilarities?
 - · The arena is infinite in many cases, so not trivial
- Reduction to some finite part? When can we do it?
- A new scheme to obtain a game from Wasserstein lifting?